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Crossing of manifolds leads to flat dispersion: Blazed Littrow waveguides

H. Benisty,1,* N. Piskunov,1,2 P. K. Kashkarov,2 and O. Khayam1

1Laboratoire Charles Fabry, Institut d’Optique, Université Paris-Sud, CNRS, FR-91127 Palaiseau, France
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We display a photonic embodiment of the Demkov-Ostrovsky solution to the crossing of two manifolds made
of equidistant modes thanks to broad periodic waveguides. We find clearly narrowing resonances that signal the
singular, flat dispersion case that we had termed “critical coupling.” The reconciliation of band-edge confinement
and cavity confinement, two pillars of photonics, appear from the guide length dependence of spectra. We
suggest the generality of the Demkov-Ostrovsky or critical coupling flat dispersion across all kinds of waves,
e.g., electronic and acoustic.
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I. INTRODUCTION

Systems with a few modes are helpful in relating classical
and quantized approaches, for instance, Rydberg states in
atom physics. In electromagnetism, tailored low-dimensional
photonic structures exhibit Zener tunneling or Landau-Zener
transitions [1]. We experimentally exhibit here the modal
properties of a broad periodic photonic waveguide (BPW)
with three scopes: (i) to show how it addresses a fundamental
situation of two manifolds of equidistant states crisscrossing
and coupling, solved by Demkov and Ostrovsky in 1995
[2–4]; it is found in Stark manifolds of heavier core-perturbed
Rydberg atoms (Na, Rb, Ca) [5–8] or of H2 [9]. The adiabatic
manipulation of such atomic manifolds is related to the quan-
tum Galton board [10]. Coherent adiabatic passage techniques
have recently been extended thanks to intense laser pulses [11]
leading to suggestive analogies [12]. (ii) We reconcile two
faces of photonic confinement—cavity confinement and slow
light confinement. Our BPW with wavelength-scale period
produces slow light extended modes, but these modes also
display all the signatures of confined cavity modes. This
combination, whereby slow light guides make open cavities,
is dual to the popular coupled-resonator-optical-waveguide
(CROW) concept [13], in which tunnel-coupled strings of
closed cavities make slow light. (iii) We underline the gen-
erality of “critical coupling” [14–17], the most singular case
of the Demkov-Ostrovsky model, for other guides, whether
of electronic [18] or acoustic nature, suggesting numerous
applications.

II. CRISSCROSSING MANIFOLDS, FLAT BANDS, AND
CRITICAL COUPLING

The Demkov-Ostrovsky solution (hereafter DeOsS) to
crisscrossing manifolds of constant spacing arose in the
context of Stark-split Rydberg states and Landau-Zener (LZ)
tunneling. To bridge photonics and atom physics, the diabatic
states are those with well-defined hydrogenoid quantum
numbers (radial, orbital, magnetic), while extra terms, induced
by the ionic core or by dressing, cause Stark-split levels to
anticross and form the adiabatic states. LZ theories, known
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since 1932, depict how a system evolves, adiabatically or
not, when submitted to a growing electric field. In light-wave
photonics, the diabatic states are the uncoupled (“bare”)
states that ignore some periodic dielectric perturbation, the
adiabatic states being the eigenstates of the popular coupled
mode theory (CMT). Exciting the entrance of a waveguide
addresses modes with a restricted set of wave vectors, which
can be thought of as a specific combination of the diabatic
states, or even as a single state. The exit signal derives
from the BPW transmission matrix T . It is essentially the
Heisenberg evolution P −1 exp(zD)P applied to the entrance
excitation ψ(zo), where P ≡ |M〉 〈αn| relates the diabatic
|αn〉 to the adiabatic |M〉 states (α = ± relates to forward
or backward modes; all states can be labeled by a wave
vector k, |M〉 = |M(k)〉, |αn〉 = |αn(k)〉 in the first Brillouin
zone |k| < π/a, for a period a), and D = E(M,k) |M〉 〈M|
is the diagonalized Hamiltonian H with energies E(M,k).
The DeOsS solves an infinite system of equidistant levels,
E±(n,k) = n�E ± Ak, where the k parameter is formal, being
the time t in LZ theory. The coupling term V only couples
distinct manifolds, 〈αn| H ∣∣α′n′〉 = 0 if αα′ = +1, and is
constant, 〈αn| H ∣∣α′n′〉 = V if αα′ = −1.

The most striking feature is what we termed earlier “critical
coupling” [15–17], [19,20], the fact that the dispersion E(M,k)
can become perfectly flat (∂/∂k ≡ 0) for Vcrit = �E/π [2–4];
see Figs. 1(a) and 1(b). It indeed occurs in limit cases
of Stark-split atomic states [5,7,8,21–23]. This property
persists well in a truncated |αn〉 set, or in the case of a
distorted spacing, say n�E ± Ak + δE(k), because the trend
〈αn| M〉 ≈ 1/(n − M) minimizes the role of far neighbors.
The other striking aspect of DeOsS is the reappearance of
anticrossing for V > Vcrit, prompting us to leverage the critical
point V = �E/π into a general “flat band recipe” in photonic
crystal waveguides [15]. This recurrence is part of broader
“recurrence spectra” effects such as LZ-Stückelberg interfer-
ometry [11,24]. Germane recurrence effects can be tracked in
photonics from the Talbot effect to multimode interferometers
(MMI) [25] used in every optical node modulator.

We note also that our open waveguide system can be seen
as an open resonator comprising a grating. Electromagnetic
methods to obtain fields in such open resonators comprising
gratings have been proposed many years ago [26,27] and also
recently [28,29], but none easily connects to the multimode
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FIG. 1. (Color online) Crossing manifolds of equidistant states (dotted lines) with coupling. The horizontal axis is a parameter that is either
a normalized time—in which case the vertical axis is a normalized energy (Landau-Zener situations), or a normalized wave vector—in which
case the vertical axis is a normalized frequency (waveguide mode coupling situation). The Demkov-Ostrovsky analytic solution is shown
as solid lines: (a) weak coupling and small gaps (horizontal shaded stripes). Top inset: Hamiltonian. (b) Flat dispersion at critical coupling
V = �E/π and curvature inversion beyond.

coupling approach and Demkov-Ostrovsky correspondence as
exploited in the present work.

Let us focus on photonics. Slowdown of light in BPWs
was depicted by coupled-mode theory (CMT) [15,17,19].
The regime of “collective slow light,” called critical coupling
regime (CCR), is essentially the flat dispersion at V = �E/π .
Our BPW samples unravel this regime.

III. BROAD WAVEGUIDE SAMPLES

Our BPWs have a single corrugated edge. They are etched
in a silicon-on-insulator layer of effective index neff ≈ 2.83 at
wavelength λo = 1550 nm, processed by EpixFab (IMEC,
deep-ultraviolet lithography). Silicon is removed between
BPWs [Figs. 2(a) and 2(b)] and between their 3-mm-long 45◦-
tilted access guides. Higher-order oblique modes in a BPW are
of interest when operating around the Littrow grating angle
on the grating, in the zigzag ray model (the diabatic states)
[14–17,30]. This is also the Brillouin zone edge: The parallel
momentum (Bloch wave vector) of these rays obeys k// =
±π/a. Littman’s grating-resonator mount makes use of such
incidence, and even of grating pairs [31] but never of parallel
ones, so until now, most BPWs were based on photonic crystals
[15,17,19,32,33]. In a BPW with such ∼45◦ Littrow angles,
only two spatial harmonics (α = ±) propagate in the core
(forward, backward) since k// = π/a ∼ 0.7neffω/c is large.
The grating acts as a “black box” whose other two-dimensional
harmonics can be safely ignored, being evanescent.

Feeding guides end with shallow gratings, to inject trans-
verse electric (TE) polarized light over a λo ± 35-nm range at
2◦–8◦ incident angle. The core design follows a 45◦ geometry
[16]; see Fig. 2(b). The corrugation of period a = 385 nm

FIG. 2. (Color online) (a) Parameters of a BPW section of
order m: width w = mλ/4neff

√
2; corrugation height h; period a.

(b) Composite view of a device with access guides and grating
couplers, and schematic resonance; setup is sketched on the right.
(c) Length definition of T4, T6, and T8 devices, naturally stemming
from the tiling with 4, 6, 8 triangles.
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FIG. 3. (Color online) (a) Bands of a broad waveguide (main net of lines) and the DeOsS-type buildup of zone-edge slow-light coupled
modes (superimposed segments of hyperbola at top center) upon critical coupling. (b) Detail from CMT, for three coupling constants, chosen
below CCR (lighter, wavy line), above CCR (darker, wavy line), and at CCR (the less wavy line); the tilted grey ribbon is the light cone of
access guides. (c) Map of simulated T4 device transmission [scale in dB, i.e., 10log10(T )] vs frequency and corrugation height; the CCR is the
dark area with red stripes. (d) Detail of CCR including evanescent modes (dashed curves) and imaginary dispersion rendered in a typical case
(bottom left around ka = 0.9π ) by shading the range.

was aimed of height h and of triangular shape [16,17]. For TE
polarization, with CCR predicted at h/a ≈ 3.4, we chose h/a =
2.5–4.0 (the CCR is related to the blaze of the –1 diffraction
order η−1

∼= 1 [15,19,34]). BPWs are further defined by
their width w, hence their free spectral range FSRL and their
Littrow mode order m = 4neffw

√
2/λ at design wavelength

λo = 1550 nm. We chose m = 50 (FSRL ≈ 30 nm) and m =
75 (FSRL ≈ 20 nm). Finally, BPW length, Fig. 2(c), is such
that a “Tq” tiling of q triangles fits a ray-tracing resonator
guess [16] and forms (q/2–1) Fabry-Pérot (FP) in series. Our
T4, T6, and T8 sets evoke single, double, and triple FPs.

IV. MODELS AND SIMULATIONS

Bands of BPWs are well described by CMT [17,19,32].
The (scalar) “diabatic” uncoupled modes are H±

j (x,z) ≡
sin(jπx/w) exp(±kj z) with k2

j + (π/w)2 = n2
eff(ω/c)2. They

form two sets of hyperbola in the (k,ω) plane [Fig. 3(a)].
Couplings around the zone edge k// = π/a involve modes of
opposite slope ±vg . We found earlier that imposing a single

coupling strength between all mode pairs, κj,j ′ = κ , as in De-
OsS, still works well [19,32]. At CCR, coupled modes evolve
into hyperbola centered at k// = π/a [Fig. 3(a)], essentially
the flat DeOsS singular case. Their specific spacing is FSRL =

(πc/2neffw) cos θ , with θ = sin−1(neffωa/πc), the Littrow
angle. The CCR condition in terms of coupling strength is
κ = κcrit = v−1

g FSRL/π as conjectured in [17,19,20,32] and
as shown in the DeOsS.

The resulting flattened bands are shown for three κ values
[Fig. 3(b)], κ = κcrit = v−1

g FSRL/π , κ = 0.9κcrit, and 1.1κcrit.
The remaining wiggles stem from two deviations from DeOsS:
a “chirped” diabatic level spacing and a semi-infinite set of
modes. Many details such as the concavity change are also
found in plane wave expansion [17] and are part of blaze
singularities [35].

Predictions for finite Tq BPW of order m = 50 exploit
two-dimensional finite-difference time-domain (FDTD) simu-
lations (CRYSTALWAVE R© software; see [36]), using a Gaussian
“exciter” at 45◦ that mimics a guided mode. The transmission
color map T ( a/λ , h ), Fig. 3(c) in dB, uses the reduced
frequency a/λ. To fit measured data, we adjusted the grating
pattern. From a high ratio hCCR/a ≈ 3.4 for triangles, we
realistically got hCCR/a ≈ 2.5 (see [36]). The red lines scarring
the dark spot around [a/λ ≈ 0.25, h/a ≈ 2.50] correspond to
m ≈ 49–51 resonances and are characteristic of the CCR. A
drop in peak transmission Tmax occurs along the resonance
of a given mode, at variance with ideal FPs (Tmax ≡ 1 in
canonical FPs).
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FIG. 4. (Color online) Spectrum of m = 50 BPW devices of length T4 (a) and T6 (b), with variable h/a ratio. FDTD spectra from Fig. 3
for h/a ≈ 3.50, 3.00, and 2.50 (dashed lines). The measured spectral domain is 1520–1584 nm, but an ad hoc normalized frequency abscissa
u − uo = (a/λ − uo) is used to clearly align peaks. (c) Sample of T4 and (d) T6 spectra for m = 75 and selected h/a values, showing the same
poorer peaks for T4.

Simulations of T6 devices, not shown, display split resonant
lines away from CCR, as for two coupled FPs, but a single line
is also observed close to CCR. We will address elsewhere the
combined role of length and CCR.

V. RESULTS

The BPWs are measured by coupling a tunable laser to
the sample at an angle through a 50-mm lens. This lens also
images light from the exit grating onto an InGaAs array. With
acquisitions at each laser scan step (�λ = 200 pm or finer),
we retrieve the BPW spectrum from the series of raw 14-
bit images. We sum counts over an area of 3 × 10 pixels,
discarding spurious light from adjacent guides. A reference
straight guide is used for calibration.

Spectra show the predicted trends: For T4 and m = 50
[Fig. 4(a)], FP peaks with FSRL ≈ 30 nm sharpen up toward
the CCR region, much in line with FDTD spectra (dashed lines
for three selected heights). This sharpening directly shows
that bands in the probed stripe are becoming flat, in line with
the DeOsS at V = �E/π . A drop of Tmax is obvious from
h/a = 3.00 to h/a = 2.50. For T6 [Fig. 4(b)], we see split
FP peaks from h/a = 4.00 to h/a = 3.25. We see at h/a =
2.75 and 2.50 a recovery of Tmax for T6 compared to T4 by
a factor of ∼10. The same behavior was observed for m =
75 [Fig. 4(c)]; h/a = 3.00 and h/a = 2.50 show a small Tmax

for T4 and a fairly larger Tmax for T6 devices. In longer T8
devices (not shown), we found triplet peaks for h/a � 2.75
(not shown), with quality factors up to Q ∼ 2 × 104, and thus
finesses Q/m100, a good value for open resonators.

Two issues, “photonic conductance” [37] and coupling
efficiency to slow modes thanks to evanescent modes [38],
could be advantageously probed thanks to the underlying
analytical DeOsS to get more insight. For instance, Fig. 3(d)
shows scarce evanescent modes in our k-space window just
at CCR.

We have thus evidenced the near attainment of the adiabatic
DeOsS “flat band” solution in a photonic context. To perform
the converse use of our BPW system in the same spirit as
LZ atom manipulations, the wave vector should become the
“handle,” replacing the Stark shift. One can imagine such a
wave-vector control by varying the period during the photon
lifetime. It amounts to changing the Brillouin zone edge. But
this method is beyond reach for usual solid-state nonlinearities,
given our highly contrasted grating indices. Still, the concept
could be worked out to produce novel sources based on
nonlinear optics. A longitudinal chirp of the period and/or
grating strength, for instance, might be thought to push photons
traveling down a BPW through controlled states.

The sharp peaks also reveal a strong confinement that does
behave as a set of FP cavities. It thus provides FP-type confine-
ment in a strictly wavelength-scale periodic structure, which
constitutes a missing link, “dual” of the popular CROW con-
finement [13]. This reconciliation is useful to assess the merit
of nonlinear optical operation for both kinds of confinement.

Our last message is the ease to extend these ideas to other
waves, electrons in graphene [18], or acoustical waves. The
open nature of the resonator leaves room for any extra longi-
tudinal transport functions. For electrons, an open resonator
implements resonant functions through reflections, without
any transmission barrier. We generically hope for much less
scattering from impurities in the reflection mode than in the
transmission mode. As for acoustical open resonators, e.g., in
line with [39,40], they could radically alter the noise occurring
through receiver or sources. Phonons could also be made
resonant the same way in suspended solid nanosystems, for
instance, to reach quantum regimes while minimizing the need
to thin the holding beams.

VI. CONCLUSIONS

To conclude, we have evidenced experimentally a generic
mode coupling situation that was first addressed in the frame
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of atomic adiabatic Landau-Zener manipulation of Rydberg
atoms submitted to Stark splitting, and was solved analytically
(DeOsS [2–4]). It predicts the obtainment of flat bands
when the coupling potential reaches Vcrit = �E/π . In the
framework of multimode broad periodic waveguides, the same
phenomenon happens on the band structure ω(k) at a point
that was termed “critical coupling” by us, related to Brillouin
zone edge and to the Littman-Metcalf or the Littrow optical
mounts. The DeOsS criticality is evidenced here by sharpening
transmission spectra when approaching near-unity “blazed”
diffraction efficiency, and confirmed by FDTD simulations.

The enriching significance for the canonical classes of pho-
tonic confinement (band edge vs cavity), and the general
relevance for all kinds of waves (electronic, acoustic, etc.)
were underlined.
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