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Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled
hollow-core photonic crystal fibers
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We present the details of our previously formulated model [Saleh et al., Phys. Rev. Lett. 107, 203902 (2011)] that
governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizable gas. By using perturbative
methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman
self-frequency redshift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hölzer
et al., Phys. Rev. Lett. 107, 203901 (2011)]. This process is only limited by ionization losses, and leads to
a constant acceleration of solitons in the time domain with a continuous blueshift in the frequency domain.
By applying the Gagnon-Bélanger gauge transformation, multipeak “inverted gravitylike” solitary waves are
predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in
such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range
nonlocal interactions between temporally distant solitons, unique of gas plasma systems, are predicted and
studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics
are investigated, showing that the conversion efficiency of resonant radiation into the deep UV can be improved
via plasma formation.
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I. INTRODUCTION

The invention of photonic crystal fibers (PCFs) has led to a
revolution in the field of nonlinear fiber optics [1]. Hollow-core
PCFs (HC-PCFs) with the so-called kagomé-lattice claddings
have recently become a superior host for the investigation
of light-matter interactions between intense ultrashort optical
pulses and gaseous or liquid media [2]. These fibers are
characterized by a broadband transmission range with low
group-velocity dispersion (GVD) and a high confinement of
light in the core [3]. Many important phenomena have already
been observed in HC-PCFs. For instance, a drastic reduction in
the Raman threshold has been shown in H2-filled HC-PCFs [4].
These fibers have also been used to generate solitary pulses
by backward stimulated Raman scattering [5] and to observe
self-similarity in the evolution of transient stimulated Raman
scattering [6]. Important applications such as high-harmonic
[7] and efficient deep UV generation [8] have been recently
demonstrated in HC-PCFs filled with noble gases, which do
not suffer the limitations introduced by the Raman effect.

Intrapulse Raman scattering allows for a continuous down-
conversion of the central wavelength of a pulse propagating
in an optical fiber, due to the continuous conversion of
energy of the coherent pulse into incoherent optical phonons
always present in the medium. Dianov et al. have made the
first observation of an efficient energy redshift from a pulse
maximum to its tail via the Raman effect [9]. This has been
followed by an experimental demonstration of the soliton
self-frequency redshift in optical fibers [10], theoretically
described in Refs. [11,12]. Thereafter, the Raman process has
been extensively studied and exploited in the field of nonlinear
fiber optics [13–16]—a notable example is supercontinuum
generation in PCFs [17].

*mohammed.saleh@mpl.mpg.de

Historically, the concept of soliton blueshift has been
originally introduced and predicted in Ref. [18]. In tapered
solid-core photonic crystal fibers, soliton blueshift has been
observed due to the variation of the zero-dispersion wavelength
(ZDW) along the fiber [19]. In the photoionization regime,
a limited (of only a few nanometers) ionization-induced
blueshift of guided ultrashort pulses has been predicted in
conventional gas-filled photonic band-gap HC-PCFs, which
suffer large group-velocity dispersion variations near the band
edges, thus preventing the clear formation of solitary waves
[20,21]. Very recently, however, a sequence of emitted strong
blueshifted pulses has been observed in a groundbreaking
experiment involving Ar-filled kagomé-style HC-PCFs, by
using few-μJ fs laser pulses [22,23]. The use of the kagomé
HC-PCF in these experiments was essential due to its unique
guiding features. Such fibers possess an unusual broadband
guidance, and a remarkably small group-velocity dispersion
(GVD) (|β2| < 10 fs2/cm ≡ 1 ps2/km from 400 nm to 1 μm)
in comparison to the traditional solid-core fibers [8,23,24].
Moreover, the gas and waveguide contributions to the GVD
can be balanced in the optical wavelength regime [24],
unlike large-bore capillary-based systems, where the normal
dispersion of the gas always dominates over the anomalous
dispersion of the waveguide.

Prior to our present work on the optical nonlinearities
induced by photoionization, Geissler et al. modeled the
photoionization process in terms of the full electric field
of the pulse [25], which is computationally very expensive.
Recently, we have presented a model based on the evolution
of the complex pulse envelope [26], which allows several
interesting predictions, and it is more suitable for analytical
and numerical investigation than other previously proposed
models. The validity of the model has been carefully verified
by using a numerical model [27] based on the unidirectional
wave equation [28]. Our model allows us to use well-known
analytical and numerical methods, developed to study pulse
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propagation in optical fibers, such as perturbation theory,
the split-step Fourier method [16], and soliton particlelike
analogy [29,30]. By using our model, (i) we derive analytical
expressions for the soliton self-frequency blueshift in the
presence and absence of the photoionization threshold of the
gas, incidentally introducing the concept of floating solitons;
(ii) we predict the possibility of observing two-peak “inverted
gravitylike” solitons; and (iii) we explore the effects of
higher-order dispersion and shock terms, demonstrating that
a plasma-assisted blueshift can enhance the efficiency of
resonant radiation in the UV, possibly improving previous
experimental results [8]. Our theoretical results closely follow
the experimental measurements in Ref. [23].

The paper is organized as follows. In Sec. II, the governing
equations of pulse propagation in HC-PCFs filled with an
ionizable gas are reviewed. In Sec. III, the perturbation theory
is applied to study the effect of photoionization on the soliton
amplitude, the temporal location of the soliton peak, and the
self-frequency shift. The possibility of observing two-peak
inverted gravitylike solitons is discussed in Sec. IV. Section V
is dedicated to studying soliton dynamics in plasma. The
effects of higher-order dispersion and shock terms on pulse
propagation are examined in Sec. VI. Our conclusions are
provided in Sec. VII.

II. GOVERNING EQUATIONS

Photoionization can take place by either tunneling or
multiphoton processes. These regimes are characterized by
the Keldysh parameter pK [31,32]. For optical pulses with
intensities in the range 100 TW/cm2, the Keldysh parameter
is in the limiting regime between the tunneling or multiphoton
processes. In this case, the Yudin-Ivanov modification of the
Perelomov-Popov-Terent’ev technique is considered to be the
appropriate model since it accounts for both processes [33,34].
Experimental measurements [35,36] show that tunneling
models [37,38] can well describe photoionization processes
in noble gases for optical-pulse intensities in the range of
TW/cm2. This is also confirmed by recent calculations [27]
based on the tunneling Ammosov-Delone-Krainov model
[38] that reproduce simultaneous experimental results [23].
The time-averaged ionization rate W(I ) can be expressed
as [37–39]

W(I ) = c1 I−1/4 exp(−c2 I−1/2), (1)

where c1 and c2 are constants and I is the laser-pulse intensity.
As shown in Fig. 1(a), Eq. (1) predicts an ionization rate that
has an exponential-like behavior for pulse intensities above
a certain threshold value Ith. Ionization-induced loss that is
due to the absorption of photons during plasma formation is
proportional to the ionization rate [32]. As a consequence,
pulses with large intensities well above the threshold limit will
have their intensities strongly driven back to near Ith, where the
ionization-induced loss is drastically reduced. This allows us
to linearize Eq. (1) by using the first-order Taylor series in the
proximity of Ith, where pulses can survive without appreciable
attenuation for a relatively long time. This is our concept of
floating pulses introduced in Ref. [26] and shown in Fig. 1(b).
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FIG. 1. (Color online) (a) Comparison of the dependence of the
argon ionization rate on the pulse intensity using the full model
of Eq. (1) and the linearized model of Eq. (2). (b) A sketch that
represents the attenuation of an initial pulse to a floating pulse above
the threshold limit due to ionization-induced loss.

Expanding Eq. (1) in its linear regime results in

W(I ) ≈ σ̃ (I − Ith) � (I − Ith) , (2)

where Ith and σ̃ can be related to c1, c2, and the expansion
point, which is chosen to reproduce the physically observed
threshold intensity of the considered gas [26]. The purpose of
the Heaviside function � is to cut the ionization rate below
Ith. As shown in Fig. 1(a), the linearized model underestimates
the ionization rate and the ionization losses, in comparison to
the full model. This leads nevertheless to surprisingly similar
qualitative behavior between the two models even for I >

Ith, since the strong ionization losses occurring well above
the threshold tend to push the pulse amplitude toward the
linearized region of the ionization rate.

By using Eq. (2), one can show that propagation of light
in a HC-PCF filled with an ionized Raman-active gas can be
modeled by the following coupled equations:[

i∂z + D̂(i∂t ) + γKR(t) ⊗ |�(t)|2 − ω2
p

2k0c2
+ iα̃

]
� = 0,

(3)

∂tne = [σ̃ /Aeff][nT − ne]
[|�|2 − |�|2th

]
�

(|�|2 − |�|2th
)
,

(4)

where �(z,t) is the electric-field envelope, z is the longitudinal
coordinate along the fiber, t is the time coordinate in a
reference frame moves with the pulse group velocity, D̂(i∂t ) ≡∑

m�2 βm(i∂t )m/m! is the full dispersion operator, βm is the
mth order dispersion coefficient calculated at an arbitrary
reference frequency ω0, γK is the Kerr nonlinear coefficient
of the gas, R(t) = (1 − ρ) δ̃(t) + ρ h(t) is the normalized Kerr
and Raman response function of the gas, δ̃(t) is the Dirac delta
function, ρ is the relative strength of the noninstantaneous
Raman nonlinearity, h(t) is the causal Raman response func-
tion of the gas [16,20], the symbol ⊗ denotes the time convolu-
tion [A ⊗ B ≡ ∫

A(t − t ′)B(t ′)dt ′ = ∫
B(t − t ′)A(t ′)dt ′], c
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is the speed of light, k0 = ω0/c, ω0 is the input pulse central
frequency, ωp = [e2ne/(ε0me)]1/2 is the plasma frequency
associated to an electron density ne(t), e and me are the electron
charge and mass, respectively, ε0 is the vacuum permittivity,
α̃ = α̃1 + α̃2 is the total loss coefficient, α̃1 is the fiber loss,
α̃2 = AeffUI

2|�|2 ∂tne is the ionization-induced loss term [40], Aeff

is the effective mode area, UI is the ionization energy of
the gas, |�|2 = IAeff , |�|2th = IthAeff , and nT is the total
number density of ionizable atoms in the fiber, associated to
the maximum plasma frequency ωT ≡ [e2nT/(ε0me)]1/2. The
recombination process is safely neglected in these coupled
equations since the pulse duration (of the order of tens of fs) is
always shorter than the recombination time [32,41]. However,
the recombination effects as well as the rearrangement of
the electronic plasma due to ponderomotive forces should
be included in the case of long-pulse propagation, making
the problem considerably more difficult in the long-pulse
regime [42,43].

Introducing the following rescalings and redefinitions,
ξ ≡ z/z0, τ ≡ t/t0, �0 ≡ [γKz0]−1/2, ψ ≡ �/�0,
|ψth| ≡ |�|th/�0, r(τ ) ≡ R(t) t0, φ ≡ 1

2k0z0 [ωp/ω0]2,
φT ≡ 1

2k0z0 [ωT/ω0]2, σ ≡ σ̃ t0/[AeffγK z0], and
κ ≡ UI σ̃ ε0 me ω2

0/[k0 e2], where z0 ≡ t2
0 /|β2(ω0)| is

the second-order dispersion length at the reference frequency
ω0 and t0 is the input pulse duration [16]. The two coupled
equations for floating pulses can be replaced by

[i∂ξ + D̂(i∂τ ) + r(τ ) ⊗ |ψ(τ )|2 − φ + iα]ψ = 0, (5)

∂τφ = σ (φT − φ)
[|ψ |2 − |ψ |2th

]
�

(|ψ |2 − |ψ |2th
)
, (6)

where α = κ (φT − φ) [1 − |ψ |2th/|ψ |2] �(|ψ |2 − |ψ |2th), and
the fiber losses are neglected.

III. PERTURBATION THEORY FOR SOLITONS

The effect of the Raman and ionization perturbations on
the soliton dynamics can be studied by using the perturbation
theory described in standard textbooks (e.g., Ref. [16]).
Neglecting higher-order dispersion coefficients, i.e., βm>2 =
0, the solution of a perturbed nonlinear Schrödinger equation,
i∂ξψ + 1

2 ∂2
τ ψ + |ψ |2ψ = i ε(ψ), is assumed to be ψ(ξ,τ ) =

A(ξ ) sech{A(ξ )[τ − τp(ξ )]}e−iδ(ξ )τ , where A is the soliton
amplitude, τp is the temporal location of the soliton maximum,
δ = (ω − ω0)t0 is the normalized pulse frequency shift from
the input central frequency, ω is the frequency, and ε(ψ) is the
perturbation function. Substituting this ansatz in Eqs. (5) and
(6), the following ordinary differential equations (ODEs) are
obtained:

∂δ

∂ξ
= −Im

{∫ +∞

−∞
ε(ψ) tanh[A(τ − τp)] ψ∗ dτ

}
, (7)

∂τp

dξ
= −δ + 1

A
Re

{∫ +∞

−∞
ε(ψ)(τ − τp) ψ∗ ∂τ

}
, (8)

∂A

∂ξ
= Re

{∫ +∞

−∞
ε(ψ) ψ∗ dτ

}
, (9)

where Re and Im stand for real and imaginary parts.
In order to extract useful analytical information from

Eqs. (5) and (6), we will start with the simplest case where we

assume that the ionization loss and the threshold are negligible.
Ignoring ionization loss is unrealistic unless the pulse under
consideration has its maximum amplitude just above the
threshold, in which case it does not feel strong plasma-
induced decay. In this particular case, Eq. (6) can be solved
analytically, φ(τ ) = φT{1 − exp[−σ

∫ τ

−∞ |ψ(τ ′)|2dτ ′]}, with
an initial condition φ(−∞) = 0, corresponding to the absence
of any plasma before the pulse arrival. For a small ionization
cross section, φ(τ ) � η

∫ τ

−∞ |ψ(τ ′)|2dτ ′, where η ≡ σφT.
Moreover, in the long-pulse limit one has |ψ(τ − τ ′)|2 �
|ψ(τ )|2 − τ ′∂τ |ψ(τ )|2 [16]. This allows the two coupled
equations to be reduced to a single partial integrodifferential
equation:

i∂ξψ+D̂(i∂τ )ψ+|ψ |2ψ−τRψ∂τ |ψ |2−ηψ

∫ τ

−∞
|ψ |2dτ ′ = 0,

(10)

where τR ≡ ∫ ∞
0 τ ′ r(τ ′) dτ ′. This equation shows clearly that

the effect of ionization is essentially opposite to that of the
Raman effect: the fourth term in Eq. (10) involves a derivative
of the field intensity, while the fifth term involves an integral on
the same quantity. Thus, one can conjecture that the ionization
perturbation will lead to a soliton self-frequency blueshift,
instead of a redshift. However, this is not an exact analogy
because of thermodynamical reasons. In fact, the Raman effect
acts on a soliton by constantly decreasing its central frequency,
leaving its pulse shape in the time domain and in the frequency
domain undeformed—in other words, the soliton continuously
converts its coherent energy into incoherent optical phonons in
the medium, and therefore the number of photons contained in
the soliton does not change, and the overall entropy increases
according to the second law of thermodynamics. However, in
the photoionization-induced soliton blueshift described above,
the soliton coherently receives energy from the medium (the
plasma in this case). For this to be physically possible without
breaking the second law of thermodynamics, the number of
photons in the soliton must necessarily decrease—thus, the
unavoidable plasma-induced losses cannot be eliminated on
principle. The stronger the initial pulse intensity, the stronger
the soliton blueshift, and the larger the plasma-induced losses,
so that Eq. (10), which assumes small losses, would lose its
validity. However, in the following we shall prove numerically
that, when solitons decrease their amplitudes to just above
the ionization threshold, their losses are very limited so that
they can propagate for relatively long distances. This led
us to naturally introduce the concept of floating solitons, i.e.,
those solitary pulses with maximum amplitude just a little
above the threshold—the regime where ionization losses can
be neglected and Eq. (10) maintains its validity [26].

Solving Eq. (10) with a perturbation function,
ε(ψ) = −iψ[τR∂τ |ψ |2 + η

∫ τ

−∞ |ψ(τ ′)|2dτ ′], results in
A(ξ ) = A(0) = A0, δ(ξ ) = δRaman(ξ ) + δion(ξ ) = −g ξ ,
τp(ξ ) = g ξ 2/2, and g = gred + gblue, where gred =
+(8/15)τRA4

0 and gblue = −(2/3)ηA2
0 [26]. Note that g can

be positive, negative, or even zero, depending on the value of
η, τR, and A0. The precise rate for the self-frequency blueshift
can be obtained using the exact formula of φ(τ ), g′

blue =
σ−2A−1

0 φT[(1 − σA0) − (1 + σA0) exp(−2σA0)], which
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tends to gblue for small values of σ , but starts to differ
considerably from it for A0 > σ−1.

A further step can be applied to take into account
the effect of the threshold intensity on the blueshift rate.
For floating pulses, the ionization loss is not large and
can be neglected to a good approximation. For such
pulses, only a small portion of energy above the thresh-
old intensity contributes to the electron-density buildup. In
this case, φ(τ ) � η

∫ τ ′�T

−T
[|ψ(τ ′)|2 − |ψ |2th]dτ ′, where T =

A−1
0 sech−1[|ψ |th/A0]. This formulation embeds the Heaviside

function introduced in Eq. (6). Replacing the fifth term in
Eq. (10) with the new definition of φ(τ ) and solving Eq. (7)
results in

gblue = −ηA2
0

[
2

3
tanh3 θ + |ψ |2th

A2
0

(θ sech2θ − tanh θ )

]
,

(11)

with θ = A0T . It can be seen that this expression tends to
−(2/3)ηA2

0 for small |ψ |th.
The threshold intensity effect on the blueshift rate can also

be alternatively estimated by writing Eq. (10) as

i∂ξψ+D̂(i∂τ )ψ+|ψ |2ψ−τRψ∂τ |ψ |2−η̃ψ

∫ τ

−∞
ψ |2dτ ′ = 0,

(12)

where η̃ = η μ and

μ =
∫ T

−T

[|ψ(τ ′)|2 − |ψ |2th
]
dτ ′∫ ∞

−∞ |ψ(τ ′)|2dτ ′ . (13)

The factor μ represents the ratio between the pulse energy
contributing to plasma formation (from−T to +T ) and the
total energy of the pulse; see Fig. 1(b). Thus, it takes into
account the overestimation of the plasma density by neglecting
the threshold intensity. As a consequence, one can simply
prove that gblue = −(2/3)η̃A2

0.
Moreover, the effect of the photoionization loss on

the soliton amplitude and frequency shift can be stud-
ied numerically by solving the above ODEs with ε(ψ) =
−iψ[η

∫ τ ′�T

−T
(|ψ(τ ′)|2 − |ψ |2th)dτ ′ − iα], where T is deter-

mined via its previous definition using the initial pulse
amplitude, and the variation of the position T due to losses
is neglected:

∂A

∂ξ
= −2κ φT

(
A tanh ϑ − |ψ |2th T

)
,

(14)
∂δ

∂ξ
= η A2

[
2

3
tanh3 ϑ + |ψ |2th

A2
(ϑ sech2ϑ − tanh ϑ)

]
,

ϑ = AT . These equations can be solved numerically to
determine the spatial dependence of the soliton amplitude
and frequency shift, as shown in Fig. 2. Pulses with initially
large intensities (A2

0 > |ψ |2th) have a boosted self-frequency
blueshift. However, the ionization loss suppresses the soliton
intensity after a short propagation distance to the floating-
soliton regime, where the soliton can propagate for a long
propagation distance with a limited blueshift and negligible
loss. The maximum frequency shift is achieved when the
soliton intensity goes below the photoionization threshold.
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FIG. 2. (Color online) The spatial dependence of the soliton
amplitude and frequency shift during a photoionization process for
different initial pulse amplitudes.

IV. INVERTED GRAVITYLIKE BOUND STATES

The previous conclusions on the strong analogies between
the photoionization shift and the Raman shift of solitons allow
us to construct a kind of solitary wave that can be supported by
both the Kerr and the ionization nonlinearities. This solitary
waves will be analogous to the Raman bound solitons discov-
ered experimentally in Ref. [44] and explained theoretically in
Refs. [45–47]. In the noninertial reference frame of an acceler-
ated soliton (with a new time coordinate ζ ≡ τ − g ξ 2/2), and
by using the so-called Gagnon-Bélanger gauge transformation
ψ(ξ,τ ) = f (ζ ) exp[i(q − g2 ξ 2/3 + g τ ) ξ ] [48], Eq. (12) can
be written as an integrodifferential equation:

1
2∂2

ζ f − U (ζ ) f = q f, (15)

where ionization loss and higher-order dispersion are ne-
glected; U (ζ ) = g ζ − |f |2 + τR∂ζ |f |2 + η̃

∫ ζ

−∞ |f |2dζ ′ is a
potential, in which the first term is gravitylike; q = A2

0/2 −
η̃A0 is the soliton wave number; and A0 is the amplitude
of the one-peak solitary solution of Eq. (15). In the case
when only the Raman effect was present [9,10], a special
kind of nonlinear metastable bound states has been found as
a general solution for Eq. (15) [49–51]. Such bound states are
multipeak stationary states (in the noninertial reference frame
moving with acceleration gred), which are due to the Kerr effect
complemented by the Raman nonlinearity [45–47]. Additional
important features of this gravitylike potential analogy are
presented in Ref. [52].

In the presence of a Raman-inactive gas (such as Argon)
inside the HC-PCF, we have seen that the ionization process
leads to a soliton acceleration in the time domain, and to a
linear frequency shift toward the blue with a rate gblue. In this
case, solitons will feel an inverted gravitylike linear potential,
and the solution of Eq. (15) can be a multipeak stationary state
with a negative slope opposite to the Raman case. An example
of a two-peak bound state found numerically by using the
shooting method is depicted in Fig. 3(a). Multipeak solitary
solutions analogous to those found in Ref. [46] can also be
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FIG. 3. (Color online) (a) A two-peak soliton stationary solution
for a Raman-inactive gas with η̃ = 0.02 and q = 0.3. The dashed-
dotted red, dashed blue, and solid green curves represent the nonlinear
potential U , the pulse intensity f 2, and the ionization field φ,
respectively. (b) Temporal evolution of the two-peak soliton in a
gas-filled HC-PCF fiber.

obtained. The propagation of the two-peak bound state found
in Fig. 3(a) in a long HC-PCF is shown in Fig. 3(b).

The characteristics of a two-peak solitary solution—the
temporal separation ζ0 and the amplitude imbalance R between
the two peaks—can be analytically determined. Consider a
general two-peak solitary solution:

f (ζ ) = A1sech[A1(ζ − ζ1)] + A2sech[A2(ζ − ζ2)], (16)

where A2 = R A1 and ζ0 = ζ2 − ζ1. In principle, a set of three
algebraic equations is needed to determine A1, ζ0, and R. By
substituting the above solution in Eq. (15), the first equation is
obtained:

−gblueζ0 = A2
1(1 − R2)/2 + η̃A1(1 + R), (17)

where η̃ is assumed to be the same for the two solitons. The last
term on the right-hand side is due to the integration constant
in the nonlinear potential U (ζ ), and it is not present in the
analogous expression for the pure Raman-bound states [i.e.,
−gredζ0 = A2

1(1 − R2)/2] since the Raman effect is modeled
in the equations by a derivative. By multiplying Eq. (15) by
f ∗, and integrating both sides, we obtain∫ ∞

−∞

[
1

2
f ∗∂2

ζ f − U (ζ ) |f |2
]

dζ = q

∫ ∞

−∞
|f |2dζ, (18)

where the superscript ∗ denotes the complex conjugate. A
second equation can be attained by substituting Eq. (16) into
Eq. (18):

A2
1(1 + R3)/2 − η̃A1(1 + 2R + R2) − q(1 + R) ≈ 0. (19)

The set of three algebraic equations is completed by Eq. (15)
evaluated at ζ = 0. Thus, variables A1, ζ0, and R can be
determined for a certain value of q.

Finally in Raman-active gases, solitons may feel either
a gravitylike or an inverted gravitylike potential based on
the sign of the total gravity acceleration g = gred + gblue.
This means that the two-peak solitary solution can have
either a positive or negative slope as depicted in panels (a)
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FIG. 4. (Color online) A two-peak soliton stationary solution in a
Raman-active gas with η̃ = 0.02 and q = 0.3. (a) Gravitylike bound
states with τR = 0.1. (b) Inverted gravitylike bound states with τR =
0.01. The dashed-dotted red, dashed blue, and solid green curves
represent the nonlinear potential U , the pulse intensity f 2, and the
ionization field φ, respectively.

and (b), respectively, of Fig. 4. Two-peak solitons with
a positive (negative) slope are obtained when the Raman
(photoionization) process is dominant.

V. SOLITON DYNAMICS IN PLASMA

In this section, we will elaborate the results expressed
in Ref. [26] concerning soliton dynamics in an ionized
gas. Equations (5) and (6) can be numerically solved by
using the split-step Fourier method [16] in order to fully
describe the propagation of pulses in the presence of plasma.
In this section, higher-order dispersion coefficients are as-
sumed to be negligible, i.e., βm>2 = 0. The temporal and
spectral evolution of a higher-order sech-pulse, with an initial
intensity less than the threshold value, are depicted in panels (a)
and (b), respectively, of Fig. 5. Panel (c) shows the variation
of the ionization fraction along the fiber. An optical pulse
pumped in the deep anomalous-dispersion regime of the fiber
undergoes self-compression. When the pulse intensity exceeds
the threshold value, a certain amount of plasma is generated
due to gas ionization, and a fundamental soliton is ejected
from the input pulse. The soliton central frequency continues
to shift toward the blue due to the energy received from the
generated plasma. However, due to the concurrent ionization
loss, the soliton intensity gradually decreases until it goes
below the threshold, stopping the pulse blueshift. A second
ionization event accompanied by a second-soliton emission
can take place by further self-compression of the input pulse
based on its initial intensity.

A clear representation for the pulse dynamics in plasma
is shown in Fig. 6, where the temporal profile of the pulse
intensity |ψ |2 is plotted at selected positions inside the fiber.
The simulation parameters are similar to Fig. 5. Initially,
|ψ(τ )|2 is insufficient for plasma ionization. Due to soliton
breathing, the pulse passes through a self-compression stage
which strongly enhances its maximum intensity [53]. The
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FIG. 5. (Color online) Temporal (a) and spectral (b) evolution of
an energetic pulse propagating in an Ar-filled HC-PCF. The temporal
profile of the input pulse is N sech τ , with N = 8, t0 = 50 fs. All
subsequent calculations in this paper assume the same pulse duration.
The gas pressure is 5 bar. The panels show the ejection of two solitons
that continue blueshifting until the ionization loss suppresses their
intensities below the threshold value. Contour plots in this paper are
given in a logarithmic scale. (c) Spatial dependence of the ionization
fraction along the fiber.

amount of optical energy above the threshold intensity |ψ |2th
contributes to plasma formation that emits a blueshifted soli-
ton. However, due to the ionization-induced loss, the soliton
amplitude is attenuated to the regime where |ψ(τ )|2 � |ψ |2th.
Such pulses, the floating solitons, propagate for considerably
long distances with minimal attenuation and limited blueshift.
Based on the initial input pulse intensity, other solitons can
also be emitted due to further self-compression. At the end, a
train of floating solitons is generated. Indeed, Fig. 6 clearly
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FIG. 6. (Color online) Intensity profile of a pulse in the time
domain at different positions, ξ , inside an Ar-filled HC-PCF. The
dashed red line represents the threshold intensity. The simulation
parameters are similar to Fig. 5. Each panel is titled by its main
feature. Insets are enclosed in panels for better view and more details.

FIG. 7. (Color online) Dependence of the temporal (a) and
spectral (b) outputs of an energetic pulse N sech τ on the soliton
order N . The fiber is an Ar-filled HC-PCF with length ξ = 1/4.
The gas pressure is 5 bar. Temporal and spectral clustering occur at
N = 9.2 due to the long-range nonlocal soliton interactions. (c) The
output energy vs the input energy, to be compared with Fig. 2(d) of
Ref. [23].

shows the formation of a series of floating solitons that
exist and propagate for relatively long distances with their
maximum amplitude just above the ionization threshold. These
objects are completely unknown in conventional solid-core
fiber optics. The fact that these results have been confirmed in
concurrent experiments [23] is a very convincing proof of the
validity of our master Eqs. (5) and (6).

We have also found an interesting nonlocal interaction
between successive solitons due to the nonvanishing electron-
density tail, when their temporal separation is shorter than the
recombination time. Due to this interaction, a leading soliton
can slow down the acceleration of a trailing soliton by an
exponential factor. In the frequency domain, the leading soliton
suppresses exponentially the blueshift of the trailing soliton.
The reason is that the ionization field φ(τ ), created by the
first soliton, decays at a relatively slow rate. This establishes
a unique “nonlocal” interaction between this soliton and other
temporally distant solitons.

These unprecedented dynamics are featured in Fig. 7,
which shows the temporal and spectral dependence on the
soliton order N assuming that the input pulse is N sech τ .
A clustering between two or more distant solitons in both
temporal and spectral domains is also observed at some
“magic” input energy as a result of the interplay between the
nonlocal interaction, ionization loss, and ionization threshold.
The scenario is as follows: As long as the intensity of the
first-emitted soliton, I1, is above the threshold intensity Ith,
it prevents the ejection of a second soliton due to the strong
suppressive effect of the nonlocal interaction. As soon as I1

approaches Ith by virtue of the ionization loss, the first soliton
becomes a floating soliton. Thus, the blueshift and acceleration
of this soliton are reduced significantly. Simultaneously, the
second soliton can be emitted with its expected acceleration
and blueshift due to the near disappearance of the nonlocal
force induced by the first soliton. This allows the second soliton
to catch up and cluster with the first soliton. In addition, the

063838-6



UNDERSTANDING THE DYNAMICS OF . . . PHYSICAL REVIEW A 84, 063838 (2011)

FIG. 8. (Color online) XFROG spectrograms for pulses with se-
lected soliton order N in increasing order. The simulation parameters
are similar to Fig. 7. (a) N = 3, ξ = 0. (b) N = 5, ξ = 1/4. (c)
N = 8, ξ = 1/4. (d) N = 9.2, ξ = 1/4. Each panel is titled by its
main feature. White arrows show the movement of the solitons.

spectra of the two solitons start to overlap and form spectral
clustering. Similarly, when the intensity of the second soliton
approaches Ith due to the ionization loss, a third soliton is
ejected and allowed to cluster with the other two solitons.
However, when the first two solitons are very close to each
other, they push back the third soliton due to their combined
nonlocal force. In fact, the dynamics after the clustering
becomes too complicated to be interpreted in simple terms.

Figure 7(c) shows the output energy versus the input energy.
The linear dependence of the output energy is slightly broken
at the points which correspond to the ejection of new solitons.
Our results show an excellent qualitative agreement with
other nonanalytical numerical techniques [27] and with the
experimental results of Ref. [23].

Cross-frequency-resolved optical gating (XFROG) spec-
trograms for pulses with initial temporal profile N sech τ and
different initial intensities are depicted in the panels of Fig. 8,
where (a) represents the reference pulse; (b) and (c) shows the
emission of the first and second solitons, respectively; and (d)
depicts the temporal and spectral clustering of the first two
solitons and the emission of a third soliton.

VI. GENERATION OF DISPERSIVE WAVES

The contribution of the higher-order dispersion coefficients
βm>2 to the pulse dynamics starts to play a significant role as
the central pulse wavelength moves toward the zero-dispersion
wavelength (ZDW), where β2(ω0) ≈ 0. In fact, higher-order
dispersion coefficients may lead to a phase-matching condition
between two different waves—an optical pulse, with a central
wavelength, which lies in the anomalous-dispersion regime
and is close to the ZDW, and a dispersive resonance wave in
the normal-dispersion regime [54,55]. Recently, this fact was
implemented to achieve a coherent deep UV laser source by
using an Ar-filled HC-PCF: Joly et al. [8] have obtained an
8% conversion efficiency from IR (320 nm) to UV (200 nm),
where the output can be tuned easily via the pulse energy

FIG. 9. (Color online) Spectral evolution of an energetic pulse
N sech τ , with N = 11, under the influence of higher-order dispersion
coefficients with (a) switching off the ionization process and
(b) switching on the ionization process. The optical pulse central
wavelength is 800 nm, and the gas pressure is 2 bar. The dotted line
represents the ZDW.

and gas pressure. The pulse power level was kept below the
ionization threshold to avoid any ionization-induced loss.

The aim of this section is to study the effect of photoioniza-
tion on the dispersive-wave emission by the input pulse. The
top (bottom) panel of Fig. 9 represents the spectral evolution
of a higher-order sech pulse in a gas-filled HC-PCF, where the
ionization is switched off (on). The pulse central wavelength
is 800 nm, the ZDW is 432 nm (δ = 100), and the resonant
radiation frequency is located around 172 nm (δ = 430). We
find an enhancement in the dispersive-wave radiation via the
photoionization process by more than an order of magnitude

FIG. 10. (Color online) Spectral evolution of an energetic pulse
under the influence of higher-order dispersion and shock terms with
(a) switching off the ionization process and (b) switching on the
ionization process. The simulation parameters are similar to Fig. 9
except that the shock operator τshock is included. The dotted line
represents the ZDW.
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TABLE I. Conversion efficiencies to the normal-dispersion
regime for different gas pressures using an energetic pulse N sech τ .
The other simulation parameters are similar to Fig. 10.

Pa (bar) ZDWb (nm) DWWc (nm) ϒ1
d (%) ϒ2

e (%)

5 530 240 2.46 2.42
4 500 225 1.50 1.46
3 470 200 0.66 0.79
2 430 170 0.11 1.17

aPressure.
bZero dispersion wavelength.
cDispersive wave wavelength.
dConversion efficiency in the absence of ionization.
eConversion efficiency in the presence of ionization.

due to the ionization-induced blueshift. Unlike the Raman
process, where the pulse central wavelength is continuously
redshifted away from the ZDW during propagation, the
ionization-induced blueshift toward the ZDW enhances the
spectral overlap between the dispersive waves and the input
pulse tail, improving the conversion efficiency to the UV range.

The dispersion of Kerr nonlinearity is usually associated
with effects such as self-steepening and optical shock for-
mation [16]. Due to the absence of the Raman effect in
kagomé-style HC-PCFs filled with noble gases, and due to
the smallness of the group-velocity dispersion (GVD) in such
fibers, the role of the Kerr nonlinearity dispersion has an
unexpected importance. This effect can be studied by using
Eqs. (3) and (4), where γK is replaced by γK (1 + iτshock ∂t )
and τshock = 1/ω0 is the shock time [16]. The importance of
the shock term is depicted in Fig. 10, where the simulation
parameters are similar to Fig. 9 except that τshock is included.
Involving the shock term in the pulse dynamics increases the
conversion efficiency to the normal-dispersion regime from
0.44% [Fig. 9(b)] to 1.1% [Fig. 10(b)] at the end of the fiber
due to the spectral asymmetry of the pulse.

The conversion efficiencies from the pump pulse to the
normal-dispersion regime for different gas pressures (using
the same input pulse) in both the absence and presence of
the photoionization process are provided in Table I. For a
high gas pressure, the ZDW is too close to the pump central
wavelength λ0. This leads to a considerably high conversion
efficiency due to a broad spectral overlap between the tail of
the input pulse and the dispersive wave. On the other hand,
the ionization-induced blueshift is relatively insignificant due
to the negligible β2 that does not allow an efficient pulse

self-compression. We attribute the slight reduction in the
conversion efficiency to the unavoidable ionization-induced
loss. When the gas pressure is reduced, the ZDW moves away
from λ0. As a result, the dispersive wave would have been
emitted in the deep UV (< 200 nm) by the input pulse, with a
small conversion efficiency. However, we find that the emission
is strengthened by an order of magnitude due to the strong
ionization-induced blueshift effect in this case.

VII. CONCLUSIONS

We have presented a detailed model based on the evolution
of the complex pulse envelope to study pulse propagation
in gas-filled HC-PCFs under the influence of the nonlinear
photoionization-induced effects. By applying perturbation
theory, we show that the photoionization process represents
the exact counterpart of the Raman self-frequency redshift of
solitons when their intensities are slightly above the threshold
intensity. Expressions of the soliton self-frequency blueshift
are derived in the presence and absence of the photoionization
threshold. Moreover, the influence of the ionization loss on
the soliton amplitude and the frequency shift is studied. By
using the Gagnon-Bélanger gauge transformation, stationary
negative-slope two-peak inverted gravitylike solitary solutions
are obtained for pulses propagating in HC-PCFs filled by
Raman-inactive gases. However, positive- or negative-slope
two-peak solitary solutions can also be attained in the
presence of a tunable Raman-active gas. The pulse dynamics,
obtained by using the split-step Fourier method, shows the
soliton emission, breakup, and blueshift. Furthermore, we
find unconventional long-range nonlocal interactions between
successive solitons due to the nonvanishing electron-density
tail. The interplay between this unprecedented interaction, the
ionization-induced loss, and the ionization threshold yields
a spectral and temporal clustering between distant solitons.
Finally, in the presence of higher-order dispersion coefficients
and the shock operator, we find that plasma formation via
photoionization can strengthen the dispersive-wave radiation
in the deep UV (<200 nm), assisted by the absence of the
Raman effect in noble gases.
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