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High-sensitivity three-mode optomechanical transducer
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Three-mode optomechanical interactions have been predicted to allow the creation of very high sensitivity
transducers in which very strong optical self-cooling and strong optomechanical quantum entanglement are
predicted. Strong coupling is achieved by engineering a transducer in which both the pump laser and a single
signal sideband frequency are resonantly enhanced. Here we demonstrate that very high sensitivity can be achieved
in a very simple system consisting of a Fabry-Perot cavity with CO2 laser thermal tuning. We demonstrate a
displacement sensitivity of ∼1 × 10−17 m/

√
Hz, which is sufficient to observe a thermally excited acoustic mode

in a 5.6 kg sapphire mirror with a signal-to-noise ratio of more than 20 dB. It is shown that a measurement
sensitivity of ∼2 × 10−20 m/

√
Hz limited by the quantum shot noise is achievable with optimization of the

cavity parameters.
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I. INTRODUCTION

Optomechanical coupling provides a means of studying
the quantum behavior of macroscopic mechanical degrees
of freedom and also enables high-sensitivity probes for
quantum-noise-limited measurements [1]. Experiments have
demonstrated optical cooling of mechanical oscillators [2].
Theoretical studies have focused on the creation of quantum
entanglement of mechanical and optical degrees of freedom
for quantum information [3–6] and on using such systems
for probing mechanical energy quantization [7,8]. Recently,
a cryogenic 10 MHz micromechanical oscillator has been
cooled to its quantum ground state using sideband cooling [9].
On the kilometer scale, laser interferometer gravitational-
wave detectors at the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [10] and VIRGO project [11] have
achieved a displacement sensitivity of 10−19 m/

√
Hz at around

100 Hz, while on a small scale the high-frequency thermal
noise of a mechanical oscillator has also been measured with
similar sensitivity [12]. Using high displacement sensitivity
and feedback cooling, a LIGO interferometer test mass has
been cooled to an effective temperature of 1.4 μK [13],
corresponding to an occupation number of about 200 quanta.

In most optomechanical systems to date, a single TEM00

optical mode is coupled to a mechanical oscillator mode. For
such two-mode systems the cavity acts like a low-pass filter
which filters out high-frequency signal sidebands and therefore
compromises the sensitivity at high frequencies. This effect is
observed in laser interferometer gravitational-wave detectors
[14,15]. Minimizing thermal noise and maximizing elec-
tromechanical coupling requires minimization of the losses
of both optical and mechanical modes. However, this makes
the narrow-band-filtering situation even worse. A solution to
this problem is to introduce a second electromagnetic mode
resonant at the mechanical sideband frequency to form a

three-mode optomechanical system. When the mode spacing
correctly matches the acoustic mode frequency, it has been
predicted that such a three-mode transducer can have very high
sensitivity, immunity to laser noise, and require only relatively
low laser power [16].

Three-mode optomechanical interactions involving pairs of
optical modes were first investigated theoretically by Bragin-
sky et al. [17] in the context of long-baseline gravitational-
wave detectors. They showed that such interactions could
induce parametric instability in the high-optical-power cavities
of advanced gravitational-wave detectors through an interac-
tion that can inject optical energy into selected acoustic modes
to the point of instability. Zhao et al. [18] and many others
[19–21] extended this analysis to include realistic-mode-shape
modeling. In 2009, Zhao et al. [16] pointed out that three-
mode interactions can be harnessed to create a general opto-
acoustic parametric amplifier (OAPA), which can function as a
high-sensitivity transducer with the capability of cooling a
mechanical mode down to the quantum ground state. The
high sensitivity arises because the single sideband signal is
coherently amplified when the frequency gap is equal to the fre-
quency of the mechanical mode. This occurs without compro-
mising the optical power that defines the optomechanical cou-
pling strength. Dobrindt and Kippenberg [22] confirmed this
analysis in the context of a four-mode transducer using three
optical modes, and discussed the experimental challenge of
engineering appropriate mode gaps. The single sideband three-
mode transducer system discussed here solves the engineering
problem through optical design and thermal tuning, is simple
to implement, and has a sensitivity similar to a four-mode
system.

The mode and frequency structure of the three-mode
interaction is shown in Fig. 1. The fundamental optical mode at
ω0 is scattered by the mechanical motion of the test mass at ωm.
This creates two sideband modes: one at ω0 − ωm (also called
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FIG. 1. (Color online) (a) Schematic of three-mode interaction
in an optical cavity. Here, the anti-Stokes mode ω1 has a similar
mode shape to the internal acoustic mode of the end mirror and has
a frequency of ω1 = ω0 + ωm. (b) Mode shapes of TEM01 mode and
optical mode scattered from the end mirrors. (c) Frequency structure
of the two optical modes and sidebands. The laser is tuned to the
fundamental TEM00 mode with frequency ω0. The mechanical motion
induces two sidebands, but only one resonates in the high-order
optical mode at ω1 and gets amplified.

the Stokes mode) and the other at ω0 + ωm (the anti-Stokes
mode). With the correct frequency gap between the high-order
mode at ω1 and the fundamental mode (i.e., |ω1 − ω0| = ωm),
one sideband mode (the anti-Stokes mode in the case shown
in the figure) becomes resonant. If the mode-shape overlap
is large, as defined by the overlap integral (discussed below)
between the mode shape of the high-order mode and the mode
shape of the acoustic mode, the optomechanical coupling can
be large. The high-order mode carries the resonantly enhanced
signal sideband. Because all the modes are resonant, high
displacement sensitivity is achieved with relatively low optical
power and sensitivity increases with cavity finesse. When
correctly tuned, the optomechanical coupling and sensitivity
scale as the product of two optical and one acoustic quality
factor, all of which can be very large ∼106 to 1010 [16].
This confers a large advantage compared with two-mode
transducers.

It is interesting that the three-mode transducer is equivalent
to the signal recycling configuration used for amplifying the
signal sidebands in gravitational-wave detectors [23]. For
the experiment described here, we used a TEM01 mode for
the second optical mode.

II. THREE-MODE OPTOMECHANICAL
TRANSDUCER THEORY

The formalism for the three-mode interaction has been
presented previously in general form in Refs. [22,23]. We
summarize some of the results for the coherence of this paper.
The three-mode interaction can be described by the following
Hamiltonian:

Ĥ = 1
2h̄ωm

(
q̂2

m + p̂2
m

) + h̄ω0â
†â + h̄ω1b̂

†b̂

+ h̄G0q̂m(â†b̂ + b̂†â) + Ĥext. (1)

Here, q̂m and p̂m are the position and momentum of the
mechanical mode, â and b̂ are the annihilation operators for
the fundamental optical cavity mode and the high-order optical

cavity mode (the TEM00 mode and the TEM01 mode, respec-
tively, in this experiment), G0 ≡ [�h̄ω0ω1/(mωmL2)]1/2 is the
optomechanical coupling constant with � representing the
spatial overlap between the TEM01 mode and the mechanical
mode with m being the test mass mechanical mode effective
mass and L being the cavity length, and Ĥext is the coupling
between the cavity modes and the injection external continuous
mode âin and b̂in and is given by Ĥext = ih̄(

√
2γ0â

†âin +√
2γ1b̂

†b̂in − H.c.) with γ0 and γ1 being the decay rates of
the cavity modes and H.c. being the Hermitian conjugate.

From the above Hamiltonian, we can derive the equations
of motion for the linearized dynamics (in the rotating frame
at ω0):

¨̂qm + 4γm
˙̂qm + ω2

mq̂m = Ḡ0(b̂ + b̂†) + Fth + Fsig, (2)
˙̂b + (γ1 + i�)b̂ = −iḠ0q̂m +

√
2γ1b̂in, (3)

where � ≡ ω1 − ω0, γm is the mechanical mode damping rate
or the mechanical mode half linewidth, Ḡ0 ≡ G0ā where ā

is the zero-order intracavity intensity of mode TEM00, b̂in

is the vacuum fluctuation component in TEM01 mode since
there is no TEM01 mode injected, Fth is the thermal Langevin
force, and Fsig is the signal that we seek to probe. We neglect
the intensity change of the TEM00 mode, since it is almost
constant and only determines the optomechanical interaction
strength. The above linear dynamics can be easily solved and,
from the standard input-output relation [24]

b̂in(t) + b̂out(t) =
√

2γ1b̂(t), (4)

we can obtain the TEM01-mode output b̂out(t) that we detect.
In our experiment, which is described below, we detect the
cavity transmission signal that includes the TEM01 and TEM00

modes. These modes beat at the quadrant photodetector (QPD)
and give information on the TEM01 mode. Because the TEM00

mode is constant, by detecting the amplitude of the beating
signal of the cavity transmission, we detect the amplitude
quadrature b̂1 = (b̂out + b̂

†
out)/

√
2 of the TEM01 mode. Ideally,

if we can detect both the amplitude and phase quadratures, we
can optimize the detection sensitivity since both quadratures
contain information on the mechanical-mode amplitude. This
can be done by introducing a local oscillator in the TEM01

mode to beat with the cavity transmission. In the experiment
reported here, where the sensitivity is still far from the standard
quantum limit, we demonstrate high detection sensitivity with
single-quadrature detection.

The displacement noise spectrum for the amplitude quadra-
ture is [25],

S11(�) = h̄Lc
[
(� + ωm)2 + γ 2

1

][
(� − ωm)2 + γ 2

1

]
4ω0I0γ1ω2

m

+ h̄ω0I0

γ1Lc
|χ |2 + 4mγmkBT |χ |2. (5)

In Eq. (5), the first term is the quantum shot noise, the
second term is the quantum radiation-pressure noise, and the
last term is the thermal noise. Here, I0 is the intracavity
power for the TEM00 mode, c is the speed of light, m is the
effective test mass, γm is the mechanical mode linewidth, kB is
the Boltzmann constant, T is the environmental temperature,
and χ (�) = m[−(�2 − ω2

m) − iγm�]−1 is the mechanical
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FIG. 2. (Color online) Theoretical displacement noise spectrum
density. The dashed line shows the shot noise, the dash-dotted line
shows the thermal noise, and the radiation-pressure noise is not
shown because it is negligible. The parameters used are those for
the experiment described in this paper.

response function. In the above calculation, we have ignored
the correlation between the shot noise and the radiation-
pressure noise, because the radiation-pressure noise is neg-
ligibly small in our experiment.

Figure 2 shows the quantum-limited noise spectral density
(green dashed line) and the thermal noise at room temperature
(black dash-dotted line). The parameters used for this figure are
for the experimental setup described below and the quantum
noise here is dominated by the shot noise. It can be seen from
Eq. (5) that the shot noise term has a minimum when � = ωm,
which is at the three-mode resonance defined in Fig. 1. This is
because the measurement shot noise at the QPD is constant at
all frequencies but the signal sideband is coherently amplified
by the TEM01 cavity resonance. This increases the signal-to-
shot-noise ratio by the cavity resonance factor. At the optical
power level used in the experiment described here the quantum
backaction noise is still much smaller than the shot noise.

III. EXPERIMENTAL RESULTS

A 77 m high optical power cavity is used to investigate
the three-mode interactions. The experimental setup is shown
in Fig. 3. We use an Nd:YAG laser at a wavelength of
1064 nm. The laser is frequency locked to the 77 m Fabry-
Pérot cavity. After passing through the mode-matching optics,
the remaining optical power that enters the cavity is about
3.0 ± 0.3 W. With a cavity finesse of 1.3 ± 0.1 × 103, the
intracavity power is 300 ± 50 times as much as the input
power, achieving almost 1 kW of circulating power.

FIG. 3. (Color online) Thermal tuning radius of curvature of
cavity end mirror for three-mode interaction using CO2 laser
heating and signal detection at cavity transmission using quadrant
photodetector (QPD).

The original mode gap between TEM00 and TEM01 modes
is ∼201.6 kHz. In order to satisfy the resonant condition for
the three-mode interaction, we need to tune the frequency
gap between the TEM00 and TEM01 mode to match the
mechanical-mode frequency. The frequency gap depends on
the radius of curvature of the mirrors according to the following
relation:

ω0 − ω1 = c

L

[
arccos

√(
1 − L

R1

)(
1 − L

R2

)]
. (6)

Here, R1 and R2 are the radii of curvature of the input test
mass (ITM) and end test mass (ETM) mirrors, respectively.

This is achieved by thermally tuning the radius of curvature
of test masses using CO2 laser heating to create thermal
deformation. Because the sapphire test mass has a high
thermal conductivity, this thermal tuning is relatively fast.
We can tune the radius of curvature by a few percent within
seconds [28].

When the resonant conditions are satisfied and the spatial
distribution of the sideband from the mechanical mode
coincides with the TEM01 mode, the sideband signal will be
enhanced by the cavity resonance. The amplitude quadrature
of the TEM01 mode is proportional to the displacement of
the ETM surface. The mixing between the TEM01 mode and
the TEM00 mode creates a signal proportional to the test
mass mechanical mode displacement. As the spatial profile
of the TEM01 mode is antisymmetric, we use a quadrant
photodiode (QPD) for differentially detecting the signal. This
detection scheme has immunity to TEM00 noise because the
differential detection cancels the common TEM00 noise and
the high-finesse cavity is an excellent low-pass filter that
reduces TEM00 noise at frequencies higher than the cavity
linewidth. However, TEM01 noise, such as beam jitter noise,
can still couple to the signal. An appropriate suspended mode
cleaner [14] can reduce the TEM01 noise effectively but is not
used in the current setup.

As we vary R2 of the ETM by adjusting the CO2

laser heating power we observe a high-Q-factor acoustic
mode around 181.6 kHz. The amplitude of the signal is a
function of the CO2 heating power. We optimize the heating
power to obtain maximum signal amplitude. In principle,
the CO2 heating also causes temperature-dependent changes
of the mechanical mode resonance frequency. However, the
maximum heating power used was less than 1 W and
changes from this mechanism are less than those due to
ambient temperature changes (demonstrated by simulation and
experimental observation).

Figure 4 shows the QPD output signal as a function of
the CO2 heating power on the ETM. We can see clearly that
there is an optimum heating power at which the mechanical
sideband is enhanced by the cavity resonance.

The finite element simulation results show several acoustic
modes near 181 kHz, but one particular mode has high
overlap with the TEM01 mode and very small vibration
amplitude at the suspension point, implying low losses into
the suspension wires and high Q factor. The effective mass
is 0.28 kg and the overlap with the TEM01 mode is 0.4,
according to the simulation. This mode shape is shown in
Fig. 5.
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FIG. 4. (Color online) QPD signal at mechanical mode frequency
as a function of CO2 heating power. The black dots are the measured
data; the blue solid line is the Lorentzian fit. The major fluctuations
come from the fluctuation of suspended test-mass-mirror orientation
due to seismic noise, since the auto-alignment system is difficult to
implement with a thermally tuned cavity.

Figure 6 shows the signal spectrum at optimum heating
power together with the theoretical prediction of the thermal
noise and radiation-pressure noise (a zoom in of the top central
part of Fig. 2).

To estimate the amplitude of the thermal noise, we use the
theoretical value of the thermal noise spectrum, which from
Eq. (5) can be expressed as

x2 = 4mγmkBT |χ |2 = 4kBT

mQ
[ (

�2 − ω2
m

)2 + �2

Q2

] , (7)

where Q = ωm/2γm is the mechanical quality factor of the
test mass. We measured the Q factor of the mechanical
mode by resonantly exciting the mode using an electrostatic
actuator and recording the ringdown curve. From the ringdown
curve we determined the Q factor for this particular mode
to be 1.2 ± 0.2 × 106. The three-mode interaction for this
mechanical mode is in the regime of parametric cooling.
However, the cooling factor is very small (∼10−2), so that
the change of Q is only 1%, which is within the measurement

FIG. 5. (Color online) Finite element model of the 181.6 kHz
mechanical resonance of the test mass. (a) Two dimensional mode
shape; (b) mode shape cross-section distribution along the center Y

direction of the test mass. This model took into account the two flat
surfaces at the circumference of the test mass and the crystalline
anisotropy of the sapphire test mass (with different Young’s moduli
along different crystal axes).

FIG. 6. (Color online) Experimental three-mode interaction spec-
trum. The dots show the measured data, which are fit by a Lorentzian
curve (solid line). The dash-dotted line shows the calculated thermal
noise spectrum; the dashed line shows the calculated shot noise.

uncertainty. Thus, this effect is not included in the theoretical
thermal noise calculation.

The Lorentzian curve fit of the experimental peak in Fig. 6
gave a Q factor of ∼ 5×105, which is lower than the ringdown
measurement. This is because the data shown in Fig. 6 is taken
over several averages during which there is a slight frequency
drift, causing broadening of the peak.

The temperature coefficient of resonance frequency change
of sapphire is ∼5 × 10−5 Hz/K (depending on the crystalline
axis) [26]. The heat capacity of sapphire [760 (J/K)/kg]
ensures that frequency change during a typical measurement
is less than the frequency resolution of the experiment
of 0.6 Hz, which corresponds to a temperature change of
the test mass of 65 mK. Thus, the thermal tuning has negligible
effects on the test mass parameters except for the radius-of-
curvature change that arises from surface expansion at the
hot spot and the associated global-shape change of the test
mass.

The total transmitted power on the QPD was measured to
be about 4.0 ± 0.2 mW. To estimate the noise contribution to
the QPD output, we blocked the cavity transmitted laser light
and then illuminated it with a white light to create the same
photocurrent. By comparing the QPD differential outputs with
and without white light we determined the shot-noise level
to be about half of the QPD electronic noise. Since the noise
spectra are the same with both the cavity transmitted light and
the white light on the QPD, we concluded that the transmitted
laser light technical noise is negligible and is shot-noise
limited at ∼181.6 kHz. The estimated radiation-pressure
force that could drive the test mass internal mode motion
is much smaller than the thermal noise. For this reason, we
identify the resonance peak we measure as the thermal noise
peak. By using the calculated thermal noise as a calibrator,
we converted the measured data to the displacement noise
spectrum as shown in Fig. 6. It should be noted that it is
rather difficult to independently calibrate the thermal noise
peak amplitude because cavity alignment fluctuations cause
changes in the laser spot positions on the test mass, thereby
causing fluctuations in the spatial overlap parameter � which
determines the magnitude of the scattering between TEM00

and TEM01 modes.
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FIG. 7. (Color online) Expected achievable three-mode inter-
action sensitivity with improved cavity and photodetector (PD)
parameters (cavity finesse 1500, ETM transmission 100 ppm, PD
quantum efficiency 0.8). Solid line shows the thermal noise spectrum;
dashed line shows the shot noise; dotted line shows the radiation-
pressure noise.

We can see in Fig. 6 that the noise level off resonance is
∼10−17 m/

√
Hz, limited mainly by the sum of photodetector

electronic noise and quantum shot noise. The sensitivity of
this experiment can be improved in a straightforward fashion
by increasing the cavity finesse, the ETM transmissivity, and
the photodetector’s quantum efficiency, as well as to add a
suspended mode cleaner to filter out high-order modes before
the cavity injection. Figure 7 shows the calculated thermal
noise, the shot noise and the radiation-pressure noise of the
system with a cavity finesse of 15 000 (achievable with

typical commercially available good quality mirrors), ETM
transmission of 100 ppm, QPD quantum efficiency of 0.8 [27],
input power of 5 W, and the same mechanical parameters as
in the current experiment. The three-mode parametric cooling
effect is obvious in Fig. 7, as shown by the increased acoustic
mode linewidth. The thermal noise is still the dominated
noise near the resonance. The quantum shot noise limits the
off-resonance sensitivity. The best displacement sensitivity
achievable is close to 2 × 10−20 m/

√
Hz.

IV. CONCLUSIONS

In conclusion, we have demonstrated the intrinsic high sen-
sitivity of a three-mode opto-acoustic parametric transducer.
The measurement scheme has intrinsic immunity to laser
amplitude and phase noise. The technique has applications
to ground-state cooling of kilogram-scale test masses, quan-
tum nondemolition measurements, measurement of radiation-
pressure noise, and to the precision monitoring of test mass
modes in gravitational-wave detectors.
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A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys.
Rev. Lett. 98, 030405 (2007).

[4] M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner,
J. Eisert, and M. Aspelmeyer, Phys. Rev. Lett. 99, 250401
(2007).

[5] H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and
Y. Chen, Phys. Rev. Lett. 100, 013601 (2008).

[6] M. J. Hartmann and M. B. Plenio, Phys. Rev. Lett. 101, 200503
(2008).

[7] J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and
J. Harris, Nature (London) 452, 72 (2008).

[8] H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, Phys. Rev. Lett.
103, 100402 (2009).

[9] J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S.
Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W.
Lehnert, and R. W. Simmonds, Nature (London) 475, 359
(2011).

[10] LIGO project Web site [http://www.ligo.caltech.edu].
[11] VIRGO project Web site [http://www.virgo.infn.it/].

[12] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard,
A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard,
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