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Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system
with intensity-dependent coupling
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In this paper, we study theoretically bipartite and tripartite continuous variable entanglement as well as
normal-mode splitting in a single-atom cavity optomechanical system with intensity-dependent coupling. The
system under consideration is formed by a Fabry-Pérot cavity with a thin vibrating end mirror and a two-level
atom in the Gaussian standing wave of the cavity mode. We first derive the general form of the Hamiltonian
describing the tripartite intensity-dependent atom-field-mirror coupling due to the presence of the cavity mode
structure. We then restrict our treatment to the first vibrational sideband of the mechanical resonator and derive a
tripartite atom-field-mirror Hamiltonian. We show that when the optical cavity is intensely driven, one can generate
bipartite entanglement between any pair in the tripartite system and that, due to entanglement sharing, atom-mirror
entanglement is efficiently generated at the expense of optical-mechanical and optical-atom entanglement. We
also find that in such a system, when the Lamb-Dicke parameter is large enough, one can simultaneously observe
the normal mode splitting into three modes.
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I. INTRODUCTION

Cavity optomechanics is a rapidly growing field of research
that is concerned with the interaction between a mechanical
resonator (MR) and the radiation pressure of an optical cavity
field [1–6]. Optomechanical coupling is widely employed
for a large variety of applications [7], more commonly as
a sensor for the detection of weak forces [8] and small
displacements [9] or as an actuator in integrated electrical,
optical, and optoelectronic systems [10,11]. However, the most
experimental and theoretical efforts are devoted to cooling
and trapping such MRs in their quantum ground state, which
recently has been done successfully [12]. Furthermore, in
Ref. [13] the authors proposed a different scheme to enhance
the cooling process by using photothermal (bolometric) force
[14]. They took into account noise effects due to the granular
nature of photon absorption and, finally, showed that the
MR can achieve the lowest phonon occupation number by
means of this procedure. Moreover, it seems promising for
the realization of long-range interaction between qubits in
future quantum information hardware [15], and for probing
of quantum mechanics at increasingly large mass and length
scales [16]. The coupling of an MR via radiation pressure to
a cavity field shows interesting similarities to an intracavity
nonlinear Kerr-like interaction [6] or even a more complicated
form of nonlinearity [17].

To observe and control quantum behavior in an optome-
chanical system, it is essential to increase the strength of the
coupling between the mechanical and the optical degrees of
freedom. However, the form of this coupling (e.g., linear or
nonlinear) is crucial in determining which phenomena can
be observed in such a system. Thanks to the rapid progress
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of nanotechnology, it has been possible to manipulate the
optomechanical coupling in quantum optomechanical hybrid
systems. In this direction, most experimental and theoretical
efforts are devoted to entangling an MR either with a single
atom [18–22] or with atomic ensembles [23–28], entangling
a nanomechanical oscillator with a Cooper-pair box [29], and
entangling two charge qubits [30] or two Josephson junctions
[31] via nanomechanical resonators. Alternatively, schemes
for entangling a superconducting coplanar waveguide field
with a nanomechanical resonator, either via a Cooper-pair box
within the waveguide [32] or via direct capacitive coupling
[33], have been proposed.

In Ref. [24] the authors proposed a scheme for the
realization of a hybrid, strongly quantum-correlated system
consisting of an atomic ensemble surrounded by a high-finesse
optical cavity with a vibrating mirror. They have shown
that, in an experimentally accessible parameter regime, the
steady state of the system shows both tripartite and bipartite
continuous variable (CV) entanglement. More recently, the
dynamics of a movable mirror of a cavity coupled through
radiation pressure to the light scattered from ultracold atoms
in an optical lattice was investigated [34]. The author showed
that in the presence of atom-atom interaction as a source of
nonlinearity [35], the coupling of the mechanical oscillator,
the cavity field fluctuations, and the condensate fluctuations
(Bogoliubov mode) leads to the splitting of the normal mode
into three modes (normal-mode splitting (NMS) [36–40]).
The system described there shows a complex interplay among
three distinct systems, namely, the nanomechanical cantilever,
the optical microcavity, and the gas of ultracold atoms.

Optomechanical NMS is one of the fascinating phenomena
arising from the strong coupling between a cavity and
a mechanical mirror [41–43]. In Ref. [42] it was shown
that the cooling of mechanical oscillators in the resolved
sideband regime with a high-driving-power laser can entail
the appearance of NMS. Moreover, the dynamics of a movable
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mirror of a nonlinear optical cavity is considered in Ref. [43].
It has been shown that a χ (3) medium with a strong Kerr
nonlinearity placed inside the cavity inhibits NMS due to the
photon blockade mechanism (this happens only if the Kerr
nonlinearity is much greater than the cavity decay rate). As
the authors showed in Refs. [34,43], the nonlinearity plays
a crucial role in the appearance of NMS in optomechnical
systems.

The main purpose of the present paper is to study the
quantum behavior of an atom-assisted cavity optomechanical
system in which a single two-level atom is trapped in the
standing-wave light field of a single-port Fabry-Perot cavity.
The infinite set of optical modes of the cavity can be described
by Hermite-Gauss modes. As we will see, the intracavity
mode structure can be employed to realize a type of intensity-
dependent coupling of the single atom to the vibrational mode
of MR. The presence of such intensity-dependent interaction
modifies the dynamics of the system, the entanglement prop-
erties, and the displacement spectrum of MR. We show that
in the first vibrational sideband of MR, a stationary, i.e., long-
lived, atom-mirror entanglement can be generated by properly
matching the Lamb-Dicke parameter (LDP). This parameter
plays an important role in our investigation in the sense that
it determines the strength of the nonlinearity in the system.
We show that bipartite entanglement between the subsystems
depends greatly on the LDP. It is also remarkable that, in the
steady-state condition, a high resolution of NMS in the form of
three-mode splitting is approached. In particular, the appear-
ance of intensity-dependent coupling leads to a progressive
increase in NMS due to the strong nonlinear atom-field-mirror
interaction.

The paper is organized as follows. In Sec. II we derive
an intensity-dependent Hamiltonian describing the triple cou-
pling of atom-field-mirror through j-phonon excitations of
the vibrational sideband. In Sec. III, we derive the quantum
Langevin equations (QLEs) and linearize them around the
semiclassical steady state. In Sec. IV we study the steady
state of the system and quantify the entanglement properties
of the system by using the logarithmic negativity. In Sec. V
we investigate the appearance of NMS in the displacement
spectrum of the mirror. Our conclusions are summarized in
Sec. VI.

II. MODEL

The system studied in this paper is sketched in Fig. 1.
It consists of a hybrid system formed by a single two-level
atom with transition frequency ωe which is trapped in the
standing-wave light field of a single-port Fabry-Perot cavity
with a movable mirror coated on the plane side of an MR.
The geometry of the resonator determines the spatial structure
of the acoustic modes. The movable mirror is treated as a
quantum mechanical harmonic oscillator with effective mass
m, frequency ωm, and energy decay rate γm. The system is
also coherently driven by a laser field with frequency ωl

through the cavity mirror with amplitude E . We assume that the
single atom is indirectly coupled to the mechanical oscillator
via the common interaction with the intracavity field at
frequency ωc.

FIG. 1. (Color online) Schematic of the atom-assisted optome-
chanical system. It contains an optical cavity ending in a fixed mirror
and a slightly moving mirror which is attached to a spring. Inside the
cavity there is a two-level atom. The system is coherently driven by
a laser field

In our investigation we can restrict the model to the case of
single-cavity and mechanical modes. This is justified when the
cavity free spectral range is much larger than the mechanical
frequency ωm (i.e., cavities are not too large). In this case,
scattering of photons from the driven mode into other cavity
modes is negligible [44] and the input laser successfully drives
only one cavity mode. This guarantees the fact that only one
cavity mode participates in the optomechanical interaction and
the neighboring modes are not excited by a single central
frequency input laser. In addition, one can restrict to a single
mechanical mode when the detection bandwidth is chosen such
that it includes only a single, isolated, mechanical resonance
and mode-mode coupling is negligible [45].

A. Hamiltonian of the system

In the absence of dissipation and fluctuations, the total
Hamiltonian of the system is given by the sum of three terms:
the free evolution term [19,24]

H0 = h̄ωca
†a + h̄ωmb†b + h̄ωe

2
σ z, (1)

the interaction term

Hint = −h̄ξ0(b + b†)a†a + h̄χmnl(�r0,x)[aσ+ + h.c.], (2)

and the laser driven term

Hdri = ih̄E(a†e−iωl t − aeiωl t ), (3)

where a ([a,a†] = 1) is the annihilation operator of the
cavity field with decay rate κ , b([b,b†] = 1) is the motional
annihilation operator of the MR, and the single two-level atom
is described by the spin-1/2 algebra of the Pauli matrices
σ−, σ+, and σ z which satisfy the commutation relations
[σ+,σ−] = σ z and [σ z,σ±] = ±2σ±. It should be noted
that the free Hamiltonian, (1), has been written within the
Raman-Nath approximation [51], i.e., in the limit when the
atom is allowed only to move over a distance which is
much less than the wavelength of the light. Therefore, in this
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approximation, one can neglect the kinetic energy of the atom.
The first term of Hint is the optomechanical coupling with
the radiation-pressure coupling constant ξ0 = (ωc/L)xZPF,
in which xZPF = √

h̄/mωm is the zero-point fluctuation of
the mechanical oscillator. The second term of Hint denotes
“three-body” interactions among the atom, the cavity field,
and the vibration of the mirror. The field-atom coupling rate
in terms of an infinite set of optical modes is well described
by the Hermite-Gauss modes [46,47]

χmnl(�r) = g0Kmnl(x,y,z)sin

[
ψmnl(x,y,z) − lπ

2

]
, (4)

where, for m,n = 0,1, . . ., l = 1,2, . . .,

Kmnl(x,y,z) =
Hn

[ √
2y

w(x)

]
Hm

[ √
2z

w(x)

]
exp

[ − z2+y2

w2(x)

]
w(x)

√
π2n+m−2m!n!L

, (5)

ψmnl(x,y,z) = kx − φ(x)(m + n + 1) + k
z2 + y2

2R(x)
. (6)

Here g0 = μ
√

ωc/ε0V , ε0 is the vacuum permittivity, V shows
the volume of the cavity, and μ is the electric-dipole transition
matrix element. Hn(y) is the nth Hermite polynomial; w(x) =
w0[1 + ( x

xR
)2]

1
2 is the beam waist at x, which is defined as

the distance out from the axis center of the beam where the
irradiance drops to 1/e2 of its values on the axis; R(x) =
x + x2

R/x is the radius of curvature of the wavefront at x;
φ(x) = arctan(x/xR) is the Gouy phase shift [46]; w0 is the
cavity waist radius, which depends on the geometry of the
Fabry-Perot cavity; and xR = w2

0k/2 is the Rayleigh range,
which combines the wavelength and waist radius into a single
parameter and completely describes the divergence of the
Gaussian beam. Note that the Rayleigh range is the distance
from the beam waist to the point at which the beam radius
has increased to

√
2w0. The coupling rate χmnl(�r0,x) depends

on the initial atomic position �r0 (measured from the cavity
waist) as well as the displacement x = xZPF(b + b†) of the
mirror due to k = ωeff(x)/c, where ωeff(x) = ωc(1 − x

L
). As

we will see in the next section, this dependence on the position
of MR is responsible for the appearance of a new type of
optomechanical nonlinearity. Finally, the Hamiltonian Hdri

describes the input driving by a laser with frequency ωl and
amplitude |E | = √

2κP/h̄ωl , where P is the input laser power
and κ is the cavity loss rate through its input port.

B. Nonlinear atom-field-mirror coupling

As we have seen, the Gaussian standing-wave structure
of the cavity mode leads to the field-atom coupling rate
χmnl(r0,x). Such field-atom coupling in the presence of the
mode structure of the field has been studied extensively in
the literature and it has been shown that a certain type of
nonlinearity is prepared in the field-atom system. For instance,
in Refs. [48,49] the influences of the atomic motion and
field-mode structure on atomic dynamics were investigated.
It was shown that the atomic motion and the field-mode
structure give rise to nonlinear transient effects in the atomic
population which are similar to self-induced transparency
and adiabatic effects. In our treatment, the spatial field-mode
structure leads to the appearance of an intensity-dependent

interaction among the intracavity optical mode, the MR, and
the single atom. To show this, we assume that the atom is
well located at the transverse (polar) coordinate (measured
from the cylindrically symmetric cavity axis along the x

direction) ρ0 =
√
x2

0 + y2
0 = μw(x0), where 0 � μ � 1. In the

x direction the localization of the atom can be expressed as
k0x0 = επ for ε > 0, where k0 = ωc/c.

At the lowest order of the optical modes, i.e., m = n =
0,l = 1, the tripartite coupling rate reduces to

χ001(�r0,x) ≡ χ (x) = 2g0

eμw(x0)
√

πL
sin

×
[
kx0 − φ(x0) − π

2
+ 2μx0

kw2
0

]
, (7)

which can be rewritten in terms of the mirror position by using
the position dependence of the wavelength k = k0(1 − x/L)
as

χ (x) = 2g0

eμw(x0)
√

πL
sin[θ + η0x], (8)

where η0 = 2μx0

w2
0k0L

and

θ =
(

1 + 2μ

w2
0k

2
0

)
k0x0 − φ(x0) − π

2
. (9)

By substituting x = xZPF(b + b†) in Eq. (8), we obtain

χ (b,b†) = g0

ieμw(x0)
√

πL
{eiθexp[iη(b + b†)] − h.c.},

(10)

where the parameter

η = η0xZPF = 2πμε

w2
0k

2
0L

√
h̄

mωm

(11)

is the so-called LDP. By using the Baker-Campbell-Hausdorff
theorem in Eq. (10) and expanding the exponential terms in
terms of b and b†, the coupling rate can be written as

χ (b,b†) = g0e
−η2/2

ieμw(x0)
√

πL

{
eiθ

∑
m,m′

(iηb†)m
′
(iηb)m

m!m′!
−h.c.

}
.

(12)

By using the bosonic commutation relation of the operators b

and b†, the jth term of the field-atom coupling rate is obtained
as

χj (b,b†) = g0e
−η2/2

ieμw(x0)
√

πL

×
[
eiθ

∑
m

(iη)2m+j (b†)m+j bm

m!(m + j )!
− h.c.

]

= gj,μ(b†)j fj (nb) + h.c., (13)

where gj,μ = g0e
−η2/2(iη)j

ieμw(x0)
√

πL
eiθ describes the effective atom-field-

mirror coupling rate, and the Hermitian nonlinearity function
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FIG. 2. (Color online) The nonlinearity function fj (nb) as a
function of (a) phonon number nb for η = 0.08 and for different
values of vibrational sideband j and (b) the Lamb-Dicke parameter,
η, for nb = 10 and for different values of vibrational sideband j .

fj (nb) defined by

fj (nb) =
∑
m

(iη)2mnb!

m!(m + j )!(nb − m)!
= nb!

(nb + j )!
Lj

nb
(−η2),

(14)

with nb = b†b and L
j
nb

(−η2) as the associated Laguerre
polynomial, describes a nonlinear atom-field-mirror coupling
through j-phonon excitations of the vibrational sideband. The
nonlinearity function fj (nb) has a central role in our treatment.
It determines the form of nonlinearity of the intensity depen-
dence of the coupling among the cavity field, the MR, and the
single atom. As we will see, this function drastically influences
the dynamics of the system, its entanglement properties, and
its responsible for the appearance of NMS of a high visibility
in the displacement spectrum of the MR. Figure 2(a) shows
the nonlinearity function fj (nb) as a function of nb and for
different values of phonon excitation number j . As shown,
this function makes the maximum contribution around small
values of vibrational acoustic excitation nb. Furthermore, with
an increase in the number j , the strength of the nonlinearity
function fj (nb) decreases considerably. On the other hand,
Fig. 2(b) shows that the nonlinearity decreases with increasing
LDP. It is remarkable that, for the higher orders of the
vibrational sideband, j � 3, this function is no longer sensitive
to the LDP.

Now, by substituting Eq. (13) into the interaction Hamil-
tonian of Eq. (2), we obtain the nonlinear form of the
Hamiltonian as

H
(j )
int = −h̄ξ0(b + b†)a†a + h̄[gj,μ(b†)j fj (nb) + h.c.]

× [aσ+ + h.c.]. (15)

Near the photon-phonon resonance [19] where the frequencies
satisfy ωm + ωe − ωc � 0, the rotating-wave approximation
reduces the above Hamiltonian to

H
(j )
int � −h̄ξ0(b + b†)a†a + h̄[gj,μ(b†)j fj (nb)aσ+ + h.c.].

(16)

This Hamiltonian describes a nonlinear tripartite atom-field-
mirror coupling and represents a novel type of optomechanical
intensity-dependent interaction. Hamiltonian (16) is general
and one can recover the results of Ref. [24] by taking
j = 0, fj (nb) → 1, or the results of Refs. [19,21] by setting
j = 1, fj (nb) → 1. To study the system dynamics we restrict
our investigation by considering the first excitation of the
vibrational sideband i.e., j = 1. In this limit one may use
the simple form of the Hamiltonian

H
(j=1)
imt � −h̄ξ0(b + b†)a†a + h̄gμ

× [b†f (nb)aσ+ + σ−a†f (nb)b], (17)

where f (nb) ≡ f1(nb) and gμ = g0e
−η2/2η

eμw(x0)
√

πL
. Since we deal

with a well-localized atom we can assume θ = π in Eq. (9),
which is realized by choosing a proper value of ε corre-
sponding to the position of the atom in the x direction. We
pointed out that for the experimentally feasible parameters of
the system under consideration [50], i.e., k0 � 106 m−1, m =
10 pg, ωm/2π = 10 MHz, and L = 1μm, and for the smallest
achievable value of the cavity beam waist, w0 � 10−9 m, the
LDP is always less than one, i.e., η < 1. In this limit we can
keep terms up to first order in the phonon number nb and safely
truncate the summation of Eq. (14):

fj=1(nb) � 1 − η2

2
nb. (18)

By substituting Eq. (18) into the Hamiltonian, (17), one can
write the interaction Hamiltonian as

Hint = −h̄ξ0(b + b†)a†a + h̄gμ[b†aσ+ + σ−a†b]

− h̄η2gμ

2
[b†nbaσ+ + σ−a†nbb]. (19)

Note that the first and second terms in the above Hamiltonian
denote the standard tripartite atom-field-mirror coupling which
was recently studied in Refs. [19,21]. The third term denotes an
intensity-dependent coupling among the three subsystems of
atom-field-mirror. This type of nonlinear coupling is attributed
to the spatial field-mode structure at the position of the
atom.

III. DYNAMICS OF THE SYSTEM

To describe the dynamical behavior of the sys-
tem under consideration it is necessary to consider the
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fluctuation-dissipation processes affecting the three subsys-
tems. For this purpose, we first assume the excitation proba-
bility of the single atom to be low. In this limit, the dynamics
of the atomic polarization can be described in terms of the
bosonic operators c and c†([c,c†] = 1) [24,52], where the
atomic annihilation operator is defined as c = σ−/

√|〈σ z〉|.
This is valid in the low atomic excitation limit, i.e., when
the atom is initially prepared in its ground state [24]. This
means that the single-atom excitation probability should be
much less than 1, i.e., g0|αs |2

�2
a+γ 2

a

 1, where �a = ωa − ωl is the

atomic detuning with respect to the laser and γa is the decay
rate of the excited atomic level. Therefore, the bosonization
of the atomic operators is valid only if g0 
 �2

a + γ 2
a , that is,

the atom is weakly coupled to the cavity.
The dynamics of the system is fully characterized by the

following set of nonlinear QLEs, written in a frame rotating at
the input laser frequency,

ċ = −[γa + i�a]c − iG

(
1 − η2

2
nb

)
ab† +

√
2γaFa,

(20a)

ȧ = −[κ + i�0f ]a + iξ0a(b + b†) − iG

(
1 − η2

2
nb

)
bc

+ E +
√

2κain, (20b)

ḃ = −[γm + iωm]b + iξ0a
†a

− iG

[
(1 − η2nb)ac† − η2

2
a†cb2

]
+

√
2γmbin, (20c)

where �0f = ωc − ωl is the cavity detuning with respect to
the laser, G = gμ

√|〈σ z〉|, and γm is the decay rate of the
vibrational mode of the MR. The motional quantum fluctuation
bin(t) satisfies the relations [53]

〈bin(t)b†in(t ′)〉 = [〈nb,th〉 + 1]δ(t − t ′),

〈b†in(t)bin(t ′)〉 = 〈nb,th〉δ(t − t ′), (21)

〈bin(t)bin(t ′)〉 = 〈b†in(t)b†in(t ′)〉 = 0,

where 〈nb,th〉 is the mean number of phonons in the absence
of optomechanical coupling, determined by the temperature of
the mechanical bath T ,

〈nb,th〉 = 1

e
h̄ωm
kB T − 1

. (22)

The only nonvanishing correlation function of the noises
affecting the atom and the cavity field is 〈ain(t)a†

in(t ′)〉 =
〈Fa(t)F †

a (t ′)〉 = δ(t − t ′) [53].

A. Linearization of QLEs

Our aim is to study the conditions under which one
can efficiently correlate and entangle the atom and the MR
by means of the common interaction with the intracavity
optical mode. As shown in Refs. [45,54], a straightforward
way for achieving stationary and robust entanglement in CV
optomechanical systems is to choose an operating point where
the cavity is intensely driven so that the intracavity field is
strong, which is realized for high-finesse cavities and enough
driving power. Therefore, we focus onto the dynamics of the
fluctuations around the classical steady state by decomposing
each operator in Eqs. (20) as the sum of its steady-state value
and a small fluctuation, e.g., a = αs + δa, b = βs + δb, and
c = cs + δc. The steady-state terms of these operators are
given by

bs = αs(ξ/2 − G3)

(ωm − iγm)
, (23a)

cs = G2αs

(iγa − �a)
, (23b)

E = αs

[
i�f + κ − |G2|2

(γa + i�a)

]
, (23c)

where �f = �0f − 2ξ0Re(bs) denotes the effective optome-
chanical detuning and ξ = 2ξ0as . The other parameters are
defined in the Appendix. In the linearization manner, we also
obtain the following linear QLEs for the quantum fluctuations
of the triple system

δċ = −[γa + i�a]δc − iG

[ (
1 − η2

2

∣∣b2
s

∣∣) (asδb
† + b∗

s δa) − η2

2
asb

∗
s (bsδb

† + b∗
s δb)

]
+

√
2γaFa, (24a)

δȧ = −[κ + i�0f ]δa + iξ0[δa(bs + b∗
s ) + as(δb + δb†)]

− iG

[(
1 − η2

2
|b|2

)
(csδb + bsδc) − η2

2
bscs(bsδb

† + b∗
s δb)

]
+

√
2κain, (24b)

δḃ = −[γm + iωm]δb + iξ0as(δa
† + δa) − iG

[
(1 − η2|bs |2)(asδc

† + c∗
s δa) − η2asc

∗
s (bsδb

† + b∗
s δb)

− η2

2

{
b2

s (csδa
† + asδc) + 2asbscsδb

}] +
√

2γmbin, (24c)

in terms of the fluctuations of the quadrature operators,

δXa = 1√
2

(δa + δa†), δYa = 1√
2i

(δa − δa†), (25)

δXc = 1√
2

(δc + δc†), δYc = 1√
2i

(δc − δc†), (26)

δq = 1√
2

(δb + δb†), δp = 1√
2i

(δb − δb†). (27)
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The resulting linearized QLEs can be written in the compact
matrix form

u̇(t) = Au(t) + n(t), (28)

where u(t) = [δq(t),δp(t),δXa(t),δYa(t),δXc(t),δYc(t)]T is
the vector of CV fluctuation operators and n(t) = [

√
2γmq in

(t),
√

2γmpin(t),
√

2κXin
a (t),

√
2κY in

a (t),
√

2γaX
in
c (t),

√
2γaY

in
c

(t)]T is the corresponding vector of noises. Moreover, the drift
matrix A is a 6 × 6 matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�1m �1m −MI
2 MR

2 −MI
1 MR

1

−�2m −�2m −MR
2 −MI

2 −MR
3 −MI

3

−GI
1 GR

1 −κ �f −GI
2 GR

2

ξ − GR
3 −GI

3 −�f −κ −GR
2 −GI

2

−NI
2 NR

2 −NI
1 NR

1 −γa �a

−NR
3 −NI

3 −NR
1 −NI

1 −�a −γa

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(29)

where OR
i and OI

i denote the real and imaginary parts of
parameter Oi , respectively. The other matrix elements are
defined in the Appendix.

B. Stationary quantum fluctuations

Here we focus our attention on the stationary properties
of the system. For this purpose, we should consider the
steady-state condition governed by Eq. (28). The steady state
is reached when the system is stable, which occurs if and only
if all the eigenvalues of the matrix A have a negative real part.
These stability conditions can be obtained, for example, by
using the Routh-Hurwitz criterion [55].

The steady state is a zero-mean Gaussian state due to the
fact that the dynamics of the fluctuations is linearized and all
noises are Gaussian. As a consequence, it is fully characterized
by the 6 × 6 stationary correlation matrix (CM) V, with matrix
elements

Vij = 〈ui(∞)uj (∞) + uj (∞)ui(∞)〉
2

. (30)

The formal solution of Eq. (28) yields [45]

Vij =
∫ ∞

0
ds

∫ ∞

0
ds ′Mik(s)Mjl(s

′)Dkl(s − s ′), (31)

where M(t) = exp(At) and D(s − s ′) is the diffusion matrix,
the matrix of noise correlations, defined as Dkl(s − s ′) =
〈nk(s)nl(s ′) + nl(s ′)nk(s)〉/2. For the noise diffusion matrix
we have D(s − s ′) = Dδ(s − s ′), where D = diag[γm(2n̄b +
1),γm(2n̄b + 1),κ,κ,γa,γa]. Therefore, Eq. (31) is simplified
to

V =
∫ ∞

0
dωV (ω), (32)

where

V (ω) = M(ω)DM(ω)T. (33)

When the stability conditions are satisfied (M(∞) = 0), one
can obtain the following Lyapunov equation:

AV + V AT = −D. (34)

Equation (34) is a linear equation for V and can be straightfor-
wardly solved. However, the explicit form of V is complicate
and is not reported here.

IV. ENTANGLEMENT PROPERTIES OF THE
STEADY-STATE OF THE TRIPARTITE SYSTEM

In this section we examine the entanglement properties of
the steady state of the tripartite system under consideration. For
this purpose, we consider the entanglement of the three possi-
ble bipartite subsystems that can be obtained by tracing over
the remaining degrees of freedom. This bipartite entanglement
will be quantified by using the logarithmic negativity [56],

EN = max[0, −ln2η−], (35)

where η− ≡ 2−1/2[�(Vbp) − √
�(Vbp)2 − 4detVbp]1/2 is the

lowest symplectic eigenvalue of the partial transpose of the 4 ×
4 CM, Vbp, associated with the selected bipartition, obtained
by neglecting the rows and columns of the uninteresting mode,

Vbp =
(

B C

CT B ′

)
, (36)

and �(Vbp) ≡ detB + detB ′ − 2detC.
In Fig. 3 we have plotted the three bipartite logarithmic

negativities, Eam
N (atom-mirror), E

f a

N (field-atom), and E
mf

N

(mirror-field) versus the normalized atomic detuning �a/ωm

at a fixed temperature of T = 0.4 K for two values of the
LDP—η = 0.04 [Fig. 3(a)] and η = 0.08 [Fig. 3(b)]—and for
the experimentally feasible parameters [50], i.e., an MR with
oscillation frequency ωm/2π = 10 MHz, quality factor Q =
11 × 105, m = 10 pg, and an optical cavity with length L =
1 μm and damping rate κ = 0.07ωm driven by a laser with
k0 � 106 m−1 and power Pc = 800 μW. The atom damping
constant has been taken as γa/2π = 0.04ωm with coupling
constant g0/2π = 103 Hz.

The optical cavity detuning has been fixed at �f = −ωm,
which turns out be the most convenient choice. As seen, by
increasing LDP, the two bipartite entanglements of Eam

N and
E

f a

N increase and the bipartite entanglement of E
mf

N decreases
overall. The reason is that, with an increase in the LPD, the
tripartite atom-field-mirror coupling rate increases compared
to the coupling rate of the bipartite field-mirror subsystem,
or equivalently, the parameter G/ξ is increased. This result
reveals that by changing the LDP one can control the tripartite
coupling amplitude or even go through a regime in which the
tripartite system reduces to an effective bipartite subsystem.
However, the three logarithmic negativities do not behave in
the same way and the entanglement sharing is evident. In
particular, the entanglement of interest, i.e., Eam

N , increases
at the expense of the mirror-field entanglement, while E

f a

N

always remains non-negligible.
Figure 4 shows the logarithmic negativity of the three

bipartite subsystems versus the normalized atomic detuning
�a/ωm for a fixed value of the LDP, η = 0.04, and for two
temperatures: T = 1.2 K [Fig. 4(b)] and T = 3 K [Fig. 4(b)].
The optical cavity detuning was again fixed at �f = −ωm.
As expected, the three kinds of bipartite entanglement de-
crease with increasing temperature, but the atom-mirror and
field-atom entanglements show high temperature robustness.
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FIG. 3. (Color online) Plot of EN of the three bipartite subsystems
[Eam

N (atom-mirror), E
f a

N (field-atom), E
mf

N (mirror-field)] versus the
normalized atomic detuning �a/ωm at a fixed temperature T = 0.4 K
and for two values of the LDP: (a) η = 0.04 and (b)η = 0.08. The
optical cavity detuning was fixed at �f = −ωm, while the other
parameters were ωm/2π = 10 MHz, Q = 11 × 105, m = 10 pg,
κ = 0.07ωm, k0 = 106 m−1, Pc = 800 μW, γa/2π = 0.04ωm, and
g0/2π = 103 Hz.

However, the field-mirror entanglement shows extremely
fragile entanglement robustness versus temperature and its
logarithmic negativity falls down to 0 at T = 3 K.

Generally, the scheme is able to generate appreciable
entanglement between the atom and the MR, especially with
sharing from the mirror-field entanglement. Similar bipartite
entanglement behavior can be observed in other similar tripar-
tite systems, such as the atom-field-mirror scheme proposed in
Ref. [24], the microwave-optical-mirror system in Ref. [57],
and the two-cavity optomechanical setup in Ref. [58].

The effect of the LDP is also illustrated in Fig. 5, where
we have plotted the logarithmic negativity as a function of
η at fixed optical cavity detuning �f = −ωm and at atomic
detuning �a = ωm. It is clear that by increasing the LDP,
the field-atom entanglement increases when the entanglement
between the intracavity mode and the MR is drastically
suppressed. We also observe that the atom-mirror logarithmic
negativity Eam

N plateaus in the case where η increases.
Figure 6 shows E

f a

N and Eam
N versus �a/ωm and γa/ωm for

η = 0.04. As is clear, the E
f a

N and Eam
N are maximized around

sideband �a � ωm. By increasing the atomic spontaneous

(a)

EN
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EN
am

EN
mf

2.0 1.5 1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8
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E
N

(b)
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mf
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0.4

0.6

0.8

a Ωm

E
N

FIG. 4. (Color online) Plot of EN of the three bipartite subsystems
[Eam

N (atom-mirror), E
f a

N (field-atom), E
mf

N (mirror-field)] versus the
normalized atomic detuning �a/ωm for a fixed value of the LDP,
η = 0.04, and for two temperatures: (a) T = 1.2 K and (b) T = 3 K.
The optical cavity detuning was fixed at �f = −ωm and the other
parameters are as in Fig. 3.

emission rate γa as we expected, both logarithmic negativities
decrease drastically.

The entanglement features of the tripartite system at the
steady state can be observed by experimentally measuring
the corresponding CM. This can be done by combining
the existing experimental techniques. By homodyning the
cavity output one can measure the cavity field quadratures.
Reference [3] proposed a scheme to measure the mechanical
position and momentum of the MR, in which, by adjusting
the detuning and bandwidth of an additional adjacent cavity,
both the position and the momentum of the mirror can be
measured by homodyning the output of the second cavity.
Moreover, by adopting the same scheme as in Ref. [59], the
atomic polarization quadratures Xa and Ya can be measured,
i.e., by making a Stokes parameter measurement of a laser
beam, shined transversal to the cavity and to the cell and off-
resonantly tuned to another atomic transition. Very recently,
Ref. [60] demonstrated the proof of principle of the use of
a Bose-Einstein condensate (BEC) as a diagnostic tool to
determine the elusive mirror-light entanglement in a hybrid
optomechanical device. In this case, one does find a working
point such that the mirror-light entanglement is reproduced by
the BEC-light quantum correlations.
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FIG. 5. (Color online) Plot of EN of the three bipartite subsystems
[Eam

N (atom-mirror), E
f a

N (field-atom), E
mf

N (mirror-field)] versus the
LDP, η, for a fixed temperature of T = 0.4 K. The optical cavity
and atomic detuning are �f = −ωm and �a = ωm, respectively. The
other parameters are as in Fig. 3.

V. NORMAL-MODE SPLITTING IN THE DISPLACEMENT
SPECTRUM OF THE MR

In this section, we show that the atom-field-mirror coupling
leads to the splitting of the normal mode into three modes
(NMS). Optomechanical NMS, however, involves driving
four parametrically coupled nondegenerate modes out of
equilibrium. The NMS does not appear in the steady-state
spectra but, rather, manifests itself in the fluctuation spectra of
the mirror displacement. To study the NMS in our system we
need to determine the displacement spectrum of the mirror as

Sq(ω) = 1

2π

∫
d�e−i(ω+�)t 〈δq(ω)δq(�) + δq(�)δq(ω)〉

= V11(ω), (37)

where V11(ω,�) = 1/2〈δq(ω)δq(�) + δq(�)δq(ω)〉 is an el-
ement of CM which is given by Eq. (33). Unfortunately, the
analytical form of the displacement spectrum of the mirror
is too complicated to put a clear physical interpretation on it.
Thus, in the following, we give and analyze the results obtained
by numerical calculations.

Figure 7 shows the displacement spectrum of the MR as
a function of the normalized frequency ω/ωm at �f = ωm,
�a = ωm and for two values of the LDP: η = 0.016 and η =
0.04. For small values of the LDP, we observe the usual NMS
into two modes with central peaks at the sidebands ω = ±ωm.
Figure 7 shows a highly symmetric structure with respect to
ω = 0. As shown, with increasing LDP, the normal mode splits
up into three modes.

A more clear illustration of the three-mode splitting is
shown in Fig. 8. This figure shows the displacement spectrum
of the MR versus the normalized frequency ω/ωm and atomic
detuning �a/ωm at �f = ωm. The three-mode splitting man-
ifests itself mainly at �a � ω. Upon going through the region
far from �a � ω, three-mode splitting merges into two-mode
splitting around �a � 0.75ωm and �a � 1.35ωm. The NMS
is associated with the mixing among the vibrational mode
of the MR, fluctuations of the cavity field around the steady

FIG. 6. (Color online) Density plot of EN of the bipartite
subsystems: (a)Ef a

N and (b) Eam
N versus �a/ωm and γa/ωm for

η = 0.04 and for T = 0.4 K. The optical cavity detuning was fixed
at �f = −ωm. The other parameters are as in Fig. 3.

state, and fluctuations of the atomic mode. The origin of the
fluctuations of the cavity field is the beat of the pump photons
with the photons scattered from the atom. For not so large
values of the LDP (small nonlinearity), field-atom coupling is
much smaller than field-mirror coupling. Therefore, the system
simply reduces to the case of two-mode coupling, i.e., coupling
between the mechanical mode and the photon fluctuations [34].
When the LDP is large enough, the mechanical mode, the
photon mode, and the atomic mode form a system of three
coupled oscillators. The occurrence of splitting of the normal
mode into three modes has been analyzed recently in another
tripartite system, i.e., a cavity quantum optomechanical system
of ultracold atoms in an optical lattice [34]. Furthermore,
similar three-coupled-oscillator experimental results, with two
coupled cavities, each containing three identical quantum
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FIG. 7. (Color online) Normalized plot of the displacement
spectrum Sq (ω) versus ω/ωm at fixed temperatures T = 0.4 K and for
two values of the LDP: η = 0.016 (red line) and η = 0.04 (blue line).
The optical cavity and atomic detuning have been fixed at �f = ωm

and �a = ωm, respectively. The other parameters are as in Fig. 3.

wells [61] and one microcavity containing two quantum wells
[62], have been reported.

It should be pointed out that to observe NMS, the energy
exchange among the three modes should take place on a time
scale faster than the decoherence of each mode. NMS into
three modes due to a local increase in the LDP has also
been reported in Ref. [63], where the authors have shown that
NMS can be observed only if the coupling between the atoms
and the cavity is strong enough. This strong coupling can be
achieved by increasing the atom numbers. One experimental
limitation could be spontaneous emission, which leads to
momentum diffusion and hence heating of the atomic sample
[64]. In our model, we do not encounter such a limitation

FIG. 8. (Color online) Density plot of the displacement spectrum
Sq (ω) versus ω/ωm and �a/ωm for T = 0.4 K and η = 0.04. The
optical cavity detuning was fixed at �f = ωm. Other parameters are
as in Fig. 3.

and three-mode splitting is approached by proper choice of
the LDP.

VI. CONCLUSION

In this work, we have proposed a theoretical scheme for the
realization of tripartite intensity-dependent coupling among a
single mode of a Fabry-Perot cavity with an oscillating mirror,
a single two-level atom inside it, and a vibrational mode of
the oscillating mirror. We have shown that in the presence of
a Gaussian standing wave in the optical cavity mode, a type
of tripartite atom-mirror-field coupling can be manifested. To
describe this interaction, we then found the general form of
the corresponding nonlinear Hamiltonian. We have restricted
our investigation to the first vibrational sideband j = 1 and
have studied its dynamics by adopting a QLE treatment. We
have focused our attention on the steady state of the system,
and, in particular, on the stationary quantum fluctuations of the
system, by solving the linearized dynamics around the classical
steady state. We have seen that, in an experimentally accessible
parameter regime, the steady state of the system shows both
tripartite and bipartite CV entanglement. We have shown that
the LDP (as a measure of the strength of nonlinearity) can
extremely modify both tripartite and bipartite CV entangle-
ment in the system. In particular, with an increase in the LDP,
one can see that field-atom and atom-mirror entanglement
increase, at the expense of optical-mechanical entanglement.
The intracavity mode is able to mediate for the realization
of a robust stationary (i.e., persistent) entanglement between
the MR mode and the single two-level atom, which could
be extremely useful in quantum information and quantum
computer networks in which the MR modes are used for
quantum communications [65,66], and the atom is used as a
qubit (e.g., solid-state qubits). Furthermore, we have analyzed
the occurrence of NMS in the displacement spectrum of the
oscillating mirror. As we have shown, for a small value of
LDP, the usual NMS into two modes with central peaks at the
sidebands ω = ±ωm is observed, and with increasing LDP,
the normal mode splits up into three modes. We have shown
that, when the LDP is large enough, the mechanical mode, the
photon mode, and the atomic mode form a system of three
coupled oscillators. The realization of such a scheme will also
open new opportunities for the implementation of quantum
teleportation and/or the photon blockade process to prevent
two or more photons from entering the cavity at the same
time.
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APPENDIX: DEFINITION OF THE ELEMENTS OF THE
DRIFT MATRIX OF EQ. (29)

In the drift matrix of Eq. (29) we have defined

�1m = γm + MI
3 , �2m = γm + MI

4 ,

�1m = ωm + MR
3 , �2m = ωm + MR

4 ,
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G1 = G

[
c∗
s (1 − η2|bs |2) + η2

2
csb

2
s

]
,

G2 = Gb∗
s

(
1 − η2

2
|bs |2

)
,

G3 = G

[
c∗
s (1 − η2|bs |2) − η2

2
csb

2
s

]
,

M1 = −Gas

[
(1 − η2|bs |2) + η2

2
b2∗

s

]
,

M2 = Gas

[
(1 − η2|bs |2) − η2

2
b2∗

s

]
,

M3 = Gcs

[
(1 − η2|bs |2) + η2

2
b2

s

]
,

M3 = Gcs

[
(1 − η2|bs |2) − η2

2
b2

s

]
,

M4 = −Gη2as[b
∗
s c

∗
s + csbs − c∗

s bs],

M5 = −Gη2as[b
∗
s c

∗
s + csbs + c∗

s bs],

N1 = bs

(
1 − η2

2
|bs |2

)
,

N2 = −as

[
(1 − η2|bs |2) + η2

2
b2

s

]
,

N3 = as

[
(1 − η2|bs |2) − η2

2
b2

s

]
.
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