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Complex coordinates in transformation optics
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We show that complex coordinates used in conjunction with transformation optics offer an extra degree of
freedom that allows control over not only the propagation direction of electromagnetic waves but also their
amplitude. We illustrate this idea in two applications. First, we show that in an n-dimensional space one can
manipulate the field amplitude for up to n different amplitude distributions in regions that are critical to the
performance of the device under consideration, and thus reduce the device’s sensitivity to design imperfections
in these regions. Second, we expand previous work on reflectionless perfectly matched layers and show how
complex coordinates and transformation optics are a natural choice for designing perfectly matched layers of

arbitrary shape.
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I. INTRODUCTION

Transformation optics is a general technique that allows the
design of remarkable devices [1,2]. Originally introduced as a
means to design scattering reducing coatings, also known as
“invisibility cloaks” (see, for example, Refs. [1-12], and also
[13-15] for reviews of the field), the method has been shown
to be effective for other type of devices such as lenses, beam
splitters, concentrators and rotators, illusion optics device, or
array antennas [16-24].

Central to the transformation optics method is a choice of
coordinate transformations that are essentially used to control
the electromagnetic fields inside the design. The vast majority
of transformation optics devices reported in the literature are
based on real mapping functions. One of the primary things that
transformation optics with real mapping functions controls is
the phase of the electromagnetic fields. By translating the fields
from one location to another, the wave phase is effectively
changed by the transformation. However, real coordinate
transformations do not offer a simple way of manipulating
the field amplitude in a controlled manner.

We show here that the range of transformation optics appli-
cations can be extended through the use of complex mapping
functions. We show how, in general, the complex coordinates
thus obtained are a natural way to control the electromagnetic
field amplitude and phase together. In the same way that
real coordinate transformations enable one to determine the
complicated lossless material parameters for a particular wave
device, complex coordinate transformations enable one to
design devices that also arbitrarily manipulate wave amplitude
in prescribed ways. The resulting material parameters (with
loss or gain) are often complicated and would be extremely
difficult to derive through another technique. There is, perhaps,
one exception: an alternative method that provides similar
control over a given distribution of electromagnetic fields,
but does not involve coordinate transformations, has been
recently proposed [25]. However, a transformation optics type
of solution that inherits the advantages of this general design
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procedure is desirable. We illustrate our approach with two
main examples.

First, we show how complex coordinates incorporated into
the design of the classical cylindrical invisibility cloak result
in an extra degree of freedom that allows us to obtain a device
in which the electromagnetic field is exponentially attenuated
toward the cloak’s inner boundary. The advantage is that fields
next to the cloaked object can be made close to zero; therefore,
the contribution of the inner region, which is characterized by
large, hard to obtain, permittivities and permeabilities, to the
overall performance of the design is greatly reduced.

Second, we show how complex coordinates can be used to
obtain reflectionless, perfectly matched layers (PMLs) of arbi-
trary shape, which are very useful in reducing the simulation
domain in numerical simulations. Complex coordinates have
been employed since the development of the PML concept
for Cartesian and, later, cylindrical and spherical coordinates.
Teixeira and Chew [26] realized that, in principle, changes in
the metric of space through arbitrary curvilinear coordinates
could be used to obtain many classes of PMLs. Inspired by the
analysis of Texeira and Chew we illustrate how transformation
optics and complex coordinates can be employed to design
arbitrary shaped PMLs.

II. CONTROLLING THE FIELD AMPLITUDE

Consider the propagation of an electromagnetic wave
through an arbitrary, possibly inhomogeneous and anisotropic
material. We assume that the material parameters vary
smoothly enough so that a propagating wave can be locally
approximated as a plane wave in a small neighborhood of
every point in the material. This assumption does not reduce
the generality of the problem too much since it holds in most
practical situations. If we assume exp(jwt) time variation,
the wave field components can, therefore, be written in a
neighborhood of point r = (x,y,z) as

E() = Eo(r)e_jkloc(r)'l‘, @

where Eg and kj,. are the local electric amplitude vector and,
respectively, wave vector. The magnetic field component is
given by a similar expression.
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Transformation optics specifies a systematic way of chang-
ing the material parameters of the background medium in
order to modify the distribution and shape of a particular
electromagnetic wave or field configuration. Suppose we want,
instead, to change these material parameters in order to change
the amplitude of the wave as it propagates through the medium.
In other words, we want to obtain an electric field

Egesirea(r) = M(r)E(r), 2

where M(r) is a smooth scalar function that represents the
desired amplitude correction factor.

Our purpose is to manipulate the field amplitude through
a coordinate transformation r — p(r) that maps Egesirea(T)
to E(p). Equation (1), in which we replace r by p, suggests
that one way to achieve amplitude manipulation is to find a
transformation in which p has an imaginary component. We,
therefore, search for a mapping of the following form

p(X) =T+ jPim(r). 3)

At this point we are not interested in phase manipulation;
therefore, we choose the real component of p to be unity
mapped. We will see shortly, however, that it is useful to
consider general complex mappings in which the real part of p
is different from r, and express these complex transformations
as a combination between transformation (3) and a traditional
mapping that performs phase manipulation only.

Under the mapping (3), E transforms to Egesirea according
to

Egesirea(r) = [A7'(0)]" E(p), )

where A~! = Vp is the Jacobian of p(r). It follows from
transformation optics that the material parameter tensors that
produce the desired field amplitude are given by the well-
known equations

{€a. 1t} = det(A"HA(E AT (5)

Moreover, transformation optics ensures that, as long as
pim = 0 on the boundary between the region inside which
we wish to control the amplitude and the rest of the space, our
manipulation of the field amplitude does not result in unwanted
scattering off this region.

Next we solve for pi, by expanding Eq. (4) with the help
of Egs. (1) and (2). We obtain

M@Ey(r) = [(I5 + jV pim) 17 e pim@E (1), (6)

where I3 is the unity matrix. We will see in a number of
examples in the remainder of this article that in many situations
it is relatively easy to solve the above set of partial differential
equations for pjn.

The above analysis considered directly controlling the
amplitude of the electric field (but note that the magnetic field
will also change as a result of the coordinate transformation).
The magnetic field can be directly manipulated in a similar
fashion. In fact, since both the electric E and magnetic H
fields transform according to Eq. (4) under a transformation of
coordinates, Egs. (3) through (6) retain the same form and all
we need to do is replace the E field with the H field.
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III. TWO-DIMENSIONAL FIELDS

We consider next the slightly less general case of transverse
electric (TE) two-dimensional fields analyzed extensively in
the context of transformation optics. As mentioned in the
previous section transverse magnetic (TM) waves will behave
identically given the duality of the E and H fields.

For TE waves, the electric field has only one out-of-plane
component, i.e., E = ZFE, and the electromagnetic wave has
no out-of-plane variation, i.e., d/dz = 0, so that the design
equation (6) reduces to

Kioc(T) - pim(r) = In[M (r)]. (7

This single linear equation has two unknowns, namely, the
components of pin,, and consequently has multiple solutions.
This means that, in general, we can control independently the
amplitude behavior of two different waves characterized by
different kjo.(r) distributions traveling through some region of
space.

We illustrate the approach described above through
the simple example presented in Fig. 1(a) of a cylindrical
wave generated by an infinite line source in vacuum. In this
case we have Eg(r) = ZEq/+/r and Kkyo(r) = £k with kg the
free space wave number.

Suppose we want to modify the amplitude of the electric
field inside a circular region of radius R so that the amplitude
increases exponentially from the edges of the region toward
the center as shown in Fig. 1(b). The correction we want to
apply is written as follows:

M(r) = ea(R7|r7ro\)7 (8)

where ry is the position vector of the center of the region, and
o controls the rate of amplitude increase. A plot of M(r) is
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FIG. 1. (Color online) Controlling the electric field amplitude of
a TE wave. (a) Electric field component of a cylindrical wave, E(r);
the local wave vectors are highlighted at two points in the domain.
(b) Desired electric field behavior, Egegirea(r), i.€., we want the field
to be amplified inside the highlighted circular region. (c) Desired
amplitude correction factor, M(r).
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shown in Fig. 1(c). Equation (7) becomes

kot - pim = a(R — |r — ro)). €))
One of its possible solutions is

pim = Barky (R — [ —1q)). (10)

Having pin, determined, we use Eq. (5) to find the material
parameters inside the circular region that produce the desired
field amplitude. Figure 1(b) shows the electric field distribution
computed using Comsol Multiphysics, a commercial solver of
Maxwell’s equations, which confirms the desired behavior.

We consider next a more interesting example and use it
to look at the typical complex valued material parameters
that result using this method, and more importantly at their
imaginary parts.

IV. CONTROLLING FIELD AMPLITUDE INSIDE AN
INVISIBILITY CLOAK

Scattering reducing shells, also known as “invisibility
cloaks,” have been studied extensively in the context of trans-
formation optics. We show below how amplitude manipulation
using complex coordinates can be used to address one of the
difficulties related to this type of device.

The two-dimensional cylindrical invisibility cloak, as orig-
inally proposed, is designed based on the following mapping:

a b
§=r(1—|—rl>b_a. (11

This mapping and the cloak it generates has been exten-
sively analyzed in the literature (see, for example, [1-9]),
therefore we will only summarize here its main properties with
the help of Figs. 2(a) and 2(b). More specifically, the empty
space [Fig. 2(a)] described by the position vector & (called
virtual space) is mapped into the real space described by the
position vector r [Fig. 2(b)]. The origin of the virtual space
is mapped into the circle of radius a centered at the origin of
the real space, and represents the boundary of the object to
be cloaked. The circle of radius b centered at the origin in the
virtual space is mapped into a circle of the same size in the real
space, and represents the outer cloak boundary. The cloaked
object is a perfect electric conductor (PEC).

Figure 2 shows the electric component of a TE plane wave
propagating in the horizontal direction in the virtual space
[Fig. 2(a)] being mapped to the corresponding wave in the
real space [Fig. 2(b)]. As before, the fields were numerically
computed with Comsol Multiphysics. This particular mapping
specifies that, at the inner boundary of the cloak, the electric
field should have precisely the same value as at the origin of
the virtual space, i.e., a nonzero amplitude. On the other hand
the cloaked PEC object enforces the field to be exactly zero
on the same boundary.

This implies that the material parameters inside the cloaking
medium are such that the electric field amplitude decays from
its nonzero value everywhere else to zero over a vanishingly
small distance on the inner cloak boundary, which in turns
means that small deviations from the material parameters at
this boundary can result in non-negligible scattering off the
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FIG. 2. (Color online) Electric field inside and around the
classical and modified cylindrical cloaks. The classical cloak is
designed by mapping the free (“virtual”) space (a) to the “real”
space (b). Large fields in the critical region close to the inner cloak
boundary are responsible for the numerical artifacts materialized
as visible scattering. An additional mapping based on complex
coordinates is used to modify the classical cloak so that a wave
propagating horizontally is greatly attenuated at the sensitive inner
cloak boundary (c), but the same wave propagating vertically is not
affected (d).

cloak. This characteristic, observed by others [5,6,11,14], is
seen in Fig. 2(b). The finite mesh used in the simulations is
unable to capture this infinitely fast variation, and the result
is an artificial, numerically induced, non-negligible scattering.
The perfect magnetic conductor on the top and bottom
boundaries of the numerical domain make this scattering more
visible.

We address this issue by employing the complex coordi-
nates method outlined above in order to reduce the fields at the
sensitive inner cloak boundary, and with them the unwanted
scattering. We can solve, as before, Eq. (7) in order to find
the complex transformation that results in the desired field
distribution. Even though possible, this direct approach is more
involved in this situation because Ko inside the cloak has a
nontrivial r variation. Instead it is easier to take advantage
of the fact that the fields inside the cloak were mapped from
fields of a plane wave traveling in free space as illustrated in
Figs. 2(a) and 2(b). This means that we can use a complex
mapping & — p(€) = & + jpim(&) to reduce the fields at the
origin of the virtual space, i.e., the region that is mapped to
the inner cloak boundary, and combine it with the standard
cloak transformation given in Eq. (11). The result is a mapping
r — &(r) — p[&(r)] that produces a device for which the
fields toward the inner boundary are significantly attenuated.

Finding the transformation & — p(£) is a problem very
similar to that solved in the previous section. More specifically,
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we want an amplitude correction
M) = e—a(b—li\), (12)

where a controls the degree of attenuation. Since in free space
the local wave vector for a horizontally propagating wave
iS quoc = koé »» Where ,§ , 18 the unit vector in the horizontal
direction, the solution to Eq. (7) is written

pim = —E,aky (b — |E]) + &, f (&), (13)

where év is the unit vector in the vertical direction and f(&)
is an arbitrary scalar function that can be used to control the
amplitude of a wave propagating in another direction. We
choose f(&) = 0so that the amplitude of a wave propagating in
the vertical direction will not be affected by the transformation
& p(r).

It is interesting to note that it is not possible to obtain
attenuation for all directions of incidence because, once Pim
is determined, we can always choose an incident wave whose
wave vector is perpendicular on pyy,. For that particular wave
the complex transformation will have no effect.

The mapping r — p is obtained from Eqgs. (11) and (13) as
follows:

a b A o b
p= r(l — m>b—a — jRak; lm(b— Ir). (14)

In the previous equation we took into account that the & and r
spaces are Cartesian according to the “materials interpretation”
introduced in Ref. [4], and have the same unit vectors X = .§ e

Next we apply Eq. (5) to find the material parameters
inside the modified cloak. Figure 3 shows the principal axis
components of the permittivity and permeability tensors. We
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FIG. 3. (Color online) Principal axis relative material parameters,
real (left panels) and imaginary (right panels) parts, inside the
modified cloak.
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notice the variation of the real part of these parameters typical
for a cylindrical cloak.

The field amplitude inside the shell is controlled precisely
through a relatively simple analytic procedure. The end result
is a relatively complicated and nonintuitive distribution of the
imaginary parts of both the permittivity and permeability that
controls the wave amplitude in the desired way and that would
be extremely difficult to derive through another approach. Both
positive and negative values of the imaginary components
of the material parameters are required (i.e., both loss and
gain). Despite the important field attenuation, however, these
imaginary parts have only a modest variation and are within
10-17% of the corresponding real parts. These material
parameters are obtained such that, for horizontal incidence, the
wave is attenuated as it propagates along the radial direction
and amplified as it propagates along the azimuthal dimension
around the cloak.

Figure 2 shows the electric fields obtained inside and around
our cloak for an incoming wave propagating in the horizontal
[Fig. 2(c)] and vertical [Fig. 2(d)] directions. As expected, in
the first case the field amplitude is exponentially attenuated
toward the inner boundary of the cloak, and is not affected in
the second case. We see in this latter case the small but clearly
visible scattering from the device caused by the finite mesh
grid at the cloak-object interface where, as explained above,
the fields have to decay very rapidly. A comparison between
Figs. 2(c) and 2(d) shows that the field attenuation through
the complex coordinates technique for horizontal incidence
cancels this effect. In both cases the same mesh grid has been
used.

As mentioned before, this combination of gain and loss
media results in a degree of attenuation in the cloak that
depends on the direction of propagation of the incident wave,
with one particular direction along which no attenuation takes
place. From this point of view, our approach may seem
imperfect and is reminiscent of using optimization algorithms
[11,27] to trade perfect functionality for device simplicity.
Note, however, that unlike the use of optimization algorithms,
our approach sacrifices very little functionality: the attenuating
cloak is very broadband and works for all incident wave
directions of propagation except one.

V. PERFECTLY MATCHED LAYERS
OF ARBITRARY SHAPE

As we have seen so far, complex coordinates can be used
to reduce the influence of certain device areas susceptible
to reduce the effectiveness of the device. Other applications
are also possible, for instance, in the area of reflectionless
PML design. For example, MEEP [28], a full-wave solver of
Maxwell’s equations, uses transformation optics techniques
to derive the material parameters inside classical PMLs, such
as those used in cylindrical and Cartesian coordinate frames.
Transformation optics can, however, do more than that.

For complicated shapes, classical PMLs lose effectiveness.
Teixeira and Chew [26] showed that complex coordinates
in curvilinear coordinate frames could in principle be used
to design a large number of classes of PML. Inspired by
their analysis, we use complex coordinates and transformation
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optics to present a practical way to design a perfectly matched
layer that surrounds a domain having an irregular shape.

To keep the method general, we choose PML boundaries
whose geometries are too complex to be modeled through
analytic equations, as illustrated in Fig. 4(a). Let €; be its
interior and €2, the exterior boundaries. The only limitation we
impose on €2, (but not £2;) is to enclose a convex volume. The
PML is by definition a reflectionless material that absorbs any
wave incident on it. Our goal is to find the material parameters
inside this material.

To do this we need to find pjy, satisfying Eq. (6) such that
M(re) < O for all re € 2, and pim(r;) = 1 for all re € ©; and
every choice of Ey and Kkjo.. Since we are not interested in
the exact variation of M, but only its subunitary value on the
outside boundary of the domain, we can simplify the problem
as follows. Thus, we look for a pi, whose variation is much
slower than that of an exponential, so that the variation of
V pim €xp(Kioc + Pim) 1S dominated by the exponential. Under
this assumption, we can neglect the V p;, term in Eq. (6) and
the problem reduces to finding pjy, such that

kloc(re) : pim(re) < 07 (15)

for every choice of kj, corresponding to a wave incident on
2. In the above equation r, is an arbitrary point on €2,.

Since €2, was assumed convex, for every such Kjo. we have
Kjoc - i > 0 on 2., where ii is the outward pointing unit vector
normal to ,; in other words, ki, and fi always form an acute
angle at every point of €2.. This property allows us to choose
the following pim that satisfies Eq. (15):

Pim = —apVo, (16)

where « controls the attenuation inside the PML, and ¢(r) is a
scalar, positive function for which ¢(£2;) = 0 and ¢(L2,) = 1.
Note that for this solution (which is not unique) V¢ and,
consequently, pi, are both vectors parallel to ii. The function
¢ is multiplied by V¢ in order to enforce the constraint
Pim(ri) = 0.

Since €2; and €2, may have geometries too complicated
to be modeled through analytic equations, it is more useful

o
e
0 0.5 1
Qe
(a) (b)

FIG. 4. (Color online) Domain geometry. (a) The PML is situated
between the 2; and €2, curves. (b) Function ¢ inside the PML.
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to express ¢ as the solution to a differential equation which
can be solved numerically. We choose ¢ to be the solution to
the Laplace equation A¢ = 0, because it is known to provide
smooth, slowly varying functions. Interestingly, this particular
solution applied to classical Cartesian, cylindrical or spherical
PMLs result in the exact same material parameters inside these
PMLs that one would obtain with traditional methods.

The function ¢ obtained numerically with Comsol Multi-
physics for the example two-dimensional domain of Fig. 4(a)
is shown in Fig. 4(b). Having ¢ computed, we can find the
Jacobian Vp corresponding to the mapping given by Eq. (3),
and subsequently compute the material parameters inside the
PML from Eq. (5).

The constant « determines the amount of wave absorption
inside the perfectly matched layer. It is chosen big enough
so that the PML attenuates the incoming wave enough to
have negligible reflections at the domain outer boundary
., but small enough to avoid numerical artifacts caused by
fields decaying too quickly in regions of space for which the
numerical mesh grid is not fine enough. For this particular
example we chose o = 0.05.

The PML performance of the above example is tested
in a numerical simulation by placing a current line source
inside the domain bordered by €2;. The electric field gen-
erated by the source is presented in Fig. 5(a) and shows a
clean cylindrical wave propagating away from the source, a
testament of excellent PML behavior. In contrast, a typical
cylindrical coordinate PML implemented by default in Comsol
Multiphysics produces significant reflections back into the
domain, which are responsible for the interference pattern
visible in Fig. 5(b).

Note that the difference between the effectiveness of the
classical PML implemented in Comsol and our design is not
mainly related to the degree of attenuation inside the PML, but
rather to the direction in which the attenuation is maximum.
In a standard cylindrical PML the attenuation is maximum
along radial directions starting from a user-defined point. In
our simulation we chose this point to be roughly in the center
of the domain, and it has coordinates (0, —4). Whenever a wave

Electric field [arbitrary units]

Position [wavelengths]

-8 -6 -4 -2
Position [wavelengths]

02 4 6 886 -4 -2 02 4 6 8
Position [wavelengths]

FIG. 5. (Color online) Electric field produced in the numerical
domain by a current line source. (a) PML designed using transforma-
tion optics. (b) Classical PML implemented in Comsol Multiphysics.
Significant scattering off the numerical domain edges is visible in the
interference pattern.
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inside the domain is such that its local wave vector is almost
perpendicular on the radial directions of maximum absorption
there will be very little attenuation. This is exactly what we
see in Fig. 5(b). In contrast, our PML is designed such that
the directions of maximum attenuation, which are given by
the V¢ vector, change inside the PML in order to take into
account the complex shape of the PML.

An important part of this analysis relies on the numerical
domain being convex, in which case Eq. (15) holds for out-
going waves. Concave domains do not satisfy this inequality;
therefore, for these domains, some waves hitting the outer
PML boundary may be amplified inside the PML, i.e., the
electric field on €2, may be larger than on €2;, or, equivalently,
M(r.) > 1 for some r, € 2. This is consistent with Teixeira
and Chew’s observation that inner PML layers (which make
the domain concave) may not be possible [29].

VI. CONCLUSIONS

We showed that complex coordinates employed in transfor-
mation optics provide an extra degree of freedom that allows us

PHYSICAL REVIEW A 84, 063837 (2011)

to control not only the electromagnetic field spatial distribution
but also its amplitude. We illustrated this idea in two typical
applications.

The first one featured the manipulation of the field ampli-
tude produced by a particular incident wave. This is desirable
when we wish to reduce the sensitivity of some regions of a
device to that device’s performance. Applying this idea to an
invisibility cloak we showed how to reduce the fields inside
the cloak in regions of large permittivity and permeability
gradients. The second example presented a practical approach
to the design of reflectionless, perfectly matched layers for
numerical domains of arbitrary shape.
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