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Quantum complementarity of cavity photons coupled to a three-level system
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Recently a device enabling the ultrafast all-optical control of the wave-particle duality of light was proposed
[Ridolfo et al., Phys. Rev. Lett. 106, 013601 (2011)]. It is constituted by a three-level quantum emitter strongly
coupled to a microcavity and can be realized by exploiting a great variety of systems ranging from atomic
physics and semiconductor quantum dots to intersubband polaritons and Cooper pair boxes. Control pulses with
specific arrival times, performing which-path and quantum-eraser operations, are able to destroy and recover
interference almost instantaneously. Here we show that the coherence sudden death implies the sudden birth of
a higher order correlation function storing coherence. Such storing enables coherence rebirth after the arrival of
an additional suitable control pulse. We derive analytical calculations describing the all-optical control of the
wave-particle duality and the entanglement-induced switch-off of the strong coupling regime. We also present
analytical calculations describing a homodynelike method exploiting pairs of phase locked pulses with precise
arrival times to probe the optical control of wave-particle duality of this system. Within such a method the optical
control of wave-particle duality can be directly probed by just detecting the photons escaping the microcavity.
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I. INTRODUCTION

In quantum science and quantum engineering it is highly
desirable to control the interaction between single photons
and individual optical emitters [1–3]. It is possible to modify
photon fields around an emitter using high-finesse optical
cavities. Quantum emitters (QEs) in a microcavity (MC)
can absorb and spontaneously re-emit a photon many times
before dissipation becomes effective and a mixed light-matter
eigenmode regime arises [1,4–8]. Recently ultrafast switch-on
of the strong coupling regime has been achieved by exploiting
intersubband transitions in quantum wells [9]. In addition,
the all-optical time control of the strong coupling (switch-on
and -off) between a single cascade three-level QE and a MC
has been demonstrated theoretically [10]. It was found that
only specific arrival times of the control pulses succeed in
switching off the Rabi oscillations. When switch-off fails, the
control pulse may be exploited to suddenly destroy first-order
coherence of cavity photons without affecting their strong
coupling population dynamics. Such behavior can be fully
understood as a manifestation of quantum complementarity
[11]. In this case the induced entanglement between the
cavity and the QE enables the latter to store the which-way
information on photon paths, hence destroying coherence
according to the quantum complementarity principle [11].
However, the loss of coherence is not irreversible, being that
the which-path detector is itself a quantum system (quantum
marker) [12]. A further suitable control pulse is able to
suddenly erase the which-way information, thus inducing the
sudden rebirth of coherence. This scheme enables all-optical
which-path and quantum-eraser operations, able to suddenly
switch off and switch on first-order coherence of cavity
photons. Such operations are generally performed by changing
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some part of the experimental apparatus, or by changing the
detected observables [11–15].

The rebirth of coherence opens the question where in-
formation on the phase gets stored after the switch-off of
first-order coherence. In this paper we investigate by numerical
and analytical calculations the system coherences, finding
where the lost phase information gets stored before the
possible rebirth. Moreover, by employing some reasonable
approximations, we calculate analytically the time evolution of
the system quantum state. Analytical results enable a detailed
understanding of the intriguing physics of the all-optical
control of wave-particle duality of cavity photons. Coherence
switching on and off of cavity photons in the strong coupling
regime can be probed experimentally by employing pairs
of phase locked pulses with precise arrival times and by
simply detecting photons escaping through a cavity mirror.
Here we present analytical calculations describing this kind of
phase-sensitive experiment.

II. THEORETICAL MODEL

Here we present the model describing the all-optical scheme
for the ultrafast time control of the strong coupling between
the emitter and the cavity. The three-level emitter in a ladder
configuration embedded in a semiconductor MC is sketched
in Fig. 1. |s〉 is a QD state at lower energy the transition
between the states |g〉 and |e〉 is resonantly coupled with the
MC resonance.

The Hamiltonian describing the cavity embedded cascade
three-level system reads

H = H0 + HI + Hin, (1)

where

H0 =
∑
j=g,e

ωjσj,j + ωca
†a (2)
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FIG. 1. (Color online) (a) Schematic setup to implement the all-
optical control of the strong coupling regime; (b) the relevant level
structure of the QE coupled to the resonator.

is the free Hamiltonian of the two separated system,

HI = gσg,ea
† + H.c. (3)

is the QE-MC interaction Hamiltonian in the rotating wave
approximation, and

Hin = ε∗
p (t)a + ε∗

c (t)σs,g + H.c. (4)

describes both the influence of the driving control pulses εc(t)
directly coupled to the QE and of the coherent probe pulses
εp(t) feeding the MC. Here a denotes the destruction operator
for the cavity mode and σα,β ≡ |α〉〈β| describes the transition
or projection operators involving the levels of the QE [see
Fig. 1(b)]. We consider Gaussian ultrafast pulses at frequencies
centered at ωg and ωa = ωe − ωg, respectively. Losses can
be taken into account introducing the system density matrix
ρ. It obeys a quantum master equation in the Born-Markov
approximation expressed in the usual Lindblad form [10,16].
The Markovian interaction with reservoirs determining the
decay rates for the QE exciton and the cavity mode is described
by the following usual Liouvillian terms:

Lρ = −1

2

∑
μ

(L†
μLμρ + ρL†

μLμ − 2LμρL†
μ), (5)

where the Lindblad operators Lμ describe the various scat-
tering channels. The decay terms e → g are described by
Le→g = √

γe |g〉〈e|, Lg→s = √
γg |s〉〈g|, and the cavity decay

term is La = √
γaa. The master equation for the density

operator of the cavity emitter can be written as

∂ρ

∂t
= i[ρ,H ] + Lρ, (6)

with the Hamiltonian and the Liouvillian given by Eqs. (1)–(5).
Starting from the master equation, we derive the coupled equa-
tions of motion for the cavity-photon and exciton populations,
coherences, and higher order correlation functions, which we
solve numerically by representing the photon operators on a
basis of Fock number states. We start studying the switch-on
of vacuum Rabi oscillations.

Figure 2 compares the strong coupling dynamics of pho-
tonic populations (i.e., the expectation value of the intracavity
photon number 〈a†a〉) with its coherent part |〈a〉|2. At initial
time, the cavity is in the vacuum state and the QE in its ground
state |s〉. Then, control π pulse (green higher pulse in Fig. 2) is
sent (γat = 8 × 10−2) resonant with the transition |s〉 ↔ |g〉
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FIG. 2. (Color online) Cavity-photon population (continuous
line) and its coherent part (dashed line) displaying Rabi oscillations;
the Gaussian probe (solid lower line) and control (solid higher line)
pulses are also sketched (their displayed time width and relative
amplitudes do not correspond to their actual values).

populating level |g〉. After such pulse, a weaker probe beam
resonant both with the cavity mode and the transition |g〉 ↔ |s〉
feeds the cavity (red lower pulse in Fig. 2; γat = 14 × 10−2).
Almost instantaneously vacuum Rabi oscillations appear. We
consider a weak Gaussian input field feeding the cavity
(ωp = ωg − ωs) with pulse area 	1:

εp(t) = Ap exp (−iωpt) exp

[
− (t − t1)2

2σ 2
p

]
, (7)

and a Gaussian control pulse with pulse area π exciting directly
the QE:

εc(t) = Ac exp (−iωct) exp

[
− (t − tc)2

2σ 2
c

]
. (8)

Calculations have been carried out by using g = 85 μeV, γa =
20 μeV, γg = 2 μeV, γe = 5 μeV, ωg = 1.329 eV, ωe − 2ωg =
−2.28 meV, σp = σc = 0.124γa. Despite the absence of pure
dephasing, a non-negligible loss of coherence of the photon
field after the switch-on is evident [10].

In Ref. [10] it has been shown that an additional π control
pulse at a Rabi maximum, almost instantaneously induces the
transition from strong to weak coupling. In this way a full
time control of the QE-MC strong interaction can be achieved.
Here we concentrate on the full time control of the wave-
particle behavior of cavity photons. In the next section
[see Fig. 3(a)] we will show the impact of an additional
π control pulse sent at the Rabi minimum: The intensity
of Rabi oscillations carries on almost undisturbed, while
its previously dominating coherent part suddenly disappears
(〈a〉 
 0), suggesting the emergence of particlelike behavior.
Such striking dependence of the dynamics on the arrival time
of the control pulse can be explained taking into account
the quantum state describing the system when the cavity is
fed by a low-intensity pulse (probe) [10]. More specifically,
depending on the arrival times of control pulses, a variety of
exotic nonadiabatic cavity quantum electrodynamics effects
can be observed. Control pulses with specific arrival times,
performing which-path and quantum-eraser operations, are
able to suddenly switch off and on first-order coherence
of cavity photons, without affecting their strong coupling
population dynamics.
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FIG. 3. (Color online) (a) Dynamics of the cavity-photon popu-
lation 〈a†a〉 (dashed line) and of the square modulus of its coherent
part (continuous line) |〈a〉|2 in the presence of two π control pulses
(higher solid lines); the second control pulse is sent at a minimum of
〈a†a〉. Panel (b) displays the square modulus of the mixed MC-QE
coherence |〈aσsg〉|2 together with |〈a〉|2. The sudden vanishing of
first-order coherence after the arrival of the second control pulses
coincides with the birth of the higher order coherence 〈aσsg〉.

III. OPTICAL CONTROL OF WAVE-PARTICLE DUALITY

In this section, we develop theoretical calculations for
the all-optical control of the wave-particle duality and
the entanglement-induced switch-off of the strong coupling
regime. A detailed analysis of the dynamics of the cavity-
photon population when different opportunely delayed control
pulses are sent inside the structure is presented. We will show
how the first-order correlation is totally erased when the second
control pulse excites the system at a cavity-field minimum [see
Fig. 3(a)]. Nevertheless, as pointed out also in Ref. [10] [see
also Fig. 4(a)], such coherence sudden death is not irreversible.
In order to analyze in detail such reversibility and to study
where the coherence is stored in the system, we present exact
numerical calculations. In addition, in order to have at the same
time both a more deep understanding and a simple picture of
the physics underlying such phenomena, a detailed analytical
study of the quantum dynamics of the MC-QE state is
required.

The physical mechanisms allowing the switch-off and
switch-on of the first-order coherence and the birth of higher
order cavity-QE coherences can be explained taking into
account the approximate quantum state describing the system
when the cavity is fed by a low-intensity pulse (probe). Starting
from the operator master equation [Eq. (6)], considering
only a coherent excitation (zero temperature reservoirs), and
retaining up to one cavity-photon states, it is possible to
show that the density operator factorizes in the form [17]
ρ(t) = |ψ(t)〉〈ψ(t)|. The general quantum state |ψ(t)〉 after
the arrival of the probe and of the first control pulse can be
developed as

|ψ(t)〉 = cg(t)|1〉|g〉 + d(t)|0〉|g〉 + ce(t)|0〉|e〉, (9)

where, in the tensorial ket product |·〉|·〉, the first ket describes
the photon number state and the second the QE state. We
employ the following assumptions and approximations: (i) We

FIG. 4. (Color online) (a) Dynamics of cavity-photon population
(continuous line) and its coherent part (dashed line) in the presence
of three control pulses. The second and third control pulses arrive at
cavity-photon population minima. The second control pulse induces
a sudden vanishing of coherence without affecting the cavity-photon
population; the arrival of the third pulse induces the complete
recovering of coherence. (b) Displays the square modulus of the
mixed MC-QE coherence |〈aσsg〉|2 together with |〈a〉|2. The sudden
vanishing of first-order coherence after the arrival of the second
control pulses coincides with the birth of the higher order coherence
〈aσsg〉; the arrival of the third pulse causes the inverse process.

consider only probe pulses with pulse area much lower than
one; (ii) we also consider fast control and probe pulses with
σp, σc 	 g; (iii) we neglect the decay rate of level g; (iv) in
addition, for the sake of simplicity, we assume that the decay
rate of cavity photons be equal to that of level e: γa = γe. With
all the above assumptions, and taking as t = 0 the arrival time
of the probe pulse, the coefficients describing the dynamics of
the quantum state (9) acquire the simple form:

cg(t) = ap cos(�t/2) exp[−γ t/2],

ce(t) = ap sin(�t/2) exp[−γ t/2];

with ap 	 1 and d(t) ≈ 1, where ap ∝ Ap describes the pulse
area.

In the subsequent subsections, we will show in detail how
the dynamics of the system strongly depends on the control
pulse arrival time and also how the coherence is transferred
among different correlation functions. We answer the question
of where the information is stored about coherence when
we observe the sudden death of first-order coherence and,
after sending an opportune control beam inside the cavity,
its sudden rebirth. In particular, we present both the exact
numerical calculations and the approximate quantum state
analysis. Hence we present a detailed analysis of the quantum
dynamics of the MC-QE state in the presence of three control
pulses.

A. Where coherence goes

In Ref. [10] it has been shown that the coherence sudden
death is not irreversible [see also Fig. 4(a)]. First-order
coherence, destroyed after the arrival of the π control pulse
at the Rabi minimum (particlelike behavior), can be recovered
(wavelike behavior) after the arrival of a further π control
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pulse at a subsequent Rabi minimum. Such reversibility raises
the question where information on the phase gets stored
in the quantum system. In this section we explore such a
question, showing that actually the sudden death of first-order
coherence induces a complementary birth of a high-order
photon-emitter correlation function. This analysis allows one
to better understand the rebirth of coherence after the arrival
of a further suitable control pulse [10].

The dynamics of the cavity-photon population, as well as
that of its coherent part |〈a〉|2 in the presence of two π control
pulses, is shown in Fig. 3(a). A second control pulse is sent
inside the structure at a minimum of the cavity population. It
is evident how the first-order correlation is totally erased when
the second control pulse excites the system at a cavity-field
minimum. On the contrary the population of cavity photons is
unaffected by the second pulse. In order to better understand
the effects of the arrival of the second pulse, it is useful to
investigate higher order coherences. We focus the attention on
the second-order coherence between the photon and quantum
emitter s-g transition 〈aσsg〉. In particular, its square modulus
|〈aσsg〉|2 is displayed in Fig. 3(b). Its complementary behavior
with respect to the square modulus of the first-order correlation
function |〈a〉|2 is evident: When the latter disappears, the
sudden birth of the first one can be observed. By a direct
comparison of Figs. 2 and 3, we observe that the sum of the
two correlations square moduli calculated when the second
control pulse is sent inside the cavity (see Fig. 3) is equal to
the square modulus of the first-order correlation calculated in
the absence of the second pulse (see Fig. 2).

In Fig. 4, the dynamics of the cavity-photon population and
its coherent part in the presence of three control pulses are
displayed. We start analyzing the physical situation where the
second and third control pulses both arrive at cavity-photon
population minima. As just shown in Fig. 3 and as is also
clear from Fig. 4(a), the arrival of the second control pulse
at a cavity-photon minimum causes the switch-off of first-
order coherence. Figure 4 shows that the arrival of a third
control pulse at the next minimum of cavity photons induces
an instantaneous rebirth of coherence. We conclude that it
is possible to obtain a complete switching control over first-
order photonic coherence. The complementary behavior of
|〈aσsg〉|2 is displayed in Fig. 4(b). We observe that the lost (or
more appropriately hidden) coherence caused by the arrival of
the second control pulse is instantaneously transferred from
the first-order correlation to the second one. Then, the third
control pulse arrival activates the inverse process and first-
order correlation is recovered, while second-order coherence
erases.

We now study the process just discussed exploiting the
dynamics of the approximate quantum state. From Eq. (9) the
resulting first-order coherence, in the absence of subsequent
control pulses, can be easily obtained:

〈ψ(t)|a|ψ(t)〉 = d∗(t)cg(t)〈0|a|1〉〈g|g〉 = d∗(t)cg(t)

≈ cg(t) = ap cos(�t/2)e− γ

2 t . (10)

Analogously, we can calculate the expectation value for the
second-order coherence. We obtain

〈ψ(t)|aσsg|ψ(t)〉 = d∗(t)cg(t)〈g|σsg|g〉〈0|a|1〉 = 0, (11)

in agreement with the numerical results presented above. At a
cavity minimum (t = tm), we have cg(tm) ≈ 0 and ce(tm) = ap

is maximum (i.e., the cavity photon is absorbed by the QE
that jumps to the excited state |e〉). After the arrival of the
second control pulse, implying the transition |g〉 → |s〉, the
state |ψ(t−m )〉 becomes |ψ(t+m )〉 = d(t+m )|0〉|s〉 + ce(t+m )|0〉|e〉.
During the free evolution of the state (t > tm), the emission
of a cavity photon by the QE associated with the transition
|e〉 → |g〉 is allowed and the state evolves into

|ψ(t)〉 = cg(t)|1〉|g〉 + d(t)|0〉|s〉 + ce(t)|0〉|e〉 for t > tm.

(12)

It is straightforward to obtain for the first-order coherence at
t > tm:

〈ψ(t)|a|ψ(t)〉
= [d∗(t)cg(t)〈s|g〉 + c∗

e (t)cg(t)〈e|g〉]〈0|a|1〉 = 0. (13)

This result explains the coherence sudden death observed in
the numerical calculations discussed in this subsection: First-
order coherence goes to zero owing to the orthogonality of the
different QE quantum states. In contrast, the expectation value
for the second-order correlation is given by

〈ψ(t)|aσsg|ψ(t)〉 = d∗(t)cg(t)〈s|σsg|g〉〈0|a|1〉 = d∗(t)cg(t)

≈ cg(t) = ap cos(�t/2)e− γ

2 t . (14)

It gets the same value of 〈ψ(t)|a|ψ(t)〉 calculated in the
absence of the second pulse [see Eq. (10)] in agreement
with numerical results displayed in Fig. 4. Hence, the process
inducing the sudden death of the first-order correlation also
allows for the coherence total transfer to the second-order
cavity-QE correlation 〈aσsg〉. The present quantum state
analysis (before the arrival of a third control pulse) explains
the corresponding results displayed in Figs. 3 and 4.

B. Quantum dynamics of the microcavity—quantum
emitter state

In this subsection, we analyze the case where the second
control pulse arrives at a cavity-photon population minimum,
while the third is sent at a maximum. The cavity-photon
population and its coherent part are displayed in Fig. 5(a).
The first control pulse induces a strong population inversion
from level |s〉 to level |g〉 (switch-on of coupling). The second
control pulse excites the system at a cavity-field minimum
(i.e., a minimum in the photon Rabi oscillations) inducing the
erasure of first-order coherence, while the QE-MC system
remains in the strong coupling regime. Sending a third
control pulse at a maximum of cavity-photon population
induces an apparent transition to the weak coupling regime
where the cavity-photon population decays exponentially [see
Fig. 5(a)]. The origin of the transition will become clear in
the next section after the analytical study of the quantum
dynamics. In Fig. 5(b), both the dynamics of the coherent
part of the photon populations and the square modulus of
the second-order photon-QE coherence |〈aσsg〉|2 are shown.
Also in this case the complementary behavior between this
second-order correlation and the first one is evident. We also
observe that the arrival of the third control pulse, differently
from the previous case (see Fig. 4), is not able to restore
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FIG. 5. (Color online) Dynamics of the cavity-photon population
and square moduli of coherences in the presence of three control
pulses. The second and third control pulses arrive at a cavity-photon
population minimum and maximum, respectively. (a) Cavity-photon
population (dashed black line) and its coherent part (continuous red
line). After the arrival of the second control pulse we observe the
sudden vanishing of |〈a〉|2 and after the arrival of the third pulse we
observe the sudden transition from the vacuum Rabi oscillations of
the cavity-photon population to the exponential decay. (b) Coherent
part of cavity-photon population |〈a〉|2 and the square modulus of the
mixed MC-QE coherence |〈aσsg〉|2. The latter springs up at the arrival
of the second pulse and disappears at the arrival of the third pulse.
(c) Square modulus of the mixed MC-QE coherence |〈aσgs〉|2
associated with the g-s transition; it springs up at the arrival of the
third pulse.

first-order coherence. In addition it induces the sudden death
of the higher order coherence 〈aσsg〉. The question arises as
to where the coherence has been transferred in the present
case. Figure 5(c) provides the answer. It display the calculated
second-order coherence between photon and quantum emitter
g-s transition 〈aσgs〉. We observe that the value assumed by
the g-s second-order correlation is zero before the arrival of
the third control pulse. Then we assist to its sudden birth.

In order to better understand these effects, we now study the
process exploiting the dynamics of the approximate quantum
state shown in Eq. (9). After the arrival of the second pulse,
the quantum state is described by Eq. (12). At a cavity
maximum = ce(t) ≈ 0 and we have

|ψ(t)〉 = cg(t)|1〉|g〉 + d(t)|0〉|s〉.
The third π control pulse sent at such a maximum (see Fig. 5)
induces the |g〉 ↔ |s〉 QE-state transitions. Hence, indicating
with tmM the arrival time of the third pulse, the state of the
QE-MC system results in

|ψ(t+mM)〉 = cg(tmM)|1〉|s〉 + d(tmM)|0〉|g〉. (15)

For t > tmM the state maintains the same structure because
transitions |g〉 → |e〉 are not allowed because state |g〉 in
Eq. (15) is associated with a zero-cavity-photon state. Hence
no oscillations in the cavity-photon population can be ob-
served. For t > tmM, the quantum state is

|ψ(t)〉 = cg(t)|1〉|s〉 + d(t)|0〉|g〉, (16)

where now cg(t) = ap exp[−γ t/2]. The resulting first-order
coherence for t > tmM can be calculated as follows:

〈ψ(t)|a|ψ(t)〉 = d∗(t)cg(t)〈g|s〉〈0|a|1〉 = 0, (17)

and the s-g second-order coherence results in

〈ψ(t)|aσsg|ψ(t)〉 = d∗(t)cg(t)〈1|a|0〉〈s|σsg|g〉 = 0. (18)

Our analysis explains the erasure of both first- and
second-order s-g coherences. We may question where the
information on the phase is stored. As observed in Fig. 5(c),
after the arrival of the third control pulse the second-order
g-s correlation 〈ψ(t)|aσgs|ψ(t)〉 suddenly appears. In fact, it
results as equal to zero until the third control pulse is sent in
the structure as can be easily calculated. We thus obtain for
t > tmM,

〈ψ(t)|aσgs|ψ(t)〉 = d∗(t)cg(t)〈0|a|1〉〈g|σgs|s〉 = d∗(t)cg(t)

≈ cg(t) = ape
− γ

2 t . (19)

We may conclude, in complete analogy with what was deduced
above, that in this case the disappearance of both first-order
and second-order s-g coherences induces a complementary
appearance of an other second-order correlation where the
role of the state |s〉 and |g〉 is exchanged. In addition,
the value assumed by the g-s second-order correlation is the
same assumed by the first-order correlation in the absence of
the second and third control pulses [see Eqs. (10) and (19)] in
agreement with numerical results shown in Fig. 5.

IV. HOW TO CHECK EXPERIMENTALLY THE
ALL-OPTICAL CONTROL OF WAVE-PARTICLE

DUALITY

Here we analyze in detail a recently proposed [18] simple
implementation of a homodynelike method in order to check
the coherence of cavity photons. The method can be imple-
mented by feeding the MC with a pair of phase-locked probe
pulses [19] and detecting the photons escaping the cavity.
In this section we present detailed analytical calculations as
well as additional numerical calculations providing a deeper
understanding of the proposed detection scheme. It is worth
noticing that the field amplitude 〈a〉 is not a physical observable
and cannot directly be detected. Nevertheless 〈a〉 can be
inferred via homodyne detection techniques. Calculations are
carried out as in Ref. [10]. With respect to what was calculated
and shown in Figs. 2 and 5 the probe field feeding the MC
is now an overlap of the two delayed Gaussian pulses with a
relative adjustable phase φ:

εp(t) = A exp (−iωat)

{
exp

[
− (t − t1)2

(2σ 2)

]

+B exp (iφ) exp

[
− (t − t2)2

(2σ 2)

]}
. (20)

Figure 6 displays the strong coupling dynamics obtained
by this different cavity feeding. We used the same parameters
adopted for the numerical results reported in the previous
sections. The system is (i) initially excited by a π control
pulse in order to invert the population between levels s and
g, so that strong coupling can occur. Then (ii) a first probe
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FIG. 6. (Color online) Cavity-photon populations in the presence
of two phase-locked probe pulses and one (a) and (b) or two (c) control
pulses. For comparison the cavity-photon population 〈a†a〉1 when
only a probe beam is sent (red dashed curve) is also shown.
(a) Destructive interference after the arrival of a second phase-locked
probe pulse with phase difference φ = 0; (b) constructive interference
after the arrival of a second phase-locked probe pulse with phase
difference φ = π ; (c) absence of interference effects after sending a
second control pulse at a cavity minimum (in this case only a small
increase of the cavity-photon population due to additional photons
entering in the cavity is observed).

pulse at γat2 = 0.14 (see the Gaussian blue lower solid curves)
excites the MC determining the vacuum Rabi oscillations of the
photonic population. Finally a second probe pulse (iii) excites
the MC at the second Rabi maximum at γat2 = 0.88 and with
φ = 0. Almost complete destructive interference is observed.
It is a signature of the expected coherence. It may be somewhat
puzzling that, starting with a zero phase difference between the
input pulses, destructive interference is achieved. This result is
due to a specific property of vacuum Rabi oscillations (see, e.g.,
Ref. [20]) which need two Rabi periods in order to recover the
initial phase. Sending the second probe pulse at the next Rabi
maximum (here not shown) constructive interference can be
found. The case of constructive interference when the second
phase-locked probe pulses with phase difference φ = π is sent
at the second Rabi maximum is shown in Fig. 6(b). Figure 6(c)
differs from the situation in Fig. 6(a) for an additional control
π pulse sent at the first Rabi minimum γat2 = 0.49, before
the arrival of the second probe pulse. This second control
pulse, as discussed in the previous sections, destroys almost
instantaneously first-order optical coherence of cavity photons
[see Fig. 3(a)]. Now the arrival of the second probe pulse
just allows for a direct test of coherence. If cavity photons
have actually lost their first-order coherence, the arrival of the
second probe pulse will not give rise to interference effects.
The small increment in the population observed in Fig. 4(c) is
due to the augmented number of photons in the cavity which in
this case is fed by two probe pulses. In addition, it is possible
to show that such a result is independent on the relative phase
φ (see also Fig. 9). Detection of this absence of interference
would certify the coherence destruction predicted in Ref. [10]
and shown in Fig. 5. In summary, the first control pulse gives

FIG. 7. (Color online) Cavity-photon populations as a function of
time and of the phase difference φ between the two probe pulses. The
second probe pulse is sent at the second cavity maximum. Interference
is clearly visible. The arrival time of the control and probe pulses is
indicated by the larger green (at t = 0) and smaller red disks.

rise to the strong coupling regime; the first probe beam can
thus produce coherent vacuum Rabi oscillations; the optional
additional control beam sent at a Rabi minimum will destroy
the coherence of cavity photons generated by the first probe
pulse; the second probe pulse will interfere with cavity photons
only if they maintain their first-order coherence, hence it is able
to test the coherence of cavity photons generated by the first
probe pulse.

Figures 7–9 display cavity-photon populations as a function
of time and of the relative phase φ between the two probe
pulses. The arrival time of control (probe) pulses is indicated
by larger green (smaller red) disks. The strong variation of
〈a†a〉 as a function of φ shown in Figs. 7 and 8 is clear evidence
of interference effects due to the coherence of cavity photons.
At the opposite Fig. 9(b), obtained sending the second probe
pulse after a further control pulse at a Rabi minimum, shows no
signal variation as a function of φ, a signature of the destroyed
coherence.

FIG. 8. (Color online) Cavity-photon populations as a function of
time and of the phase difference φ between the two probe pulses. The
second probe pulse is sent at the third cavity maximum. Interference
effects are clearly visible.
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FIG. 9. (Color online) Cavity-photon populations as a function
of time and of the phase difference between the two probe pulses φ.
The second probe pulse is sent at the third cavity maximum after the
arrival of a second π control pulse. The independence of the signal
on φ certifies the absence of interference.

This peculiar behavior can be explained in terms of
quantum complementarity as can be understood by analyz-
ing the approximate quantum state. In the above-described
homodynelike detection scheme, photons escaping the cavity
are detected. Each detected photon comes from one of the
two input coherent pulses. If there is no possibility, without
perturbing the system, of gathering information on the origin
(first or second input pulse) of the detected photon, according
to the complementarity principle, wavelike behavior will
emerge, and interference effects will be observed. On the
contrary, if it is possible, even in principle to gather the
which way information, interference effects will vanish and
particlelike behavior emerges. Focusing our attention to the
physical configuration described for Fig. 9, from Eq. (12) and
remembering that the second probe pulse (at time t = t2) is
sent at a cavity population maximum (ce(t2) ≈ 0), we have

|ψ(t−2 )〉 = cg(t−2 )|1〉|g〉 + d(t−2 )|0〉|s〉. (21)

The second pump sent inside the cavity modifies the QE-
MC wave-function evolution. The evolution operator may be
developed up to the first order in the interaction as

U 
 1 + bpa
†,

where 1 is the identity operator and bp ∝ Bp 	 1 describes
the pulse area of the second phase-locked probe pulse. Hence,
the wave function becomes

|ψ(t+2 )〉 = U |ψ(t−2 )〉
= cg(t+2 )|1〉|g〉 + d(t+2 )|0〉|s〉 + d(t+2 )bp|1〉|s〉, (22)

where terms with more than one cavity-photon state are
neglected. The wave function for t > t2 evolves as

|ψ(t)〉 = cg(t)|1〉|g〉 + d(t)|0〉|s〉
+ d(t)bpe

− γ

2 t |1〉|s〉 + ce(t)|0〉|e〉, (23)

We observe that, being bp = |bp| exp(iφ) where φ is the
relative phase of the second pulse, the information on φ is
contained only in the coefficient of the state |1〉|s〉. This deter-
mines a possible which-path information. In particular, we are

able to gather the which-way information of light emerging
outside the cavity observing the QE state inside the cavity: If
it is in its ground state |g〉, the light must originate from the
first exciting probe (because no information about phase of
the second pulse is contained in the coefficient of the state);
on the contrary, if the QE results in the excited state |s〉, the
light is due to the second probe exciting the cavity owing to the
coefficent β(t)bp. From Eq. (22), we can calculate the intensity
of light I = 〈ψ(t)|a†a|ψ(t)〉 detected outside the cavity:

I = |cg(t)|2 + |d(t)|2|bp|2e−γ t ≈ |cg(t)|2 + |bp|2e−γ t

= e−γ t [|ap|2 cos2(�t/2) + |bp|2], (24)

being d(t) ≈ 1. It is clear that the light intensity detected is
not affected by the phase difference between the two pulses
exciting the cavity in agreement with numerical calculations
displayed in Fig. 9. On the contrary, it is straightforward to
find, by an analogous analytical calculation, that interference
effects are present in the absence of the second control pulse.

This kind of experiment requires a thorough control over
the time delay between the different optical pulses. Such a
control is possible with modern time-resolved spectroscopy
setups (see, e.g., Refs. [21] and [32]). One may also ask how to
determine the precise timing of subsequent pulses from outside
the cavity. One possible scheme consists into first sending only
the first two pulses, namely the control beam and, after a small
time delay (e.g., of the order of 1 ps), the probe pulse. In this
case time-resolved detection of photons escaping the cavity
will give an oscillating signal (S1) like the red-dashed curve
in Fig. 6. The so obtained time-resolved S1 signal provides
precise information on the needed arrival times of the next
pulses. For example, in the situation of Fig. 7 we need to send
an additional probe beam arriving inside the cavity at the Rabi
maximum originating from the first probe pulse. At this stage,
we switch off the first probe and send only one delayed probe
beam. We will obtain a delayed oscillating signal (S2) which
we can compare with S1. In particular comparing the time of
the first maximum of S2 with the chosen maximum of S1, it is
possible to determine the precise delay of the second pulse. It is
also possible to repeat the second step with the adjusted delay
in order to verify the correct timing. The situation described
in Fig. 8 requires one additional control beam. In this case
one possible timing scheme consists of sending only the probe
beam as in Fig. 6 in the absence of the previous control beam. In
this case the obtained signal will display an exponential decay.
We can repeat the measurement sending after the probe a de-
layed control beam in order to gather information on the timing
of the second control pulse. In this case we will observe the
initial exponential decay followed by the sudden appearance of
the Rabi oscillations (S3). The exact time of such appearance
defines the arrival time inside the cavity of the control pulse.
Comparing S3 with S1, it is possible to determine and tune the
precise delay of the second control pulse.

V. CONCLUSIONS

The complementarity principle refers to the ability of
quantum entities to behave as particles or waves under different
experimental conditions. For example, in the famous double-
slit experiment, a single electron can apparently pass through
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both apertures simultaneously, forming an interference pattern.
But if a “which-path” detector is employed to determine
the particle’s path, the interference pattern is destroyed. We
carried out a detailed investigation of a recently proposed
quantum device for the all-optical control of strong light
matter interaction and wave-particle duality of photons [10].
We showed that the induced coherence sudden death implies
the sudden birth of a higher order correlation function
storing coherence. Such storing enables coherence rebirth
after the arrival of an additional suitable control pulse. We
also discussed a homodynelike method exploiting pairs of
phase-locked pulses with precise arrival times, to probe the
optical control of wave-particle duality of this system. Within
such a method the optical control of wave-particle duality can
be directly probed by just detecting the photons escaping the
MC. We also presented approximate analytical calculations
providing a deep understanding of the rich physics of this
quantum device.

We hope that the intriguing effects here described will
stimulate new experimental efforts. The analysis here devel-
oped can be applied to a quite large variety of state-of-the-

art experiments and setups, ranging from atomic [22] and
circuit-QED systems [23,24] and quantum dots in optical
cavities [25] and can be extended to MC embedded quantum
wells displaying intersubband polaritons [9] by exploiting the
Heisenberg-Langevin method for interacting electron systems
[26]. Generation and control of photonic quantum states from
the microwave to the optical and THz regions can hence be
studied on a common framework. In this light, the cavity
embedded three-level cascade QE can be also exploited to
study quantum phenomena in the ultrastrong coupling regime
where counter-rotating light-matter terms become important
and a wealth of forefront physical phenomena are conceivable
[9,24,27,28]. Very recently a theoretical study beyond the ro-
tating wave approximation of the dynamical Casimir emission
from this system was reported [29]. Finally we observe that re-
cently it was shown that ultracompact (with dimensions below
the diffraction limit) hybrid structures, composed of metallic
nanoparticles and a single quantum dot, can also achieve the
strong coupling regime [30,31]. The all-optical control of
light-matter interaction and of wave-particle duality can also
be applied to these solid-state quantum plasmonic devices.
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