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Reflective ghost imaging through turbulence
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Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most
theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the
ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop,
within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise
ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns
and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both
classical and nonclassical optical sources, as well as a computational ghost imager.

DOI: 10.1103/PhysRevA.84.063824 PACS number(s): 42.30.Va, 42.68.Bz, 03.67.Hk

I. INTRODUCTION

Ghost imaging is a transverse active-imaging technique
that exploits the correlation between two light beams to
image a target without spatially resolving measurements of
the light beam that has undergone target interaction. The
two beams are the signal, which interacts with the target
and then is measured by a single-pixel bucket detector, and
the reference, which is directly measured by a high spatial-
resolution detector. An intensity cross correlation between the
signal beam that encounters the target and the reference beam
that impinges on the high spatial-resolution detector imparts
target information, the ghost image, to the cross correlation
between the photocurrents obtained from the two detectors,
information that is unavailable from either photocurrent alone.

Most ghost-imaging experiments and related theory deal
with the transmissive case, in which the bucket detector is
placed behind the target, and we image the target’s intensity-
transmission profile. In the first ghost-imaging experiment, the
signal and reference beams were the quantum-mechanically
entangled outputs from a spontaneous parametric down-
converter (SPDC) [1], which afforded them a phase-sensitive
cross correlation stronger than permitted by classical physics
[2]. The system was run at low flux, in which the SPDC’s
post-selected output state, within the photodetectors’ response
time, could be taken to be a biphoton; the ghost image was
then formed by counting coincidences between the bucket and
high spatial-resolution detections instead of a photocurrent
cross correlation. Subsequently, ghost imaging was done
with a high-flux pseudothermal source, i.e., a classical-state
source realized by sending a laser beam through a rotating
ground-glass diffuser and a 50-50 beam splitter to create
identical, spatially incoherent signal and reference beams with
a phase-insensitive cross correlation. The ghost image was
then obtained by continuous-time cross correlation of the
bucket and high spatial-resolution photocurrents [3,4]. Later,
the theories of SPDC and pseudothermal ghost imaging were
united in a Gaussian-state treatment that showed, in both cases,
that ghost-image formation by photocurrent correlation arises
from classical coherence propagation, but the nonclassical
SPDC source offers much higher image contrast and a modest
spatial-resolution advantage in near-field operation [2,5,6].

Recently, a computational ghost-imaging method was
introduced in which the need for a reference beam is removed

[7,8]. Conventional ghost imaging relies on the intensity cross
correlation between the signal beam on the target and the ref-
erence beam on the high spatial-resolution detector. In SPDC
and pseudothermal ghost imaging, these beam patterns are
random. If, however, a spatial light modulator is used to impart
a sequence of known spatial patterns to a laser beam prior to
propagation to the target, then diffraction theory can be used to
calculate noiseless versions of the associated reference-beam
intensity patterns. These computed reference-beam results can
be employed, for cross-correlation ghost-image formation, as
if they came from photodetection of a physical reference beam.
More importantly, computational ghost imaging opens the
door for more advanced computational image reconstruction
techniques, notably compressive sensing [9].

All of the preceding discussion has been framed for ghost
imaging of transmissive targets. Recent experiments have
shown the feasibility of an alternate ghost-imaging configura-
tion in which the bucket detector views the target in reflection
rather than in transmission [10]. In this reflective setup, the
source and detector can, in principle, be moved arbitrarily far
away from the target, suggesting that ghost imaging could be
a viable remote-sensing technique. Atmospheric turbulence
will surely be a relevant concern in any such standoff-sensing
application, just as it is for astronomical imaging and laser
radar. To date, there has been theoretical study of the impact
of turbulence on ghost imaging in transmission [11], but there
has only been an initial turbulence-free theory development
for ghost imaging in reflection [12], and that work was limited
to pseudothermal sources.

In this paper, we will extend the analysis from [12] to
include SPDC ghost imaging in reflection and, for both SPDC
and pseudothermal operation, the presence of atmospheric tur-
bulence in the propagation paths. The setup we shall consider is
the lensless ghost-imaging configuration shown schematically
in Fig. 1 [13]. Pseudothermal ghost imaging can be described
quantitatively using semiclassical photodetection theory, in
which the fields are described classically and photodetection
incurs the shot noise associated with the discreteness of the
electron charge, whereas quantum photodetection theory is
required for the SPDC case, owing to the nonclassical nature
of its output state [2]. Nevertheless, to provide a unified
development, we will employ quantum photodetection to
characterize both pseudothermal and SPDC ghost imaging.
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We begin, in Sec. II, with the theoretical framework for our
analysis. Here, we describe our models for the pseudothermal
and SPDC sources, reflection from the target, atmospheric
propagation, quantum photodetection, and image formation.
In Sec. III, we derive expressions for the spatial resolution and
image contrast for pseudothermal and SPDC ghost images,
and in Sec. IV, we derive their respective signal-to-noise
ratios (SNRs). Then, in Sec. V, we consider a computational
ghost imager in which the reference beam is calculated
instead of measured [7]. Because the reference beam is not
an optical field, we find it convenient in Sec. V to employ
the semiclassical theory. This section will also include a
quantitative performance comparison between pseudothermal,
SDPC, and computational ghost images formed in reflection.
We conclude, in Sec. VI, with a discussion of our findings,
and an assessment of the situations in which reflective ghost
imaging might have practical value.

II. SETUP

A. Optical sources

We are interested in ghost imaging with classical pseu-
dothermal light, and the nonclassical output of an SPDC.
In both cases, our signal and reference beams will be rep-
resented quantum mechanically as

√
photons/m2s units, +z-

going, positive-frequency, field operators [ÊS(ρ,t)e−iω0t and
ÊR(ρ,t)e−iωot , as functions of transverse-coordinate vector ρ

and time] at the output of the Fig. 1 beam splitter. Their base-
band field operators have the canonical commutation relations

[ÊJ (ρ1,t1),ÊK (ρ2,t2)] = 0 (1)

[ÊJ (ρ1,t1),Ê†
K (ρ2,t2)] = δJKδ(ρ1 − ρ2)δ(t1 − t2) (2)

for J = S,R and K = S,R, where δJK is the Kronecker
delta and δ(. . .) is the unit impulse. Following [2], we will
take both the pseudothermal and SPDC sources to produce
signal and reference beams that are in zero-mean, jointly
Gaussian states, which are then completely characterized by
their nonzero autocorrelation and cross-correlation functions.
All the autocorrelations will be assumed to have the same
Gaussian-Schell model form

〈Ê†
K (ρ1,t1)ÊK (ρ2,t2)〉 = 2P

πa2
0

e
− |ρ1 |2+|ρ2 |2

a2
0 e

− |ρ1−ρ2 |2
2ρ2

0 e
− (t1−t2)2

2T 2
0

(3)

for K = S,R, where P is the photon flux, a0 is the source’s
e−2 intensity radius, ρ0 is its coherence length, and T0 is its
coherence time. The distinction between the Gaussian-state
models for the pseudothermal and SPDC sources lies in their
signal-reference cross correlations, as we will now explain.

The pseudothermal signal and reference beams start as
continuous-wave (cw) laser light, which is passed through a
rotating ground-glass diffuser to make it spatially incoherent.

FIG. 1. (Color online) Light from a spatially incoherent optical
source (either a type-II phase-matched SPDC or a laser rendered
spatially incoherent by passage through a rotating ground glass) is
separated into signal and reference beams by a beam splitter. For
the pseudothermal (laser) case, this is a 50-50 beam splitter. For the
SPDC, this is a polarizing beam splitter. The reference beam travels
L m to the CCD camera, while the signal beam travels L m to the
target, and the reflected light travels L m to the bucket detector. The
image is then formed by cross correlation between the photocurrents
obtained from the bucket detector and the high spatial-resolution
(CCD camera) detector.

Signal and reference beams are then obtained by 50-50
beam splitting. The signal and reference thus have no phase-
sensitive cross correlation, and the maximum phase-insensitive
cross correlation allowed by classical physics given their
autocorrelation functions, i.e.,

〈ÊS(ρ1,t1)ÊR(ρ2,t2)〉C = 0, (4)

〈Ê†
S(ρ1,t1)ÊR(ρ2,t2)〉C = 2P

πa2
0

e
− |ρ1 |2+|ρ2 |2

a2
0 e

− |ρ1−ρ2 |2
2ρ2

0 e
− (t1−t2)2

2T 2
0 ,

(5)

where the subscript C indicates that these are classical-state
cross correlations. The coherence time is directly related to
how fast the ground glass rotates, the coherence length is
typically on the order of a few wavelengths, and the intensity
radius is set by the radius of the initial laser beam.

A type-II phase-matched, collinear, cw SPDC source emits
orthogonally polarized, copropagating signal and idler beams,
which are separated by a polarizing beam splitter to become
the signal and reference beams for ghost imaging. They are in
a maximally entangled, jointly Gaussian state with no phase-
insensitive cross correlation, and the maximum phase-sensitive
cross correlation permitted by quantum theory given their
autocorrelation functions, namely [5],

〈Ê†
S(ρ1,t1)ÊR(ρ2,t2)〉Q = 0, (6)

〈ÊS(ρ1,t1)ÊR(ρ2,t2)〉Q = 2P

πa2
0

e
− |ρ1 |2+|ρ2 |2

a2
0

[
e
− |ρ1−ρ2 |2

2ρ2
0 e

− (t1−t2)2

2T 2
0 + i

(
2

π

) 1
4

√
a2

0

PT0ρ
2
0

e
− |ρ1−ρ2 |2

ρ2
0 e

− (t1−t2)2

T 2
0

]
, (7)
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where the subscript Q indicates that these are quantum
(nonclassical) cross correlations.

B. Propagation through turbulence

The signal and reference beams in Fig. 1 first propagate
L m over spatially separated paths from their shared source
location [13]. The reference beam is then measured by a high-
spatial resolution CCD camera, while the signal field reflects
off the target and travels L m to the bucket detector. We will
assume statistically independent turbulence on all three paths:
the reference path (R) from the source to the CCD; the signal
path (S) from the source to the target; and the target-return
path (T ) from the target to the bucket detector.

To account for the Kolmogorov-spectrum turbulence that
is uniformly distributed along the three propagation paths, we
make use of the quantum version of the extended Huygens-
Fresnel principle [14,15]

Ê′
m(ρ ′,t) =

∫
dρ Êm(ρ,t)

k0e
ik0(L+|ρ ′−ρ|2/2L)

i2πL
eψm(ρ ′,ρ), (8)

where k0 = ω0/c = 2π/λ0, and ψm(ρ ′,ρ) is a complex-valued
random process that encapsulates the effects of turbulence
on path m from ρ to ρ ′. The real and imaginary parts of
ψm(ρ ′,ρ), which we denote χm(ρ ′,ρ) and φm(ρ ′,ρ), are the
log amplitude and phase fluctuations imposed on the field
received at transverse coordinate ρ ′ over path m from a point
source at transverse coordinate ρ. Because all the path lengths
in Fig. 1 are equal, we have suppressed the L/c line-of-sight
propagation delay in Eq. (8). We have also suppressed any
time dependence of the turbulence. Physically, this amounts
to assuming that the integration time TI , employed in the
Fig. 1 correlator, is shorter than the ∼ms coherence time of
the turbulence. However, that assumption is not necessary for
deriving the spatial resolution and image contrast achieved in
the presence of turbulence, although it will be relevant to our
signal-to-noise ratio analysis.

The mutual coherence function of eψm(ρ ′,ρ) is taken to be
[16,17]

〈eψ∗
m(ρ ′

1,ρ1)eψm(ρ ′
2,ρ2)〉 = e−(|ρ ′

1−ρ ′
2|2+(ρ ′

1−ρ ′
2)·(ρ1−ρ2)+|ρ1−ρ2|2)/2ρ2

m,

(9)

which is the square-law approximation to the rigorous 5/3-law
behavior for uniformly distributed turbulence [18]. In Eq. (9),
ρm is the turbulence coherence length on path m, given by

ρm = (
1.09k2

0C
2
n,mL

)−3/5
, (10)

in terms of the constant turbulence strength parameter C2
n,m

along path m [16].
We assume that the path length L satisfies the far-

field coherence-propagation conditions for pseudothermal and
SPDC light discussed in [2,6], viz., k0a0ρ0/2L � 1 and
k0a

2
0/2L � 1, respectively. For convenience, we also define

ρL = 2L/k0a0 and aL = 2L/k0ρ0. These are the far-field,
turbulence-free, on-target coherence length and intensity ra-
dius produced by the Gaussian-Schell autocorrelation function
from Eq. (3).

C. Target reflection

Most real-world targets have surfaces that are sufficiently
rough (on the scale of an optical wavelength) that reflections
from them present fully developed speckle patterns at ap-
preciable distances from the surface [19]. We model such a
target as a planar two-dimensional (2D) object with random,
microscopic height variations, having depths on the order of
several wavelengths and transverse variations on the order of
a wavelength, and an average intensity-reflection coefficient
T (ρ). Thus, following laser-radar theory [20], we shall assume
that this target has a random field-reflection coefficient T (ρ),
which is a zero-mean, complex-valued Gaussian random
process characterized by the autocorrelation function

〈T ∗(ρ1)T (ρ2)〉 = λ2
0T (ρ1)δ(ρ1 − ρ2), (11)

where the deterministic pattern T (ρ) is what we are tying to
image.

Target reflection is a passive process, so we require
|T (ρ)| � 1, which is in conflict with the Gaussian statistics
and the delta-function term in Eq. (11). That delta function,
however, leads to quasi-Lambertian reflection, implying that
at standoff distances a realistic bucket detector will only
capture a very small fraction of the reflected light. Hence,
using the reflection statistics from the preceding paragraph is a
reasonable approximation for ghost imaging of rough-surfaced
targets. However, because some light may be absorbed by or
transmitted through the target, the quantum model for target
reflection needs to be

ÊT (ρ,t) = T (ρ)Ê′
S(ρ,t) +

√
1 − |T (ρ)|2 Êvac,S(ρ,t). (12)

Here, Êvac,S(ρ,t) is a vacuum-state field operator, needed
to preserve the free-field commutator relations given for the
source fields in Eqs. (1) and (2).

In what follows, we assume that the target’s intensity-
reflection coefficient T (ρ) is space limited to the region
illuminated by the signal beam, i.e., T (ρ) = 0 for |ρ| > aL.
This condition will give the ensemble-average pseudothermal
and SDPC ghost images convolution-integral relationships
with T (ρ) from which to determine their spatial resolutions.
See [2,6] for information about ghost-imaging field-of-view
when the preceding restriction on T (ρ) is not satisfied.

D. Photodetection and image formation

Loss also occurs in the photodetection process because the
detectors in Fig. 1 will, in general, have subunity quantum
efficiencies. Therefore, the field operator Êp(ρ,t) driving the
photocurrent îp(t) from CCD pixel p, and the field operator
Êb(ρ,t) driving the photocurrent îb(t) from the bucket detector
satisfy [21,22]

Êm(ρ,t) = √
η Ê′

�(ρ,t) +
√

1 − η Êvac,�(ρ,t) (13)

for (m,�) = (p,R) or (m,�) = (b,T ). Here, η is the quantum
efficiency, which is taken to be the same for both the bucket
detector and the CCD camera, and Êvac,�(ρ,t) is a vacuum-state
field operator whose inclusion models the loss incurred by
having η < 1 [cf. Eq. (12)].
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We assume ghost-image formation via continuous-time,
pixel-wise correlation of the photocurrents from the CCD and
the bucket detector, formalized as

Ĉ(ρp) = 1

TI

∫ TI /2

−TI /2
dt îp(t)îb(t), (14)

where ρp is the center coordinate of the CCD’s pth pixel
and TI is the correlation integration time. From quantum
photodetection theory [22], we have that

îm(t) = q

∫
dτ P̂m(τ )h(t − τ ), m = p,b (15)

where

P̂m(t) =
∫
Am

dρ Ê†
m(ρ,t)Êm(ρ,t) (16)

is the effective (subunity quantum efficiency) photon flux on
the active region Am for detector m, and h(t) is the impulse
response of the detectors’ output circuit, which we have taken
to be the same for both the bucket detector and the CCD
camera.

To enable the performance evaluations in the sections to
follow, we make the following assumptions. First, each pixel
is small enough that the the average photon flux impinging on
it obeys 〈P̂p(t)〉 = Ap〈Ê†

p(ρp,t)Êp(ρp,t)〉, where Ap is the
area of the Ap. Second, we assume that the detector has a
Gaussian impulse response

h(t) = 
B√
8π

e−
2
B t2/8, (17)

whose bandwidth 
B greatly exceeds that of the incident light
for the pseudothermal source (
BT0 	 1) and is much smaller
than that of the incident light for the SPDC source (
BT0 �
1). Finally, we assume that the correlation integration time is
sufficiently long to capture a ghost image, so TI 	 T0 for the
pseudothermal source and TI 	 
−1

B for the SPDC source.

III. RESOLUTION AND CONTRAST

The spatial resolution and contrast of the ghost image are
properties of the average cross correlation 〈Ĉ(ρp)〉. To de-
termine this ensemble-average cross correlation, we (1) write
îb(t) and îp(t) in terms of the field operators that drive them,
Êb(ρ,t) and Êp(ρ,t); (2) apply the canonical commutator
relations to normally order the resulting photocurrent-product
expressions; and (3) use Eq. (13) to write the detected fields
in terms of Ê′

R(ρ,t) and Ê′
T (ρ,t). From the linearity of

expectation, we can bring the ensemble-average operation
inside the time-domain integration to get

〈Ĉ(ρp)〉 = q2η2Ap

∫
dτ1

∫
dτ2

∫
Ab

dρ h(t − τ1)h(t − τ2)

×〈Ê′†
R (ρp,τ1)Ê′†

T (ρ,τ2)Ê′
R(ρp,τ1)Ê′

T (ρ,τ2)〉.
(18)

We then use Eqs. (8) and (12) to back-propagate the target-
return field operator to the target, and find

〈Ê′†
R (ρp,τ1)Ê′†

T (ρ,τ2)Ê′
R(ρp,τ1)Ê′

T (ρ,τ2)〉

=
∫

dρ2

∫
dρ3 〈T ∗(ρ2)T (ρ3)〉〈eψ∗

T (ρ,ρ2)eψT (ρ,ρ3)〉

× 〈Ê′†
R (ρp,τ1)Ê′†

S (ρ2,τ2)Ê′
R(ρp,τ1)Ê′

S(ρ3,τ2)〉

× e−ik0(|ρ2|2−|ρ3|2)/2L+ik0ρ·(ρ2−ρ3)/L

(λ0L)2
, (19)

where we have used the statistical independence of the target’s
reflection coefficient, the signal and reference fields at the
source, and the turbulence on all three propagation paths.

Substituting for 〈T ∗(ρ2)T (ρ3)〉 from Eq. (11) and perform-
ing the ρ2 integral eliminates the turbulence term from the
preceding 〈C(ρp)〉 expression, which shows that turbulence on
the the target-to-bucket path has no impact on the ghost image’s
spatial resolution or image contrast. Now, by back-propagating
the field operators to the source [by means of Eq. (8) with
k0a

2
0/2L � 1], we have that

〈Ê′†
R (ρp,τ1)Ê′†

T (ρ,τ2)Ê′
R(ρp,τ1)Ê′

T (ρ,τ2)〉
= 1

λ4
0L

6

∫
dρ2 T (ρ2)

∫
dρ ′

1

∫
dρ ′

2

∫
dρ ′′

1

∫
dρ ′′

2

×〈Ê†
R(ρ ′

1,τ1)Ê†
S(ρ ′

2,τ2)ÊR(ρ ′′
1,τ1)ÊS(ρ ′′

2,τ2)〉
× 〈eψ∗

R (ρp,ρ ′
1)eψR (ρp,ρ ′′

1)〉〈eψ∗
S (ρ2,ρ

′
2)eψS (ρ2,ρ

′′
2)〉

× eik0[ρp ·(ρ ′
1−ρ ′′

1)+ρ2·(ρ ′
2−ρ ′′

2)]/L, (20)

where we have again invoked the statistical independence of
the signal and reference fields at the source and the turbulence
on the source-to-CCD and source-to-target paths.

We can now directly evaluate all remaining moments. The
turbulence moments are available from Eq. (9), and the fourth-
order field moment can be expressed in terms of second-order
moments with the Gaussian-state moment-factoring theorem
[23]:

〈Ê†
R(ρ ′

1,τ1)Ê†
S(ρ ′

2,τ2)ÊR(ρ ′′
1,τ1)ÊS(ρ ′′

2,τ2)〉
= 〈Ê†

R(ρ ′
1,τ1)Ê†

S(ρ ′
2,τ2)〉〈ÊR(ρ ′′

1,τ1)ÊS(ρ ′′
2,τ2)〉

+ 〈Ê†
R(ρ ′

1,τ1)ÊR(ρ ′′
1,τ1)〉〈Ê†

S(ρ ′
2,τ2)ÊS(ρ ′′

2,τ2)〉
+ 〈Ê†

R(ρ ′
1,τ1)ÊS(ρ ′′

2,τ2)〉〈Ê†
S(ρ ′

2,τ2)ÊR(ρ ′′
1,τ1)〉. (21)

Until this point, our analysis applies equally well to the
pseudothermal and SPDC ghost imagers. That equivalence
disappears, however, when we evaluate the second-order
moments in Eq. (21) using Eqs. (3)–(5) for the pseudothermal
ghost imager, and using Eqs. (3), (6), and (7) for the SPDC
ghost imager. The results we obtain are

〈Ĉ(ρp)〉C = q2η2ApAb

L2

(
2P

πa2
L

)2

×
∫

dρ T (ρ)

[
1 + e−|ρ−ρp |2/αρ2

L

α

]
(22)

for the pseudothermal (classical) imager, and

〈Ĉ(ρp)〉Q = q2η2ApAb

L2

(
2P

πa2
L

)2 ∫
dρ T (−ρ)

×
[

1 + 
BT0

4

e−|ρ−ρp |2/αρ2
L

α

(
1 + 1

4
√

πI

)]
(23)
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for the SPDC (quantum) ghost imager, where Ab is the area
of Ab, I ≡ PT0ρ

2
0/a

2
0 = PT0ρ

2
L/a2

L is the source brightness
in photons per spatiotemporal mode, and

α ≡ 2ρ2
Rρ2

S + a2
0(ρ2

R + ρ2
S)

2ρ2
Rρ2

S

(24)

is a turbulence-induced performance-degradation factor. We
see that both average correlation functions are the sum of the
same featureless background term

C0 = q2η2ApAb

L2

(
2P

πa2
L

)2 ∫
dρ T (ρ), (25)

and different image-bearing terms

C1,C(ρp) = q2η2ApAb

αL2

(
2P

πa2
L

)2 ∫
dρ T (ρ)e

− |ρ−ρp |2
αρ2

L (26)

for the classical-state (pseudothermal) source, and

C1,Q(ρp) = q2η2ApAb

αL2

(
2P

πa2
L

)2(
1 + 1

4
√

πI

)

× 
BT0

4

∫
dρ T (−ρ)e

− |ρ−ρp |2
αρ2

L (27)

for the nonclassical-state (quantum) source.
The average pseudothermal ghost image is erect and

consists of a scaled version of the target’s intensity-reflection
coefficient T (ρ) convolved with a Gaussian point-spread
function whose e−1 radius is ρL

√
α. The average SPDC

ghost image is inverted, with a different scaling but the
same point-spread function. Thus, both the pseudothermal and
SPDC ghost images have the same spatial resolution

ρL

√
α = λ0L

πa0

√
1 + a2

0

2

[
ρ−2

S + ρ−2
R

]
(28)

= λ0L

πa0

√
1 + a2

0

2
(1.09k2

0L)
6
5
[
(C2

n,S)
6
5 + (

C2
n,R

) 6
5
]
, (29)

where we have utilized Eq. (10) to write the turbulence
coherence lengths on each path in terms of their respective
strength parameters. Equation (28) shows that turbulence-
limited resolution prevails for the far-field lensless ghost image
when either the source-to-target coherence length (ρS) or the
source-to-reference coherence length (ρR) becomes smaller
than the source size (a0). When ρS 	 a0 and ρR 	 a0, far-field
lensless ghost imaging in reflection yields the same λ0L/πa0

spatial resolution previously reported for far-field lensless
ghost imaging in transmission [2,12]. However, even when
turbulence does not degrade ghost-image spatial resolution,
there is still a significant difference between the transmissive
and reflective cases, namely, the Ab/L

2 factor that is present in
our results but is absent from those in [2]. This factor, which
will obey Ab/L

2 � 1 in a standoff-sensing scenario, is the
bucket detector’s angular subtense at the target and represents
the fraction of the quasi-Lambertian reflected light that this
detector collects. No such factor appeared in [2] because that
work assumed the bucket detector collected all the light that
was transmitted through the target.

The featureless background terms in our pseudothermal and
SPDC ghost images affect the images’ contrast. To assess these
contrasts, we will adopt the definition and approach presented
in [2]. In particular, the image contrast C is the ratio of the
difference between the brightest and darkest pixels in the image
to the featureless background:

C = maxR[Ĉ(ρp)] − minR[Ĉ(ρp)]

C0
, (30)

where R is the region within which T (ρ) is nonzero. We will
assume that the ghost imager completely resolves the target,
so that we can use the approximation∫

dρ T (±ρ)e
− |ρ−ρp |2

αρ2
L ≈ παρ2

LT (±ρ). (31)

Defining AT = ∫
dρ T (ρ) as the target’s reflective cross

section, and taking maxR[T (ρ)] = 1, we get the following
image contrast expressions for our two ghost imagers:

CC = πρ2
L

AT

(32)

and

CQ = πρ2
L

AT


BT0

4

(
1 + 1

4
√

πI

)
. (33)

If |T (ρ)| ∼ 1 where it is nonzero, then AT is the area
of the target. Moreover, ρ2

L is the spatial-resolution area in
the absence of turbulence. It follows that the pseudothermal
ghost-image contrast is approximately 1/N , where N is
number of no-turbulence resolution cells in the image. Note
that our analysis to this point has assumed a dc-coupled
correlator in Fig. 1. The contrast of a pseudothermal ghost
image can be improved by suppressing the background term
through ac coupling, i.e., measuring the cross covariance,
rather than the cross correlation, between the bucket and high
spatial-resolution photodetector’s outputs, as was done in the
pseudothermal experiments of Scarcelli et al. [24].

The pseudothermal imager’s contrast does not depend on
its source brightness I, but that for the SPDC does. At high
source brightness I 	 1, the SPDC image contrast reduces to
the result we found for the pseudothermal case. The normal
operating regime for a cw SPDC, however, is one of low
brightness I � 1, for which Eq. (33) reduces to

CQ ≈
√

π

16


B

P

a2
L

AT

. (34)

The number of photon pairs emitted by an SPDC in one
detector time constant is low, so 
B/P 	 1, and our assump-
tion that the target is contained within the region illuminated by
the signal beam implies that a2

L/AT > 1 if |T (ρ)| ∼ 1 where
it is nonzero. Consequently, unlike the pseudothermal case,
CQ 	 1 is the norm for SDPC ghost imaging in dc-coupled
operation.

IV. SIGNAL-TO-NOISE RATIO

In keeping with the analysis done in [5], we will be
evaluating the signal-to-noise ratio (SNR) pixelwise as the
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ratio of the square of the expected value to the variance for the
photocurrent cross-correlation function

SNR = 〈Ĉ(ρp)〉2

Var[Ĉ(ρp)]
= 〈Ĉ(ρp)〉2

〈Ĉ2(ρp)〉 − 〈Ĉ(ρp)〉2
. (35)

The main complication in evaluating Eq. (35) is the second
moment

〈Ĉ2(ρp)〉 = 1

T 2
I

∫ TI /2

−TI /2
dt

∫ TI /2

−TI /2
du 〈îp(t)îb(t)îp(u)îb(u)〉.

(36)

After using Eq. (15) to write the currents in terms of the fields,
Eqs. (1) and (2), to normally order the fields, and Eqs. (8)
and (12) to propagate the fields back to the source, we are left
needing to evaluate an eighth-order moment of the fields, two
sixth-order moments of the fields, a fourth-order moment of the
fields, a fourth-order moment of the target, three fourth-order
moments of the turbulence, and propagation of these terms over
12 unique paths. To make the analysis more tractable, we use
several simplifying assumptions. First, we ac couple both of
the detector outputs by inserting a narrow-band notch centered
at the origin in frequency space, resulting in the frequency
response

HB(
) = e−2
2/
2
B − e−2
2/
2

N , (37)

where 
N � 
B . We also assume that the ghost imager can
resolve all structure on the target, allowing us to use the
approximation in Eq. (31).

To evaluate the fourth-order turbulence moments, we can no
longer use the square-law approximation in Eq. (9) that models
the turbulence’s mutual-coherence function as Gaussian be-
cause this approximation is not valid for fourth-order moments
[25]. To evaluate these terms, we assume that the turbulence
coherence length on each path is much larger than the on-target
coherence length ρL. We also assume the turbulence coherence
lengths are all much larger than a0, implying that the turbulence
functions are independent of coordinates at the source and
detection planes. Although these assumptions are somewhat
limiting, they still allow weak-to-medium strength turbulence
for a typical situation. For instance, if the target is standing
off 1 km, the source aperture has radius a0 = 3 cm, and we
are at a wavelength λ0 = 1.5 μm, this assumption is satisfied
for C2

n � 10−14 m−2/3. Moreover, this situation has no spatial
averaging of the turbulence at the target and thus represents a
worst-case scenario for the SNR.

For ρ ′
� and ρ ′′

� being coordinates at the CCD or bucket
detectors, and ρ� being coordinates at the target, the preceding
coherence-length assumptions imply that

〈eψ∗
m(ρ ′

1,ρ1)eψm(ρ ′′
1 ,ρ1)eψ∗

m(ρ ′
2,ρ2)eψm(ρ ′′

2 ,ρ2)〉
≈ 〈eψ∗

m(0,ρ1)eψm(0,ρ1)eψ∗
m(0,ρ2)eψm(0,ρ2)〉

= 〈e2 Re[ψm(0,ρ1)]+2 Re[ψm(0,ρ2)]〉. (38)

Decomposing the turbulence function into its log ampli-
tude and phase components as ψm(ρ1,ρ2) = χm(ρ1,ρ2) +
iφm(ρ1,ρ2), and taking the log amplitude to be Gaussian
distributed with mean equal to minus its variance [14], then

gives

〈eψ∗
m(ρ ′

1,ρ1)eψm(ρ ′′
1 ,ρ1)eψ∗

m(ρ ′
2,ρ2)eψm(ρ ′′

2 ,ρ2)〉 ≈ e4Kχm (ρ1−ρ2), (39)

where

Kχm
(ρ1 − ρ2) = 〈�χm(0,ρ1)�χm(0,ρ2)〉, (40)

for �χm ≡ χm − 〈χm〉, is the log-amplitude covariance func-
tion. The log-amplitude variance will be taken to be [17]

σ 2
m = Kχm

(0) = 0.124 C2
n,mk

7/6
0 L11/6, (41)

where we have used the Rytov-approximation expression, the
validity of which is ensured by our assumption of weak-to-
medium strength turbulence.

Even with these simplifications, the SNR evaluation is
quite tedious, if somewhat straightforward. The higher-order
field moments and the fourth-order target moment can be
reduced to a sum of the products of second-order moments
by application of the Gaussian moment-factoring theorem.
The ac coupling removes several of these terms, and we are
left with integrals and Fourier transforms of the product of
Gaussian terms, the turbulence correlation functions, and the
target’s intensity-reflection coefficient T (ρ). To simplify our
final SNR expressions, we define two new terms

A′
T =

∫
dρ T 2(ρ), (42)

� = 1

(4πβ)2

∫
dν e−|ν|2/2O(ν,4

√
β), (43)

where O(ζ ,D) is the two-circle overlap function for circles of
diameter D:

O(ζ ,D)

=
{

D2

2

[
cos−1

( |ζ |
D

) − |ζ |
D

√
1 − |ζ |2

D2

]
for |ζ | � D,

0 elsewhere,

(44)

β = Ab/πa2
0 , and we have utilized the dimensionless differ-

ence coordinates ν = ρLk0(ρ ′ − ρ ′′)/L, where ρ ′ and ρ ′′ are
coordinates at the bucket detector.

Both A′
T and � have significant physical interpretations.

Similar to AT , A′
T is another measure of the reflective area of

the target, and thus directly related to the number of on-target
resolution cells, and the subsequent amount of time it takes
to form an image. � is a metric for the spatial averaging of
the target-induced speckle over the bucket detector. For very
small detectors � ≈ 1, while for large detectors it is inversely
proportional to the area of the bucket detector, viz., � ≈ 1/2β.
To further simplify our SNR expressions, we make two final
assumptions: first, that A′

T /ρ2
L 	 30, which is equivalent

to saying that the ghost image consists of at least 10 × 10
resolution cells; and second, that the bucket detector is at least
as large as the area of the source beam, or β � 1. By applying
these conditions, we arrive at the following SNR expressions
for pseudothermal and SPDC reflective ghost imaging through
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atmospheric turbulence:

SNRC = T 2(ρp)
T0
TI

�2S + �2P + 
BT 2
0

TI
�2D + T0

TI
�2M

, (45)

SNRQ =
T 2(ρp)

[
1 + 1

4
√

πI
]2

4

BTI

�2S + �2P
[
1 + 1

4
√

πI
]2 + T04

√
2

TI
�2D

[
1 + 1

4
√

πI
] + T0

TI
�2M

[
2√
3

+ 1
4
√

πI
] , (46)

where, for ease of comparison with the pseudothermal imager,
we have inverted the image coordinates in the SPDC case.

The terms that appear in the noise denominators of
Eqs. (45) and (46) are as follows:

�2S = A′
T (1 + β−1)e4(σ 2

R+σ 2
S +σ 2

T )

√
2πρ2

L

, (47)

�2P = T 2(ρp)[e4(σ 2
R+σ 2

S +σ 2
T )(� + 1) − 1], (48)

�2D = T (ρp)ρ2
L

√
π

16
√

2Apη2I2

L2

Ab

, (49)

�2M = T (ρp)

ηI
L2

Ab

e4σ 2
R

+ πρ2
LT 2(ρp)

ApηI

[
4

3
+ β−1

]
e4(σ 2

S +σ 2
T ), (50)

where σ 2
� for � = R,S,T denotes the turbulence-induced log-

amplitude variance on the reference (R), signal (S), and target
(T ) paths. Each of these noise terms has an important physical
interpretation, as we explain below.

The first noise term �2S captures the fluctuations associ-
ated with decorrelation of transverse locations in the image
arising from the source’s time evolution. Thus, it is inversely
proportional to the number of on-target resolution cells ρ2

L/A′
T

and the number of different source patterns measured. For
the pseudothermal imager, for which 
BT0 	 1 holds, this is
the number of field-coherence times in the integration time,
so we find �2S scaled by T0/TI . For the SPDC imager,
we have 
BT0 � 1, so it is the detectors’ response time
that limits the measurements’ correlation behavior, hence,
we find the �2S scaled by 4/
BTI in that imager’s SNR
denominator.

The �2P term is due to the optical-path interactions that
degrade the measurement, i.e., the turbulent atmosphere, and
the scattering off the rough target. The noise contribution
from target scattering can be mitigated by aperture averaging,
which, as noted above, is quantified by �. The effect of the
turbulence is somewhat more complicated, as it contributes
a scaling factor e4σ 2

� to all field-variation terms on path �. In
addition, the log-amplitude fluctuations also cause a deviation
that results in the squared-mean term in the denominator
of Eq. (35) no longer being canceled. These effects are
particularly devastating because �2P is the only noise term
whose strength is independent of the detector integration time.
This is because we have assumed time-independent target
behavior and TI less than the ∼ms turbulence coherence
time. Consequently, regardless of the source brightness and

integration time, �2P sets an ultimate upper limit on the
SNR.

The noise term �2D results from the statistics of photode-
tection at both the reference and bucket detectors, and as such
is inversely proportional to the photon fluxes impinging on
their active regions. Thus, �2D is inversely proportional to
the size of each pixel Ap and the solid-angle subtense factor
Ab/L

2. Detection noise is mitigated by temporal averaging,
but exacerbated by having a fast detector, so the pseudothermal
�2D is scaled by 
BT 2

0 /TI , while for the SPDC imager, it is
scaled only by T0/TI . The SPDC case is also scaled by by
1 + 1/4

√
πI, a result of that source’s stronger-than-classical

correlation.
The �2M term contains noise contributed by mixing

between source plus path noise on the reference arm with
detection noise on the signal arm, and vice versa. For both
imagers, this term has a temporal scaling of T0/TI , and for the
SPDC imager, the quantum correlation imparts an additional
factor of 2/

√
3 + 1/4

√
πI.

To get a better understanding of the SNR behavior for
pseudothermal and SPDC ghost imagers, we will consider
three limiting cases. The first is the long integration-time limit
in which �2P dominates the noise denominators for both
the pseudothermal and SPDC ghost imagers, leading to the
identical maximum (saturation) SNR value

SNRsat = e−4(σ 2
R+σ 2

S +σ 2
T )

[� + 1] − e−4(σ 2
R+σ 2

S +σ 2
T )

, (51)

regardless of the strength of the illumination.
For our next two cases, we will assume the integration time

is sufficiently short that SNR saturation is not approached.
Then, in the high-brightness (I 	 1) case, for which detection
noise can be neglected, performance is dominated by source
fluctuations �2S yielding

SNRH,C = TI

T0

√
2πρ2

Le−4(σ 2
R+σ 2

S +σ 2
T )

A′
T (1 + β−1)

T 2(ρp), (52)

SNRH,Q = 
BTI

√
π

8

ρ2
Le−4(σ 2

R+σ 2
S +σ 2

T )

A′
T (1 + β−1)

T 2(ρp) (53)

for pseudothermal (C) and SPDC (Q) imagers, respec-
tively. With all parameters other than source coherence time
being equal, the SPDC high-brightness SNR exceeds that of
the pseudothermal source by a factor 
BT0 	 1, where T0 is
the pseudothermal source’s coherence time. This is because the
much faster fluctuations in the SPDC output fields lead to faster
decorrelation, and hence higher SNR. That said, however, the
reader is reminded that cw SPDC operation is ordinarily in
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the low-brightness regime, hence, we turn our attention now
to that special case.

In the low-brightness I � 1 regime, SNR behavior is
dominated by the beat between the detection noises �2D.
Here, we find that

SNRL,C = TI

T0

16
√

2√
π

Apη2I2


BT0ρ
2
L

T (ρp)
Ab

L2
, (54)

SNRL,Q = TI

T0

Apη2I
πρ2

L

T (ρp)
Ab

L2
(55)

for the pseudothermal and SPDC cases. The SPDC SNR
is linear in source brightness, whereas the pseudothermal
SNR is quadratic in that parameter. This behavior is to be
expected because the SPDC low-brightness output approaches
the biphoton state, which is known to have lower detection
noise than classical-state light. Furthermore, T0 for the pseu-
dothermal source will greatly exceed T0 for the SPDC, and,
as noted in the preceding paragraph, 
BT0 	 1 holds for the
pseudothermal source. It follows that the low-brightness SPDC
SNR is much higher than that of the pseudothermal imager. The
reader is cautioned to remember, however, that pseudothermal
ghost imaging is typically performed in the high-brightness
regime.

It is also instructive to compare our SNR results, which
apply to reflective ghost imaging through atmospheric turbu-
lence, to the transmissive ghost-imaging, no-turbulence results
from [5]. The principal differences between the SNR behaviors
in these two cases are as follows. Our SNR expressions have
the average intensity reflection coefficient T (ρp) appearing in
lieu of the magnitude squared of the field reflection coefficient
|T (ρp)|2 that is seen in the transmissive case. Moreover, the
transmissive-case SNR from [5] has neither target-induced
speckle nor turbulence contributions, so it has neither �2P
term nor any turbulence-induced noise-magnification factors.
The reflective case’s �2S term has a factor of (1 + β−1)
and its �2M term has a factor of (4/3 + β−1), but both
β−1 contributions are absent from the transmissive case.
These additional reflective-case contributions are direct results
of the rough-surface scattering. In both transmissive and reflec-
tive operations, there is averaging of the source randomness
at the target, but in the reflective case, the fields scatter
incoherently off the target and their Fourier components are
averaged at the bucket detector. This second averaging depends
on the ratio of the source size to the bucket size, i.e., β. As
β increases, the bucket detector captures more light, this term
becomes less significant, and we approach the transmissive
behavior for these terms. Finally, the reflective-SNR terms
associated with the bucket detector measurement in �2D and
�2M are scaled by L2/Ab, relative to the corresponding terms
in the transmissive case. This scale factor is the inverse of the
solid angle subtended at the target by the bucket detector.
Its presence in the reflective case is a consequence of the
quasi-Lambertian scattering from the rough surface.

It follows from the SNR differences highlighted above
that the low-brightness SNR asymptotes for transmissive and
reflective operations only differ by the latter’s including the
solid-angle subtense factor Ab/L

2. Their high-brightness SNR
asymptotes are also similar, with the only difference being
the reflective case’s factor of (1 + β−1). The most profound

difference, however, is due to the �2P term that is only present
for reflective operation. This term implies that the SNR of
reflective ghost imaging has a maximum value SNRsat, whereas
no such saturation occurs in transmissive ghost imaging, i.e., its
SNR can grow without bound as TI /T0 increases. Furthermore,
in reflective imaging, this limiting effect can be quite severe:
even with no turbulence, for β = 1 we find SNRsat = 3.26,
and for β = 2 we have SNRsat = 5.54. So, for realistic
standoff sensing, the SNR will be limited to single-digit
values if no further measures are taken to suppress the fluc-
tuations arising from target-induced speckle and atmospheric
turbulence.

V. COMPUTATIONAL GHOST IMAGER

We have developed the performance of reflective ghost
imaging from classical and nonclassical sources in a quantum
Gaussian-state framework. Next, we consider a computational
ghost imager, a variant of the pseudothermal case in which
the “chaotic” signal field is created by deterministically
modulating the wavefront of a laser with a spatial light
modulator (SLM), and no reference-arm light beam is required.
Instead, knowledge of the SLM phase pattern is used to
calculate the signal-beam intensity at the target for use in
lieu of a reference-beam measurement [7]. If an independent
pseudorandom phase process is applied to each SLM pixel,
then far-field propagation can be argued to yield Gaussian field
statistics per the Central Limit Theorem. Thus, it is appropriate
for us to model the computational ghost imager’s far-field
statistics with a Gaussian-Schell model, taking the source’s
coherence length to be approximately the width of an SLM
pixel and the source’s intensity diameter to be the diameter of
the SLM.

The laser that illuminates the SLM will be taken to emit
coherent-state light, hence, the SLM’s output beam is in
classical state and semiclassical theory will give quantitatively
identical results for its far-field photodetection statistics as the
full quantum treatment [2,6,7]. Also, because the reference
field at the target is computed rather than measured, it is most
naturally modeled as a complex-valued Gaussian random pro-
cess. Consequently, and without loss of generality, we choose
to use semiclassical theory for our analysis of computational
ghost imaging because it lets us deal with only classical
random processes rather than a combination of quantum field
operators and classical random processes. We thus use E′

S(ρ,t)
to represent the complex envelope of the target-plane signal
field, and Ẽ′

R(ρ,t) to represent the computed complex envelope
of the field that would have been present on the CCD camera.
These two complex-valued, zero-mean, Gaussian random
processes are completely characterized by their nonzero
autocorrelation and cross-correlation functions, which we
take to be as given in Eqs. (3)–(5) for their field-operator
pseudothermal counterparts. That these correlation functions
are consistent with classical random-process theory follows
from the pseudothermal source’s producing classical-state
light.

The principal distinction between computational and pseu-
dothermal ghost imaging, which is also its main advan-
tage, is that there is neither detection noise nor turbu-
lence on its computed reference-arm intensity, which is
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found via

ĩp(t) = qη

∫
dτ P̃p(τ )h(t − τ ), (56)

with P̃p(t) = Ap|Ẽ′
R(ρp,t)|2. The bucket detector photocur-

rent, in semiclassical theory, is given by

ib(t) =
∫

dτ [qηPb(τ ) + �ib(τ )]h(t − τ ), (57)

where Pb(t) = ∫
Ab

dρ |E′
T (ρ,t)|2 is the impinging photon

flux, and conditioned on that photon flux the shot noise
�ib(t) is a zero-mean random process with autocorrelation
function 〈�ib(t1)�ib(t2)〉 = q2ηPb(t1)δ(t1 − t2). The compu-
tational ghost image is then obtained from the correlation
function

C̃(ρp) = 1

TI

∫ TI /2

−TI /2
dt ĩp(t)ib(t). (58)

Because the shot noise is zero mean, given Pb(t), it does not
contribute to 〈C̃(ρp)〉, hence, the computational ghost imager’s
spatial resolution and image contrast analysis is identical to the
Sec. III treatment of the pseudothermal ghost imager once
we substitute the computational system’s classical random
processes for the pseudothermal imager’s field operators, and
then let ρR → ∞ and set σ 2

R = 0 to account for the absence
of turbulence on the computed reference. Using this approach,

we immediately find the spatial resolution to be ρL

√
α̃ where

α̃ = 2ρ2
S + a2

0

2ρ2
S

, (59)

and the image contrast is identical to that given for the
pseudothermal imager in Eq. (32). In the latter regard, we
note that we could replace ĩp(t) in Eq. (58) with the zero-mean
process �ĩp(t) ≡ ĩp(t) − 〈ĩp(t)〉, thereby achieving the same
high-contrast operation as is realized with ac coupling in
pseudothermal ghost imaging.

Turning now to the computational ghost imager’s signal-
to-noise ratio, we find more significant differences between its
analysis and that of the pseudothermal ghost imager. In our
Sec. IV SNR analysis, the second moment of the photocur-
rent cross-correlation function involved an eighth-order field
moment, two sixth-order field moments, a fourth-order field-
moment, three fourth-order moments of the turbulence, and a
fourth-order moment of the target’s field-reflection coefficient.
For the computational ghost imager’s SNR analysis, we only
have to evaluate an eighth-order field moment, a sixth-order
field moment, two fourth-order moments of the turbulence,
and the fourth-order moment of the target’s field-reflection
coefficient. This simplification is because the other terms
involved the path and detection noises on the reference arm,
which are absent from the computational configuration. The
computational SNR is then given by

SNRC̃ =
T 2(ρp) TI

T0
e−4(σ 2

S +σ 2
T )

A′
T (1+β−1)√

2πρ2
L

+ T 2(ρp) TI

T0
([� + 1] − e−4(σ 2

S +σ 2
T )) + T (ρp)

ηI
L2

Ab

. (60)

It follows that computational ghost imaging shares the same
saturation SNR as pseudothermal and SPDC ghost imaging,
from Eq. (51), with σ 2

R set to zero because there is no turbulence
in the computational imager’s reference arm. Likewise, com-
putational ghost imaging has the same high-brightness SNR
asymptote as pseudothermal ghost imaging, from Eq. (52),
with σ 2

R = 0. On the other hand, computational ghost imaging
has a significantly improved low-brightness SNR asymptote,
given by

SNRC̃,L = TI

T0
ηIT (ρp)

Ab

L2
, (61)

in comparison with both pseudothermal and SPDC ghost
imaging.

For quantitative comparison between the SNRs of the
pseudothermal, SPDC, and computational systems, we will
first have to put them on equal footing. The dimensionless
brightness quantity I that appears in our SNR formulas is the
photon flux per spatiotemporal mode of the source. However,
because of the dramatically different coherence times of the
SPDC (
BT0 � 1) and the pseudothermal and SLM sources
(
BT0 	 1), comparisons based on equal I values will be for
sources with dramatically different photon fluxes, whereas we
would prefer to compare SNRs at equal photon fluxes. To do
so, we introduce the dimensionless quantity I
 = I
BT0 =

Pρ2
0/a2

0
B , which is the photon flux per source spatial mode
and detector temporal mode. Because all three systems are
taken to have detectors with identical characteristics, identical
values for I
 will yield identical photon fluxes. Making this
substitution, we can easily compare the low-brightness SNRs
from Eqs. (54), (55), and (61). In the extreme low-brightness
regime, the computational imager has the best SNR, followed
by the SPDC and pseudothermal imagers. We can also compare
the high-brightness limits Eqs. (52) and (53), where the shorter
coherence time of the SPDC source gives it a clear advantage.

Because the different sources exit their low- and high-
brightness SNR regimes and enter into SNR saturation for
different photon fluxes, assessing that behavior requires us to
explicitly choose some operating parameters. First, we assume
the operating wavelength is λ = 1.5 μm, the source coherence
length is ρ0 = 0.15/π mm, the source intensity radius is
a0 = 3 cm, and that the bucket detector matches the source
size, i.e., Ab = πa2

0 . These give us the on-target parameters
of ρL = 0.05/π m and aL = 10 m. The photodetectors are
taken to have η = 0.9 quantum efficiency, with the CCD
pixel area being Ap = 0.1ρ2

L. We assume the target is at
L = 1 km range, that it has an effective area of A′

T = 50 m2,
and T (ρp) = 1 at the point for which we will perform our
SNR evaluations. All paths are assumed to have moderate-
strength (C2

n = 10−14 m2/3) turbulence. Finally, we take the
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FIG. 2. (Color online) SNRs for pseudothermal, SPDC, and
computational ghost imaging vs normalized integration time 
BTI .
The source brightness is I
 = 1, so that the SPDC output is a
stream of biphotons and all three systems are well below their
respective high-brightness SNR asymptotes. Other parameters used
in computing these curves are given in the text.

pseudothermal and computational sources to have temporal
coherence times satisfying T0 = 103/
B Hz, while for the
SPDC source T0 = 1/103
B Hz.

We consider two scenarios: first, when the source is weak
enough (I
 = 1) that the SPDC output is still a stream of
biphotons, but we are not deep into the low-brightness regime;
and second, when the source is sufficiently strong (I
 = 104)
to make the SPDC output appear classical [26]. The resulting
SNR curves for these two cases are shown in Figs. 2 and 3,
respectively. From Fig. 2, we see that the SPDC imager is the
worst performer when it is in its biphoton regime, while the
computational ghost imager is to the top performer there. From
Fig. 3, however, we see that when the SPDC output appears to
be classical, its much shorter coherence time allows it to reach
the saturation-SNR limit well before the other two systems,
whose SNR curves are nearly identical.
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FIG. 3. (Color online) SNRs for pseudothermal, SPDC, and
computational ghost imaging vs normalized integration time 
BTI .
The source brightness is I
 = 104, so that the SPDC output appears to
be classical and the pseudothermal and computational ghost imagers
are in their high-brightness limits wherein they only differ by a factor
of e4σ 2

R . Other parameters used in computing these curves are given
in the text.

VI. DISCUSSION

We have derived the key performance characteristics of
reflective ghost imaging in the context of realistic standoff
sensing applications. This was done within a Gaussian-state
framework that allowed for analysis of classical pseudothermal
sources and the nonclassical output of an SPDC. Our results
for the spatial resolution, image contrast, and SNR were
analogous to those calculated for transmissive ghost imaging
in the absence of turbulence [2,5], with a few significant
differences that result from the roughness of the target surface,
turbulence on the optical paths, and the standoff nature
of the measurement. First, we shall discuss the impact of
rough-surface scattering in the absence of turbulence, then we
shall discuss the additional effects incurred when turbulence
is present.

Rough-surfaced targets scatter their impinging illumination
in a random manner, casting random speckle patterns in their
far fields that, on average, correspond to a quasi-Lambertian
distribution. Consequently, the ghost imager’s bucket detector
will, on average, collect only a fraction Ab/L

2 of the
target-scattered light. This angular subtense factor, which is
absent in transmissive ghost imaging, appears in the average
photocurrent cross-correlation functions in Eqs. (22) and (23),
and the noise terms associated with the bucket detector, i.e.,
�2D and �2M. The surface roughness has another major
effect on the SNR: its time-independent speckle pattern implies
the existence of a finite saturation-SNR value in the limit of
long integration time.

The target-speckle contribution that leads to a saturation
SNR appears in the �2P , and is a function of β, the ratio of
the source size to the bucket detector size. Here, we may incur
a tradeoff between spatial resolution and SNR. Specifically, by
enlarging the bucket detector, we can increase the averaging
of the target speckle, and thus the saturation SNR, without
affecting the imager’s spatial resolution. Ultimately, however,
there will be a practical limit beyond which the receiving
aperture size can no longer be increased. Beyond that point,
β, and thus the saturation SNR, can only be increased
by decreasing the source size a0. However, as seen in
Eq. (28), spatial resolution is inversely proportional to a0,
so increasing the saturation SNR in this manner will degrade
spatial resolution.

The effects of turbulence on the image contrast and spatial
resolution of reflective ghost imaging are similar to those previ-
ously found for transmissive ghost imaging [11]. In particular,
turbulence does not change the image contrast; turbulence in
the target-to-bucket path has no effect on spatial resolution; and
turbulence on the signal and reference paths degrades spatial
resolution in the same manner, i.e., degradation occurs when
they become smaller than the source size. In both SPDC and
pseudothermal ghost imaging, it is therefore advantageous to
propagate the reference field through a controlled (turbulence-
free) environment. Turbulence also degrades ghost-image SNR
in two ways: first, its log-amplitude fluctuations magnify
several existing noise terms; and second, these fluctuations also
contribute to the time-independent noise term �2P , decreasing
the saturation SNR from its speckle-only value.

In computational ghost imaging, the reference field is
computed, removing the turbulence on that path, and thus
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improving both the spatial resolution and the SNR. The
computational case also has significantly reduced noise for
low-brightness illumination, as there is no longer detection
noise on the reference arm, making its low-brightness SNR
behavior superior to that of both pseudothermal and SPDC
ghost imaging. More generally, Figs. 2 and 3 show that the
computational ghost imager has a higher SNR than the pseu-
dothermal system in both low-brightness and high-brightness
operations and than the SPDC system in its low-brightness
(biphoton) regime. However, in high-brightness operation, the
SPDC ghost imager’s significantly shorter coherence time
enables it to reach its saturation SNR much quicker than
either the computational or the pseudothermal ghost imagers.
Although a cw SPDC will not be able to reach that high-
brightness regime, pulsed systems are capable of doing so [27].

Insofar as standoff sensing is concerned, the essential
conclusion to be drawn from the preceding summary of
our work is simple: the computational approach is the
ghost-imaging configuration that shows the most promise
for this application. It has the best spatial resolution, the
highest saturation SNR, and general SNR performance second
only to high-brightness SPDC operation. In addition, the
computational approach obviates the need for a physical
reference path, which makes it naturally amenable to obtaining
3D ghost images. In particular, pseudothermal and SPDC
ghost imaging require that reference-arm measurements be
made on an intensity pattern corresponding to the one that is
projected onto the target. As shown theoretically in [7] and
experimentally in [8], computational ghost imaging allows

reference intensity patterns to be computed at a variety of
target ranges so that ghost images can be formed for these
target ranges from the same bucket-detector data. This range
sectioning is something that can not be done, without separate
measurements for each possible target range, in pseudothermal
or SPDC ghost imaging.

We have reserved our final comment for our choice
of image reconstruction via photocurrent cross correlation.
It has already been demonstrated [8,9] that ghost-imaging
reconstruction can be performed in transmission through
more advanced methods, such as compressive sensing. A
preliminary no-turbulence performance comparison between a
simple cw-laser radar and ghost imaging in reflection via cross
correlation has shown their similarity in spatial resolution and
SNR [12]. If advanced image-reconstruction techniques can
be successfully applied to computational ghost imaging, the
resulting system could have notable advantages over current
laser radars.
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