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Imprinting interference fringes in massive optomechanical systems
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An interferometric scheme for the creation of momentum superposition states of mechanical oscillators
using a quantum mirror kicked by free photons is analyzed. The scheme features ultrafast preparation with
immediate detection and should allow for the observation of signatures of momentum superpositions in a
massive macroscopic system at nonzero temperatures. It is robust against thermalized initial states, displacement
and movement, mirror imperfections, and the measurements’ back-actions.
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Heisenberg’s uncertainty principle enforces that quantum
measurements’ back-actions leave traces in an observed
system [1,2]. Although their random nature can be useful
(back-action protects quantum cryptography protocols from
eavesdropping and it can help to cool tiny mirrors [3]), the
traces are usually detrimental and back-action avoidance has
been researched intensively [4]. Uncontrollable measurement
back-actions give rise to loss of coherence (decoherence [5])
which hampers us when building quantum computers, running
sensitive interferometers for gravitational wave detection, or
synthesizing superposition states of classical objects.

In the thought experiment introduced here, we show that
measurement back-actions [4] can be restricted and harnessed
yielding a fruitful and stabilizing influence. Several probe
particles interact with a quantum system and are subsequently
detected; the traces they leave in the system modifies the
future behavior of following probe particles. These repeated
interactions can prepare the system in a desirable quantum
state and the features of that quantum state can show up in
modified measurement statistics of future probe particles. An
initially unbiased setup can thus become skewed by repeated
quantum interrogation. The system and its probe particles
have become entrained. This entrainment allows us to create
otherwise difficult-to-realize quantum states.

The ideas sketched here are related to work on relative
localization by Rau, Dunningham, and Burnett [6,7] and
follow-up work [8,9].

We consider a Michelson-Morley interferometer in which
the central, two-sided mirror is quantum delocalized in the
x direction, perpendicular to its reflecting surfaces [3,10,11],
see Fig. 1. The quantum mirror’s wave function is described
by its center-of-massdensity matrix ρ(x,ξ ) for which we want
to assume that it has a coherent extension of a few tens of
nanometers (this might, for example, be achieved through a
ballistic expansion of a tightly squeezed and cooled mirror [12]
which is suddenly set free [13]).

In the first step of the entrainment procedure a single
photon γi , such as those available from spontaneous parametric
down-conversion (SPDC) pair-creation processes [14], is sent
through the interferometer, entering, say, through port L0.

In a classical interferometer, using a sharply localized per-
fect mirror, the phase-shifter φ can be set such that this photon
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will exit through port LE with certainty since destructive
interference renders port RE dark. With a sufficiently widely
delocalized central mirror, however, this interference pattern
gets washed out and photons will exit through port RE as well.

We want to concentrate on one photon at-a-time arrange-
ments, the next photon should interact with the mirror after the
previous has passed. The delay time between any two photons
is therefore constrained by

�t > δt + D(N − 1)

c
, (1)

here δt ≈ 100 fs is the photons’ coherence time [14] and
D the distance they travel between two mirror interactions.
Note that for single bounce setups (N = 1; compare Fig. 1)
the interaction time for m photons is thus bound by Tm ≈
m · δt and we can generate and interrogate a momentum-
superposition state repeatedly on the picosecond time scale.
This is in marked contrast to the “standard approach” of
confining the light inside a cavity [15–18].

For the formal analysis we need to determine the bosonic
light-field operators L̂E and R̂E at the exit ports in terms of
those at the entrance ports L̂0 and R̂0 (we will leave R̂0 empty,
see Fig. 1)

(
L̂E

R̂E

)
= BPN+1KNPN · . . . · K2P2K1P1B

(
L̂0

R̂0

)
. (2)

The unitary 2 × 2 matrices B, P, and K describe balanced
mirrors, photon propagators, and kick operators, respectively.
Specifically, B = S(π

4 ) is a special case of a lossless splitter S
with reflection probability cos(θ )2, namely

S(θ ) =
(

cos(θ ) i sin(θ )
i sin(θ ) cos(θ )

)
. (3)

The photon propagators

Pj =
(

PL,j 0
0 PR,j

)
(4)

account for the path length of mode “j” including the phase
jump due to the reflection by the perfect mirrors ML and MR ,
respectively.
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FIG. 1. (Color online) Setup for interferometric preparation and
readout of the state of a quantum mirror (QM). The initial photon γi

enters the interferometer through mode L0, gets split into equal partial
waves by a balanced beam splitter B, and traverses the interferometer
via successive paths L1, L2, and so on (or alternatively via paths R1,
etc.). Every time it is reflected by the QM it imparts a momentum
kick and thus prepares the mirror in a momentum superposition state
(the corresponding modes are symbolized by folded double arrows).
A phase shifter φ allows us to scan the photons’ interference patterns.
The final balanced beam mixer B removes “which-path” information;
when the photon gets detected in mode LE or RE , this measurement
projects the mirror into a momentum-superposition state. With an
ultrashort time delay, see Eq. (1), a second photon γs follows γi via a
polarizing beam splitter through the interferometer and interrogates
the state of the QM.

The kick operators enact the partial reflection and trans-
mission of photons by the quantum mirror in conjunction with
the associated momentum transfer to its center-of-massdensity
matrix ρ(x,ξ )

K̂j (θ ) =
(

cos(θ ) K̂Lj
(x̂) i sin(θ ) ⊗ 1l

i sin(θ ) ⊗ 1l cos(θ ) K̂Rj
(x̂)

)
. (5)

With an angle of incidence ε the effective photon momentum
transfer is pγ = 2h̄k cos(ε), where k = 2π/λ is their wave
number and the kick operators in Eq. (5) have the form

K̂Lj
(x̂) = exp

(
L̂
†
j L̂j ⊗ ipγ x̂

h̄

)
, (6)

and

K̂Rj
(x̂) = exp

(
−R̂

†
j R̂j ⊗ ipγ x̂

h̄

)
. (7)

The initial density matrix of the system (quantum mirror plus
light field) is

�(x,ξ ; l0,r0) = ρ(x,ξ )
(L̂†

0)l0 (R̂†
0)r0 |0〉〈0|L̂l0

0 R̂
r0
0

l0!r0!
. (8)

We will from now on assume that only single photons are
present at a time (i.e., l0 = 1 and r0 = 0). The determination
of photon numbers at an output port of the interferometer
involves tracing out the quantum mirror and projecting onto
that port (here, LE)

〈n̂LE
〉 = 〈TrQM{L̂†

EL̂E�}〉 =
〈∫

dxL̂
†
EL̂E�(x,x)

〉
. (9)

Tracing over the field yields an effective kick operatorK acting
on the mirror’s density matrix ρ. For example, for the setup
of Fig. 1 with a single bounce off the mirror (N = 1) and
assuming a photon enters through path L0 and is found to exit
through port LE we have (with normal incidence ε = 0)

KLE
=

[
sin(θ ) cos

(
φ

2

)
− i cos(θ ) sin

(
2kx − φ

2

)]

×
[

sin(θ ) cos

(
φ

2

)
+ i cos(θ ) sin

(
2kξ − φ

2

)]
.

(10)

For simplicity we write KLE
= KL, then, similarly, KR =

KL(φ �→ φ − π ).
According to Eq. (1) the time of interaction between all

successive photons and the mirror are very short, all reference
to the time evolution of the mirror is therefore absent in our
expressions for K.

Since the quantum mirror’s density matrix ρ changes in
response to the port in which the exiting photon is detected,
we represent the history associated with varying experimental
outcomes through a multi-index, namely, we write down the
ports L or R in which the exiting photons are registered:

ρLRLL(x,ξ ) = (KLρRLL)(x,ξ )

= (KLKRKLKLρ0)(x,ξ ), (11)

for example, describes the mirror’s density matrix when the
fourth photon is seen in the left port after the first two were
detected there as well, but the third exited to the right.

The initial mirror density matrix ρ0 is normalized:∫
dx ρ0(x,x) = 1, this is not true for density matrices condi-

tioned on measurements. Only all conditional density matrices
taken together are normalized since, for x = ξ , we have

KL + KR = 1, (12)

in other words, the integrated conditional density matrices
carry the relative weights for the occurrence of certain
experimental outcomes: pH = ∫

dx ρH (x,x). Here H is the
history label which denotes the occurrence of a specific run,
such as H = RLL, in example (11). We are thus led to define
the momentary spatial mirror probability density

αL,H (x) = ρLH (x,x)

pH

, (13)

which, when integrated over, yields the probability I to observe
a photon exiting through port L given a particular history H

IL,H =
∫

dx αL,H (x). (14)
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FIG. 2. (Color online) Intensity distribution I (λ,φ) for single-
bounce setup (N = 1) of a Gaussian quantum mirrorwith perfect
reflectivity r = 1 [initial density matrix for a fully coherent state
ρ0(x,x) = exp(−x2/σ 2)/(σ

√
π) with spread σ = 1]. (a) For small

values of wavelength λ interference is washed out whereas for values
of λ/σ > 6 it shows: IL and IR (green sheets centered around 0.5).
Detection of second IL,L (red sheet centered on 0.75) and third
photon IL,LL (blue sheet centered on 5/6 ≈ 0.83) shows strong
photon entrainment. For mixed histories the weights are strongly
reduced IR,L (red, at 1/4), IR,LL (dark blue, at 1/6), and IR,LR (thick
black mesh centered on 0.5). (b) Same plot as (a) for triple-bounce
case N = 3. The effective resolution of the probe particles rises
to � ≈ λ/(3 · 6): above λ/σ ≈ 18 the quantum washout of the
interference pattern diminishes. (c) Same plot as (a) for IL,L, IL,LL,
and IL,LLL, for (λ 	 σ ), as a function of decreasing mirror reflectivity
r: the entrainment persists for imperfect mirrors. The curves’ widths
indicate small variations with change of the phase angle φ (φ axis not
shown).

Since the kick operators K depend on wavelength λ and
phase setting φ, the intensity I (λ,φ) does as well, compare
Fig. 2. Obviously IL,H + IR,H = 1, and for single-photon
at-a-time scenarios I equals the photon intensity I = 〈n〉
of Eq. (9).

The effective spatial wavelength � for imprint and interro-
gation can be determined from Eq. (10) and is

� = λ

4 · f · N

∣∣∣∣
fGauss≈1.5

≈ λ

6 · N
, (15)

where the form factor f = 1 for a top hat and roughly 1.5
for a Gaussian wave packet, this is best seen in Fig. 2(b).
This shrinkage of the effective imprint and interrogation
wavelength� is noteworthy, compare plots in Figs. 2 and 3.

The above kick factors are special cases of the general back-
action a photon imparts onto its scatterer. Typically its back-
action destroys coherence [19], but here the interferometer
geometrically restricts the photons to two (incoming and two
reflected) modes only. We therefore end up with the desirable
kick factors K that represent controlled, quantum-superposed
momentum kicks. This allows us to create momentum super-
position states from initially stationary quantum mirrorstates
and allows for their detection and reinforcement through
entrainment.

For a sufficiently wide mirror wave function we end
up with sine- or cosine-shaped imprint patterns for KL or
KR , respectively. Hence, ρL and ρR become approximately
orthogonal wave functions, a second photon γs picks up
this trace and tends to follow the first photon. This happens
with roughly a 75% : 25% bias, see Fig. 2, the system
has thus become entrained. The second photon’s detection

FIG. 3. (Color online) Probability densities ρ(x,x) of quantum
mirrorin initially Gaussian state with σ = 1, λ = 1, and symmetric
setup φ = 0: thin solid black envelope. (a) Single-bounce setup
(N = 1), after the first photon has been detected: ρR and ρL (solid
single humped centered green line and solid double-humped red
line); similarly after detection of second ρRR , ρLL and third photon
ρRRR , ρLLL (green and red dashed and dotted lines). For mixed
measurement histories the weights are strongly reduced ρRL = ρLR

(green-red superposed double-humped lines) and ρRLR (blue dash-
dotted line) this clearly demonstrates entrainment. (b) Double-bounce
setup (N = 2), compared to (a) the imprint wavelength has halved.
(c) Same as (a) for an imperfect mirror with reflectivity r = 60%.

moreover imprints the same kick factor onto the mirror’s
center-of-masswave functionthus reinforcing this trend. The
third and fourth photons follow their predecessors with
an increasing bias of roughly 83% and 87%, respectively,
see Fig. 2(c). Each time, the mirror gets kicked in an
identical fashion this procedure reinforces the interference
fringes.

It should probably be emphasized that the sine- or cosine-
shaped imprint patterns are to be interpreted as our increase
in knowledge about the localization of the mirror according
to classical wave optics. Without further a priori information
about the nature of the initial state of the mirror the method
presented here does not allow us to infer that an interference
imprint has been created or detected. The method works for
any kind of mixed state and is therefore fairly insensitive
to temperature and other effects, such as nonzero average
center-of-massvelocities and displacements �x of the aver-
age center-of-massposition of the quantum mirror, as long
as �x 	 c · δt .

The rapidity of this method and the fact that it only probes
the mirror at chosen points in time reduces its contribution
to decoherence. For mirrors initially in sufficiently widely
spread-out pure states the back-action imprints and detects
interference imprints. An interrogation-photon’s arrival time
can be delayed to allow for the investigation of the quantum
mirror’s time evolution and its decoherence.

All features discussed above prevail for imperfect mirrors
even when their reflectivity drops to 60% or less, see Figs. 2(c)
and 3(c).

To conclude: An analysis of free photons interacting with
a quantum-delocalized mirror inside an interferometer shows
that their recoil can create and investigate momentum super-
position states of massive objects nondestructively, within a
picosecond. The analysis makes use of the entrainment of
following photons by their predecessors. Such entrainment
may well turn out to be a useful new response mode of quantum
systems in various settings.
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