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Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger
equation with self-steepening and self-frequency shift
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We demonstrate that the competing cubic-quintic nonlinearity induces propagating solitonlike dark(bright)
solitons and double-kink solitons in the nonlinear Schrödinger equation with self-steepening and self-frequency
shift. Parameter domains are delineated in which these optical solitons exist. Also, fractional-transform solitons
are explored for this model. It is shown that the nonlinear chirp associated with each of these optical pulses
is directly proportional to the intensity of the wave and saturates at some finite value as the retarded time
approaches its asymptotic value. We further show that the amplitude of the chirping can be controlled by varying
the self-steepening term and self-frequency shift.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) in its many
versions has various applications in different fields such
as nonlinear optics [1], Bose-Einstein condensates [2], and
biomolecular dynamics [3]. In nonlinear optics, the NLSE
describes the dynamics of picosecond pulses that propagate in
nonlinear media due to the delicate balance between group-
velocity dispersion (GVD) and Kerr nonlinearity. However,
over the past several years, ultrashort (femtosecond) pulses
have been extensively studied due to their wide applications
in many different areas such as ultrahigh-bit-rate optical
communication systems, ultrafast physical processes, infrared
time-resolved spectroscopy, and optical sampling systems [4].
To produce ultrashort pulses, the intensity of the incident light
field increases, which leads to non-Kerr nonlinearities, chang-
ing the physical feature of the system. The dynamics of such
systems should be described by the NLSE with higher-order
terms such as third-order dispersion, self-steepening, and self-
frequency shift [5,6]. Moreover, in some physical situations
cubic-quintic nonlinear terms arise [7,8], due to non-Kerr
nonlinearities, from a nonlinear correction to the refractive
index of a medium. In general, unlike the NLSE, these models
with non-Kerr effects are not completely integrable and cannot
be solved exactly by the inverse scattering transform method
[9]. Hence, they do not have soliton solutions; however,
they do have solitary-wave solutions, which are often called
solitons.

The effect of third-order dispersion is significant for
femtosecond pulses when the GVD is close to zero. However,
it can be neglected for pulses whose width is of the order of
100 fs or more, having power of the order of 1 W and GVD far
away from zero [10]. However, the effects of self-steepening
and self-frequency shift terms are still dominant and should
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be retained. Under these conditions, we have considered the
higher-order NLSE with cubic-quintic nonlinearity of the form

iψz + a1ψtt + a2|ψ |2ψ + a3|ψ |4ψ
+ ia4(|ψ |2ψ)t + ia5ψ(|ψ |2)t = 0, (1)

where ψ(z,t) is the complex envelope of the electric field,
a1 is the parameter of GVD, a2 and a3 represent cubic and
quintic nonlinearities, respectively, a4 is the self-steepening
coefficient, and a5 is the self-frequency shift coefficient. For
Eq. (1), many restrictive special solutions of the bright and
dark types have been obtained [11,12]. Scalora et al. [13] used
the model in Eq. (1), for a5 = 0, to describe pulse propagation
in a negative-index material, where the sign of GVD can be
positive or negative.

Much of the work has been done on chirped pulses because
of their application in pulse compression or amplification and
thus they are particularly useful in the design of fiber-optic
amplifiers, optical pulse compressors, and solitary-wave-based
communications links [14,15]. The pulse with linear chirp
and a hyperbolic-secant-amplitude profile was investigated
numerically by Hmurcik and Kaup [16]. Subsequently, many
authors have reported the existence of chirped solitonlike
solutions [15,17,18]. One of the present authors solved
Eq. (1) for a3 = 0 and obtained solitonlike solutions with
nonlinear chirp [10,19]. In this paper we consider the effect
of quintic non-Kerr nonlinearity and obtain soliton solutions
with a different form of chirping. We find that for certain
parameter conditions between quintic, self-steepening, and
self-frequency shift terms, the solutions will resemble NLSE
solitons with velocity selection. We also report herein the
existence of double-kink-type solitons with nonlinear chirp
for Eq. (1). In all these cases, chirping varies as directly
proportional to the intensity of the wave and saturates at some
finite value as t → ±∞. Further, we show that the amplitude
of chirping can be controlled by varying the self-steeping
and self-frequency shift terms. It is also shown that for the
same values of all parameters, the equation can have either
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dark(bright) solitons or double-kink-type solitons, depending
upon the velocity and other parameters of the wave.

II. CHIRPED SOLITONLIKE SOLUTIONS

Here we are interested in finding chirped solitonlike
solutions of Eq. (1). Hence we choose the following form
for the complex envelope traveling-wave solutions:

ψ(z,t) = ρ(ξ )ei[χ(ξ )−kz], (2)

where ξ = t − uz is the traveling coordinate and ρ and χ

are real functions of ξ . Here u = 1/v, with v the group
velocity of the wave packet. The corresponding chirp is given
by δω(t,z) = − ∂

∂t
[χ (ξ ) − kz] = −χ ′(ξ ). Now, substituting

Eq. (2) in Eq. (1) and separating out the real and imaginary
parts of the equation, we arrive at the coupled equations in ρ

and χ ,

kρ + uχ ′ρ − a1χ
′2ρ + a1ρ

′′ − a4χ
′ρ3 + a2ρ

3 + a3ρ
5 = 0

(3)

and

−uρ ′ + a1χ
′′ρ + 2a1χ

′ρ ′ + (3a4 + 2a5)ρ2ρ ′ = 0. (4)

To solve these coupled equations, we choose the ansatz

χ ′(ξ ) = αρ2 + β. (5)

Hence, chirping is given as δω(t,z) = −(αρ2 + β), where α

and β denote the nonlinear and constant chirp parameters,
respectively. Using this ansatz in Eq. (4), we get the relations

α = −3a4 + 2a5

4a1
, β = u

2a1
. (6)

Hence, the value of the chirp parameter depends on dif-
ferent coefficients of the evolution equation (1) such as
diffraction, self-steepening, and self-frequency shift. This
means that the amplitude of chirping can be controlled by
varying these coefficients. Now using Eqs. (5) and (6) in
Eq. (3), we obtain

ρ ′′ + b1ρ
5 + b2ρ

3 + b3ρ = 0, (7)

where b1 = 1
16a2

1
[16a1a3 − (2a5 + 3a4)(2a5 − a4)], b2 = 1

2a2
1

(2a1a2 − ua4), and = b3 = 1
4a2

1
(4ka1 + u2).

This elliptic equation is known to admit a variety of solu-
tions such as periodic, kink, and solitary-wave-type solutions.
In general, all traveling-wave solutions of Eq. (7) can be
expressed in a generic form by means of the Weierstrass
℘ function [20]. In this paper we report various localized
solutions for different parameter conditions. It is interesting
to note that if b1 = 0, i.e., the quintic term is related to
self-steepening and self-frequency shift terms, then Eq. (7)
reduces to a cubic nonlinear equation that admits dark and
bright solitons. For the case when b2 = 0, it can be solved
for localized solutions by using a fractional transformation.
For b3 = 0, we show that the equation has a Lorentzian-type
solution. In the most general case, when all the coefficients
have nonzero values, Eq. (7) can be mapped onto a φ6 field
equation to obtain double-kink-type [21] and bright- and
dark-soliton solutions [22] of Eq. (1).

4 2 0 2 4

0

2

4

6

8

ξ

ρ

FIG. 1. (Color online) Amplitude profile for the (a) dark soliton
(solid line) for u = 4.1184 and k = 0 and (b) bright soliton (dashed
line) for u = −30.1280 and k = −150.2856.

In the following we delineate the parameter domains in
which solitonlike solutions exist for this model. For example,
when b1 = 0 two interesting cases emerge that yield exact
soliton solutions. (a) For b2 < 0 and b3 > 0, which implies
u > 2a1a2

a4
and k > −u2

4a1
, one obtains a dark-soliton solution of

Eq. (1) of the form

ψ(z,t) =
√

−b3

b2
tanh

(√
b3

2
(t − uz)

)
ei[χ(ξ )−kz]. (8)

The corresponding chirping is given by

δω(t,z) = αb3

b2
tanh2

(√
b3

2
ξ

)
− β. (9)

(b) For b2 > 0 and b3 < 0, which implies u < 2a1a2
a4

and k <

−u2

4a1
, one can find a bright-soliton solution of the form

ψ(z,t) =
√

−2b3

b2
sech[

√
−b3(t − uz)]ei[χ(ξ )−kz], (10)

for which the chirping will be

δω(t,z) = 2αb3

b2
sech2(

√
−b3ξ ) − β. (11)

Hence, the parametric condition b1 = 0 implies that 16a1a3 =
(2a5 + 3a4)(2a5 − a4) and the amplitude profile will be the
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FIG. 2. (Color online) Chirping profile for the dark soliton plotted
in Fig. 1.
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FIG. 3. (Color online) Chirping profile for the bright soliton
plotted in Fig. 1.

same as for the NLSE, except the chirping will show nonlinear
behavior. However, unlike for the NLSE, both dark and bright
solitons exist in the normal and anomalous dispersion regimes.
However, both soliton solutions have mutually exclusive
velocity space. The amplitude profile of a typical dark and
bright soliton is shown in Fig. 1, using the following values
for the model parameters: a1 = 1.6001,a2 = −2.6885,a4 =
0.308 14, and a5 = 0.766 04. As b1 = 0, the quintic-term
coefficient is a3 = 0.1174. The corresponding chirping for
dark and bright solitons is shown in Figs. 2 and 3, respectively
(for z = 0). It is clear from the figure that chirping for the dark
soliton has a minimum at the center of the pulse, whereas for
the bright soliton it has a maximum; however, for both cases
it saturates at the same finite value as t → ±∞.

III. CHIRPED FRACTIONAL-TRANSFORM SOLITONS

For the parametric condition b2 = 0, we obtain very
interesting chirped fractional-transform soliton. To accomplish
this we now substitute ρ2 = y in Eq. (7), which can then be
reduced to the following elliptic equation:

y ′′ + 8
3b1y

3 + 4b3y + c0 = 0. (12)

It is shown here that this elliptic equation connects to the
well-known elliptic equation f ′′ ± af ± bf 3 = 0, where a

and b are real, using a fractional transformation [23]

y(ξ ) = A + Bf 2(ξ )

1 + Df 2(ξ )
, (13)

and we obtain the nontrivial Lorentzian-type solitons of
Eq. (1).

Our main aim is to study the localized solutions: We
consider the case where f = cn(ξ,m) with modulus parameter
m = 1, which reduces cn(ξ ) to sech(ξ ). We can see that
Eq. (13) connects y(ξ ) to the elliptic equation, provided
AD �= B, and the following conditions should be satisfied for
the localized solution:

12b3A + 8b1A
3 + 3c0 = 0, (14)

8b3AD + 4b3B + 4(B − AD) + 8b1A
2B + 3c0D = 0, (15)

4b3AD2 + 8b3BD + 4(AD − B)D + 6(AD − B)

+ 8b1AB2 + 3c0D
2 = 0, (16)
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FIG. 4. (Color online) Typical amplitude profile for the soliton
solution given by Eq. (19) for the values mentioned in the text.

12b3BD2 + 6(B − AD)D + 8b1B
3 + 3c0D

3 = 0. (17)

From Eq. (15) we find that D = B, where  = 4+4b3+8b1A
2

4A−8b3A−3c0
.

Using this in Eq. (16), we determine B as

B = 6(1 − A)

8b1A + 4b32A + 8b3 + 4(A − 1) + 3c02
.

By substituting these expressions in Eqs. (14) and (17), we can
determine A and c0 for any given values of b1 and b3.

Thus, the localized solution is of the form

y(ξ ) = A + B sech2(ξ )

1 + D sech2(ξ )
(18)

and ρ(ξ ) can be written as

ρ(ξ ) =
√

A + B sech2(ξ )

1 + D sech2(ξ )
. (19)

The chirping takes the form

δω(t,z) = −
[
α

(
A + B sech2(ξ )

1 + D sech2(ξ )

)
+ β

]
. (20)

The typical profiles for amplitude and chirping (for z = 0) are
shown in Figs. 4 and 5, respectively, for a1 = 1.6001, a2 =
−2.6885, a3 = 0.0260, a4 = 0.308 14, a5 = 0.766 04, and
k = 0. To make b2 = 0, we set u = −27.9215.

In the following, we obtain yet another interesting algebraic
soliton for the parametric condition b3 = 0. In particular, for
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FIG. 5. (Color online) Chirping profile for the soliton solution
plotted in Fig. 4.
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FIG. 6. (Color online) Typical amplitude profile for the soliton
solution given by Eq. (21) for the values mentioned in the text.

b2 < 0 and b1 > 0, the solution of Eq. (7) is of the following
form:

ρ(ξ ) = 1√
M + Nξ 2

, (21)

where M = −2b1
3b2

,N = −b2
2 , and the chirping is given by

δω(t,z) = −
(

α

M + Nξ 2
+ β

)
. (22)

For this case, the typical profiles for the amplitude and
chirping (for z = 0) are shown in Figs. 6 and 7, respec-
tively, for a1 = 1.6001, a2 = −2.6885, a3 = 0.2174, a4 =
0.308 14, a5 = 0.766 04, and u = 4.1185. For b3 = 0, we set
k = −121.8064.

IV. CHIRPED DOUBLE-KINK AND
BRIGHT(DARK) SOLITONS

We now demonstrate the existence of double-kink solitons
and bright(dark) solitons when all the parameters in Eq. (7)
are nonzero, i.e., b1 �= 0, b2 �= 0, and b3 �= 0. For the general
case, Eq. (7) can be solved for double-kink-type (usually called
two-kink) soliton solutions of the form [21]

ρ(ξ ) = p sinh(qξ )√
ε + sinh2(qξ )

, (23)
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FIG. 7. (Color online) Chirping profile for the soliton solution
plotted in Fig. 6.
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FIG. 8. (Color online) Typical amplitude profile of the soliton
solution in Eq. (23) for different values of ε: ε = 1000 for p =
1.3204,q = 0.0252, and k = −141.911 (solid line) and ε = 10 for
p = 1.3584,q = 0.0287, and k = −141.899 (dashed line).

where b1 = − 3q

p
( ε−1

ε
),b2 = 2pq( 2ε−3

ε
), and b3 = −p3q

( ε−3
ε

). For this case, the chirping can be written as

δω(t,z) = −
(

αp2 sinh2(qξ )

ε + sinh2(qξ )
+ β

)
. (24)

The amplitude profile of the soliton solution for different
values of ε is shown in Fig. 8 for a1 = 1.6001, a2 =
−2.6885, a3 = 0.0260, a4 = 0.308 14, a5 = 0.766 04, and
u = −30.1280. The interesting double-kink feature of the
solution given by Eq. (23) exists only for sufficiently large
values of ε. One can also point out that as the value of
ε changes, it effects only the width of the wave, but the
amplitude of the wave remains the same. Chirping for the
solution is shown in Fig. 9 (for z = 0), which has a minimum
at the center of the pulse and saturates at the same finite value
as t → ±∞.

It is interesting to note that for b3 < 0 and b2 > 0, Eq. (7)
has both bright and dark solitons depending on the value of
b1 [19]. The explicit solutions and corresponding chirping are
given below.

If b1 < | 3b2
2

16b3
| then Eq. (7) has a bright-soliton-type solution,

which is given as

ρ(ξ ) = p√
1 + r cosh qξ

, (25)
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FIG. 9. (Color online) Chirping profile for the soliton solutions
plotted in Fig. 8 for ε = 1000 (solid line) and ε = 10 (dashed line).
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FIG. 10. (Color online) Amplitude profile of the soliton solutions
in Eqs. (25) and (27) for u = −30.1280 and k = −150.2856: the
bright soliton for a3 = 0.1168 (solid line) and the dark soliton for
a3 = 0.1164 (dashed line).

where p2 = − 4b3
b2

,q2 = −4b3, and r2 = 1 − 16b1b3

3b2
2

. The cor-
responding chirping is

δω(t,z) = −
(

αp2

1 + r cosh qξ
+ β

)
. (26)

If b1 = 3b2
2

16b3
, then the solution of Eq. (7) will be of the dark-

soliton type given by

ρ(ξ ) = ±p
√

1 ± tanh qξ, (27)

where p2 = − 2b3
b2

and q2 = −b3. For this case, the chirping is
given as

δω(t,z) = −[αp2(1 ± tanh qξ ) + β]. (28)

In Fig. 10 the amplitude profile of typical bright and
dark solitons is shown for a1 = 1.6001, a2 = −2.6885, a4 =
0.308 14, and a5 = 0.766 04. It is interesting to note that
Eq. (7) has bright and dark solitons depending on the value of
the quintic-term coefficient, i.e., a3, as shown in figure. It is
shown that chirping (for z = 0) is also different in both cases:
For a bright soliton chirping has maxima at the center of the
pulse, which saturates at the same finite value (see Fig. 11),
whereas for a dark soliton it saturates to different finite
values as t → ±∞. Hence, Eq. (7) has bright(dark) soliton
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FIG. 11. (Color online) Chirping profile for the solitons plotted
in Fig. 10: the bright soliton (solid line) and the dark soliton (dashed
line).
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FIG. 12. (Color online) Amplitude profile of the soliton solution
in Eq. (33) for γ = 2.1245,� = 0.2927, and k = −142.438.

and double-kink-type soliton solutions for the same model
parameters but for a different velocity selection and other
parameters of the wave.

V. CHIRPED KINK SOLITONS FOR PURELY
IMAGINARY a5

Here we elucidate a more physically interesting case for
which a5 is imaginary in Eq. (1). Thus, for a5 → ia5, Eqs. (3)
and (4) read

kρ + uχ ′ρ − a1χ
′2ρ + a1ρ

′′ − a4χ
′ρ3

+a2ρ
3 + a3ρ

5 − 2a5ρ
2ρ ′ = 0 (29)

and

−uρ ′ + a1χ
′′ρ + 2a1χ

′ρ ′ + 3a4ρ
2ρ ′ = 0. (30)

Substituting Eq. (5) in Eq. (30), we obtain

α = −3a4

4a1
, β = u

2a1
. (31)

Now using Eqs. (5) and (31) in Eq. (29), we obtain

ρ ′′ + b1ρ
5 + b2ρ

3 + b3ρ + b4ρ
2ρ ′ = 0, (32)

where b1 = 1
16a2

1
(16a1a3 + 3a2

4), b2 = 1
2a2

1
(2a1a2 − ua4), b3 =

1
4a2

1
(4ka1 + u2), and b4 = − 2a5

a1
. Equation (32) can be solved

for a kink-type soliton solution of the form

ρ(ξ ) =
√

�

2

√
1 + tanh(γ�ξ ), (33)

where γ = b4±
√

b2
4−12b1

6 ,� = b2
4γ 2−b4γ

, and b3 satisfies the

condition that b3 = −γ 2�2. The chirping is given by

δω(t,z) = −
[

α�

2
[1 + tanh(γ�ξ )] + β

]
. (34)

The amplitude profile of the soliton solution for different
values of ε is shown in Fig. 12 for a1 = 1.6001, a2 =
−2.6885, a3 = 0.0260, a4 = 0.308 14, a5 = 0.766 04, and
u = −30.1280. Chirping for this kink-type solution (depicted
in Fig. 13) saturates to different finite values as t → ±∞.
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FIG. 13. (Color online) Chirping profile for the soliton solution
plotted in Fig. 12.

VI. CONCLUSION

We would like to point out that the present work is a
natural but significant generalization of Ref. [10] by con-
sidering the effect of competing cubic-quintic nonlinearity
on the ensuing optical solitons in the higher-order nonlinear
Schrödinger equation. We have demonstrated that the compet-
ing cubic-quintic nonlinearity induces propagating solitonlike

dark(bright) solitons and double-kink solitons in the nonlinear
Schrödinger equation with self-steepening and self-frequency
shift. Parameter domains were delineated in which these
optical solitons exist. In addition, fractional transform solitons
were explored for this model. It was shown that the nonlinear
chirp associated with each of these optical solitons is directly
proportional to the intensity of the wave and saturates at some
finite value as the retarded time approaches its asymptotic
value. We have further shown that the amplitude of the
chirping can be controlled by varying the self-steepening
term and self-frequency shift. These optical solitons have
nontrivial phase chirping that varies as a function of intensity
and are different from that in Ref. [11], where the solution
had a trivial phase. We hope that these chirped femtosecond
solitons and double-kink solitons may be launched in long-
distance telecommunication networks involving higher-order
nonlinearities of the fiber.
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