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Ultrahigh sensitivity of rotation sensing beyond the trade-off between sensitivity and linewidth by
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We propose to employ the storage of light in a dynamically tuned add-drop resonator to realize an optical
gyroscope of ultrahigh sensitivity and compact size. Taking the impact of the linewidth of incident light on the
sensitivity into account, we investigate the effect of rotation on the propagation of a partially coherent light
field in this dynamically tuned slow-light structure. It is demonstrated that the fundamental trade-off between
the rotation-detection sensitivity and the linewidth will be overcome and the sensitivity-linewidth product will
be enhanced by two orders of magnitude in comparison to that of the corresponding static slow-light structure.
Furthermore, the optical gyroscope employing the storage of light in the dynamically tuned add-drop resonator
can acquire ultrahigh sensitivity by extremely short fiber length without a high-performance laser source of narrow
linewidth and a complex laser frequency stabilization system. Thus the proposal in this paper provides a promising
and feasible scheme to realize highly sensitive and compact integrated optical gyroscopes by slow-light structures.

DOI: 10.1103/PhysRevA.84.063823 PACS number(s): 42.81.Pa, 42.60.Da, 42.25.Kb, 42.81.Wg

I. INTRODUCTION

Optical gyroscopes of high sensitivity and compact size
have been attracting much investigation interest due to their nu-
merous applications ranging from inertial navigation systems
to positioning systems. The Sagnac phase shift accumulated
by an electromagnetic wave in a rotation waveguide, which is
proportional to the length and the rotation rate of the waveguide
[1,2], is the underlying concept for optical gyroscopes to detect
rotation velocity. Therefore, to acquire higher sensitivity, one
always increases the length of the waveguide of an optical
gyroscope. However, to increase the length of the waveguide is
less attractive for the practical realization of a highly compact
integrated optical gyroscope.

In recent years, many researchers have paid more and more
attention to the ultimate control of the group velocity of light,
in that slow light has potential applications for the technology
of high-capacity optical communication networks [3], image
processing [4], optical sensing [5] and measurement [6],
optical amplification [7], and quantum information processing
[8–10]. A variety of approaches to slow down and even to stop
an optical pulse have been developed, since the remarkable
ultraslow light at 17 m/s was initially demonstrated by using
electromagnetically induced transparency (EIT) in coherent
atomic gases [11]. Generally speaking, one can classify these
approaches into two categories: atomic resonances and optical
resonances. Although the initial ultraslow group velocity
and the stopping of optical pulses have been demonstrated
in atomic resonances [11–13], the specific wavelength cor-
responding to the atomic transition, the residual intrinsic
absorption of the atomic systems, and the narrow operational
bandwidth impose restrictions on further application of the
atomic resonances [14]. From the perspective of dispersion
engineering, the optical resonances should be an alternative
promising approach, because the properties provided can avoid
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the preceding disadvantages of slow light based on atomic
transition [14].

Since slow-light optical resonance structures possess sharp
phase shift variation due to high dispersion with compact
size, one proposes to utilize dramatic normal dispersion of
optical resonance structures to realize highly sensitive and
compact optical gyroscopes [15–22]. For example, these
optical resonance structures include the side-coupled inte-
grated spaced sequence of resonators (SCISSOR) [16,18], the
photonic crystal structure [17], the coupled resonator optical
waveguides (CROW) [19], the coupled-resonator-induced
transparency (CRIT) structure [20,21], and so on. Moreover,
it is experimentally demonstrated that the normal dispersion
of the single side-coupled resonator as a basic cell of the
preceding optical resonance structures can actually obtain the
large differential Sagnac phase shift by short fiber length [23].
Generally, for the optical gyroscope employing the normal
dispersion of optical resonance structures (the slow-light
resonator structure gyroscopes), the differential Sagnac phase
shift is proportional to the photonic coherence-induced group
delay or group index of the structures [16,20,23]. Thus, one
may design and implement some appropriate optical resonance
structures of strong normal dispersion in order to develop a
highly sensitive and compact integrated optical gyroscope.

In spite of possessing high sensitivity due to high disper-
sion, these optical resonance structures, such as slow-light
devices, have to suffer the fundamental trade-off between
the bandwidth and the group delay [7,24–27] as well as
the trade-off between the linewidth of incident light and the
differential Sagnac phase shift (proportional to the group
delay or the group index [16,20,23]) for rotation sensing. In
other words, for the optical gyroscope based on the static
optical resonance structures [15–23], the narrow dispersion
range due to the large differential Sagnac phase shift or
the high sensitivity requires a high-performance laser source
of narrow linewidth and a complex laser frequency sta-
bilization system [28], which will increase the enormous
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engineering complexity and make the optical gyroscope more
unpractical.

In this paper, we first review the fundamental trade-
off between the bandwidth and the group delay in some
typical optical resonance structures and specifically derive the
constraint of the sensitivity-linewidth product (SLP) of the
static add-drop resonator configuration in Sec. II. Secondly, in
Sec. III, to overcome the drawbacks due to the constraint of the
SLP, we propose to employ the storage of light in a dynamically
tuned add-drop resonator configuration (a dynamically tuned
slow-light structure) to realize an optical gyroscope. Taking
the impact of the linewidth of incident light on the sensitivity
of the optical gyroscope into account, we investigate the effect
of rotation on the propagation of a partially coherent light field
in this dynamically tuned slow-light structure. Then, in Sec. IV,
we compare the sensitivity of this proposed optical gyroscope
with that of the optical gyroscope based on the static single
side-coupled resonator [23]. In Sec. IV A, it is demonstrated
that the fundamental trade-off between the rotation-detection
sensitivity and the linewidth will be overcome. Furthermore,
in Sec. IV B, the proposed optical gyroscope can acquire
ultrahigh sensitivity by short circumference of fiber length
without a high-performance laser source of narrow linewidth
and a complex laser frequency stabilization system. Finally, in
Sec. V, we compare the ultimate detection sensitivity [28] of
the proposed gyroscope employing the storage of light with
that of a conventional fiber optic gyroscope (FOG).

II. THE TRADE-OFF RELATION BETWEEN SENSITIVITY
AND LINEWIDTH OF STATIC OPTICAL RESONANCE

STRUCTURES FOR ROTATION SENSING

Generally, an optical pulse cannot be stopped in a static
optical resonance system, since the optical pulse must suffer
the fundamental trade-off relation between the bandwidth and
the group delay in the static system due to the constraint of the
delay-bandwidth product (DBP) [7,24–27]. For example, to
avoid the strong distortion of a slow-light pulse in a SCISSOR
structure, the delay-bandwidth product (DBP) should satisfy
tg(ωre)�ν � N2/3/6π , where tg(ωre), �ν, and N represent
the group delay at resonant frequency ωre, the bandwidth of
incident light pulse, and the number of the resonators in the
SCISSOR structure [29]. Similarly, for minimal distortion in a
CROW structure, the minimum group velocity of optical pulses
is not smaller than 0.01c at 10 Gbit/s rate at a wavelength of
1.55 μm [25,27].

Specifically, for a static add-drop resonator configuration
[30] (the static single side-coupled ring resonator in Ref. [23]
is a specific example of the configuration) as shown in Fig. 1,
there also exists a constraint of the delay-bandwidth product.
By the coupling matrix formalism [31–33], if the incident light
is launched into the port of Add 1, we can deduce the group
delay of the static add-drop resonator at the output port of Add
2 as

�tadd(φ)

=
(
1 − ρ2

1

)
a
[
a
(
1+ρ2

1

) − ρ1(1 + a2) cos(φ)
]
neL[

ρ2
1 + a2 − 2ρ1a cos(φ)

][
ρ2

1a
2 − 2ρ1a cos(φ) + 1

]
c
,

(1)

FIG. 1. Schematic of the static add-drop resonator configuration.

where ρ1, a = a0ρ2, a0, ρ2, φ = neL/c, ne, L, and c denote
the transmission coefficient of the excitation waveguide over
the coupling length, the general round-trip loss coefficient, the
round-trip intrinsic loss coefficient, the transmission coef-
ficient of the output waveguide, the round-trip phase shift,
the effective index of the resonator, the circumference of the
resonator, and the velocity of light in vacuum, respectively.
In the vicinity of the resonant frequency ωre, Eq. (1) can be
expanded into the Taylor series as

�tadd(ω) = �tadd(ωre) + 1

2!

d2�tadd

dω2

∣∣∣∣
ω=ωre

(ω − ωre)2

+ 1

4!

d4�tadd

dω4

∣∣∣∣
ω=ωre

(ω − ωre)4 + · · · , (2)

where the zero and second derivatives of the group delay on
resonance are �tadd(ωre) = (neL/c)a(1 − ρ2

1 )/[(a − ρ1)(1 −
aρ1)] and (d2�tadd/dω2)|ω=ωre

= −(neL/c)3aρ1(1 − ρ2
1 )

[(1 − 6a2 + a4)ρ1 + a(1 + a2)(1 + ρ2
1 )]/[(a − ρ1)(1 − aρ1)]3,

respectively. If the parameters of the resonator satisfy a ≈ 1
and

√
0.5 � ρ1 < a, that is to say, if the resonator is of

high quality (Q) factor and normal dispersion, the zero and
second order derivatives in Eq. (2) will become �tadd(ωre) =
(neL/c)(1 + ρ1)/(1 − ρ1) and (d2�tadd/dω2)|ω=ωre

=
−(neL/c)32ρ1(1 + ρ1)/(1 − ρ1)3. To prevent the decay of the
group delay due to broad bandwidth �ν, the zero- and second-
order terms of the group delay should satisfy the condition
as �tadd(ωre) + 0.5[0.5(2π�ν)](d2�tadd/dω2)|ω=ωre

� 0,
which would lead to the constraint of the DBP as

�tadd(ωre)�ν � 0.6462. (3)

Similarly, if the resonator is of high quality (Q) factor
(a0 ≈ 1 and ρ1,ρ2 �

√
0.5), one can also deduce the constraint

of the DBP at the output port of Drop 1 as

�tdrop(ωre)�ν � 0.3376. (4)

The conditions of �tadd(ωre)�ν � 0.6462 and
�tdrop(ωre)�ν � 0.3376 indicate the constraint of the
DBP in the static add-drop resonator configuration. Therefore,
when an optical pulse propagates through the static optical
resonance system, it will also suffer the fundamental trade-off
between the group delay and the bandwidth.

063823-2



ULTRAHIGH SENSITIVITY OF ROTATION SENSING . . . PHYSICAL REVIEW A 84, 063823 (2011)

In addition, if one estimates the strong dispersion range
by the full width at half maximum (FWHM) W of the
resonance peak of the static add-drop resonator, one can
also obtain similar conditions as the trade-off relation be-
tween the group delay and the strong dispersion range
as �tadd(ωre)W � 0.6462 and �tdrop(ωre)W � 0.3376 in
the same situation, where the FWHM is given by W =
(2c/πneL) arcsin [(1 − aρ1)/2

√
aρ1].

Once the dramatic normal dispersion of an optical reso-
nance structure is employed to enhance the rotation-dependent
phase difference (the differential Sagnac phase shift) and
the rotation-detection sensitivity, the fundamental trade-off
between the group delay and the bandwidth will transform
into the trade-off relation between the sensitivity and the
linewidth of incident light in that the enhanced rotation-
dependent phase difference and the sensitivity enhancement
are generally proportional to the photonic coherence-induced
group index or group delay [16,20,23]. Specifically, for an
optical gyroscope employing the normal dispersion of a static
add-drop resonator, the enhanced rotation-dependent phase
difference is ��′(ω0,	) = 2

∫ �φs (ω0,	)
�φs (ω0,0) [ng(�φs)/ne]d�φs .

Additionally, the rotation-detection sensitivity enhancement
factor η′ [22,23], which is the ratio between the rotation-
dependent phase difference of the gyroscope and that of a
conventional fiber optic gyroscope with equal fiber length and
equal footprint, is [23]

η′
add(drop)(ω0,	)

=
∫ �φs (ω0,	)

�φs (ω0,0)
[ng(�φs)/ne]d�φs

/∫ �φs (ω0,	)

�φs (ω0,0)
d�φs,

(5)

where ω0, 	, ng = c�tadd(drop)/L, �tadd(drop), and �φs are
the angular frequency of monochromatic incident light, the
clockwise rotation angular velocity of the static add-drop
resonator, the group index, the group delay, and the Sagnac
phase shift accumulated by the clockwise light wave in the
conventional FOG with equal fiber length and equal footprint,
respectively. Apparently η′ approximates ng/ne at a slow
rotation rate 	(→0).

According to Eqs. (3)–(5), the constraint of the sensitivity-
linewidth product (SLP) at the output port of Add 2 and Drop
1 can be derived as

η′
add(ωre,0)� � 0.6462, (6)

and

η′
drop(ωre,0)� � 0.3376, (7)

where � = �νin/�νFSR as the ratio of the linewidth �νin

of incident light to the free spectral range �νFSR = c/neL is
the dimensionless parameter of linewidth. The conditions of
Eqs. (6) and (7) indicate that the gyroscope employing the
normal dispersion of the static add-drop resonator will suffer
the trade-off relation between the sensitivity and the linewidth.
As a result, if a laser source with broad linewidth is launched
into this static slow-light resonator structure gyroscope, the
high sensitivity (the large sensitivity enhancement factor η′)
may not be obtained due to the trade-off relation despite
the strong normal dispersion. Thus, when one wants to

obtain high rotation-detection sensitivity by this gyroscope,
the narrowness of the structure bandwidth due to the high
sensitivity (the large sensitivity enhancement factor η′) will
require a high-performance laser source of narrow linewidth
and a complex laser frequency stabilization system [28]. In
brief, the trade-off relation between the sensitivity and the
linewidth not only may limit further sensitivity enhancement
of the static slow-light resonator structure gyroscope but also
increases the engineering complexity and makes the gyroscope
system unpractical.

To overcome the preceding shortcomings due to the trade-
off relation between the sensitivity and the linewidth, one may
use a dynamic optical resonance structure to obtain a large SLP
for rotation sensing. The dynamic optical resonance structure
with a large SLP can balance between the sensitivity and the
linewidth and hence may acquire higher rotation-detection
sensitivity by shorter fiber length without a high-performance
laser source of narrow linewidth and a complex laser frequency
stabilization system, which is attractive for the realization
of a highly compact and sensitive optical gyroscope. On
the other hand, to evaluate the effectiveness of a slow-
light resonator structure gyroscope, only the sensitivity (the
sensitivity enhancement factor) is not enough and the SLP is
another significant parameter.

III. ROTATION SENSING BEYOND THE TRADE-OFF
RELATION BETWEEN SENSITIVITY AND

LINEWIDTH BY STORAGE OF LIGHT

To obtain ultrahigh sensitivity (the sensitivity enhancement
factor) of a slow-light resonator structure gyroscope beyond
the preceding trade-off relation between the sensitivity and
the linewidth, we propose to employ the storage of light
in the dynamically tuned add-drop resonator (a dynamically
tuned slow-light structure) in Fig. 2 to obtain a large SLP.
For concreteness, while the structure is rotated, one needs to
compress the bandwidth of the structure reversibly [7,24–27]
or dynamically tune the quality (Q) factor [34,35] of the ring
resonator of the structure as the three following sequential
steps: Step 1. Couple light through Coupler 1 into the resonator
(the resonator is an open cavity with broad bandwidth and
low Q factor Q1). Step 2: Store light in the resonator (the
resonator is a closed cavity with narrow bandwidth and higher
Q factor Q2). Step 3: Release the stored light through Coupler

FIG. 2. Schematic of the dynamically tuned add-drop resonator
configuration used for rotation sensing.
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2 with high coupling efficiency (the resonator turns back to
be an open cavity with broader bandwidth and lower Q factor
Q3, Q2 > Q1 > Q3). To perform the preceding operation, we
propose to modulate the coupling coefficients of Coupler 1 and
Coupler 2 in time. Suppose κ1(t) and κ2(t) are the time-varying
coupling coefficients of Coupler 1 and Coupler 2 and ti is the
duration time of Step i. In Step 1 corresponding to the time
interval [−t1,0], we assume that the coupling coefficients are
|κ2

1 (t)| = 0.05 and |κ2
2 (t)| = 0. Hence the counterpropagating

incident light waves from the ports of Add 1 and Add 2 as
shown in Fig. 2 are coupled into the ring resonator through
Coupler 1. Afterwards, at the beginning of Step 2 (at time
t = 0), the stepwise modulation of Coupler 1 is switched on
with |κ2

1 (t)| = 0. In Step 2 of the time interval [0,t2], one
should retain |κ2

1 (t)| = 0 and |κ2
2 (t)| = 0 so as to close the ring

resonator. Thus the intracavity light waves captured in Step
1 are trapped and stored in the rotated and closed resonator.
Finally, at the beginning of Step 3 (at time t = t2), the stepwise
modulation of Coupler 2 is switched off with |κ2

2 (t)| = 0.5.
In Step 3 of the time interval [t2,t2 + t3], since |κ2

1 (t)| = 0
and |κ2

2 (t)| = 0.5, the stored counter-rotating light waves are
released through Coupler 2 into the ports of Drop 1 and Drop 2
to sense rotation by their rotation-dependent phase difference.
In brief, κ1(t) and κ2(t) are vanishing except |κ2

1 (t)| = 0.05 for
−t1 � t � 0 and |κ2

2 (t)| = 0.5 for t2 � t � t3, and the process
of the modulations on κ1(t) and κ2(t) in the three steps are
illustrated by Fig. 3(a).

To accomplish the preceding tuning steps, one may fab-
ricate the ring resonator of the dynamically tuned add-drop

resonator structure by single-mode optical fiber and two
(2 × 2) optical fiber couplers (Coupler 1 and Coupler 2) with
time-varying coupling coefficients. In practice, one can utilize
the ultrafast (2 × 2) silicon electric-optic switch based on a
Mach-Zehnder interferometer (MZI) [36,37] to realize the cou-
pler with a time-varying coupling coefficient. In Refs. [36,37],
when the phase of the MZI is tuned by the free carrier-induced
index change due to forward-biased drive voltage modulation
on the p-i-n junction in the MZI, the functionality of the
(2 × 2) coupler with a time-varying coupling coefficient can be
realized.

To quantify the process further and take the effect of
linewidth of incident light on the rotation-detection sensi-
tivity into account, let us assume that the polychromatic
incident light is a partially coherent Gaussian wave [38,39]
with the duration T0(<t1) and the central angular fre-
quency ω0 corresponding to the wavelength of 1550 nm
as

�0(ta,tb) = 〈E0(ta)E0(tb)〉e
= A0 exp

(
− t2

a + t2
b

2T 2
0

)
exp

[
− (ta − tb)2

2T 2
c

]
× exp[i(ω0ta − ω0tb)], (8)

where Tc is the coherence temporal length and 〈· · ·〉e de-
notes the ensemble average over different realizations of
the pulse [38,39]. The linewidth that can be evaluated by
the FWHM spectral width of the incident light is �νin =
[(T 2

c + 2T 2
0 )ln2]0.5/T0Tcπ if T0 � Tc.

FIG. 3. (a) Temporal evolution of the coupling strengths κ2
1 (t) (solid curve) and κ2

2 (t) (dashed curve). (b) Temporal evolution of the relative
quality factor Q/Q1 of the dynamically tuned add-drop resonator. (c) Temporal evolution of the rotation-detection sensitivity enhancement
factor η(t) of the dynamically tuned add-drop resonator. (d) Expanded view of η(t) for 4 μs � t � 4.15 μs. The parameters are T0 = 35.355 μs,
�νin = 5.30 MHz, L = 10 m, N = 10, ne = 1.5, a0 = 0.9952, 	 = 0.0157 rad/s, and t2 = 15.546 μs ≈ 3τ2.

063823-4



ULTRAHIGH SENSITIVITY OF ROTATION SENSING . . . PHYSICAL REVIEW A 84, 063823 (2011)

In Step 1, when the polychromatic incident light waves
represented by Eq. (8) from the ports of Add 1 and Add 2 are
being coupled into and captured by the rotating ring resonator
in Fig. 2, the rotation will modify the phases along the loops
of the resonator accumulated by counter-rotating light waves
and hence will induce the corresponding phase difference
accumulated along the loops. Furthermore, as a result of the
photonic coherence-induced steep normal dispersion in the
vicinity of resonant frequency ωre, the rotation-dependent
phase difference between the counter-rotating intracavity light
waves will be enhanced with respect to the phase difference ac-
cumulated along the loops [20–23]. To calculate the enhanced
rotation-dependent phase difference accumulated in Step 1,
the cross correlation �(t,t) = 〈[E−(t)]∗E+(t)〉e (−t1 � t �
0) describing the evolution of the counter-rotating intracavity
light fields E+(t) and E−(t) at Coupler 1 can be used and
given by the following inverse Fourier transformation:

�(t,t) =
∫ ∫ ∞

0
dωdω′W (ω,ω′) exp[i(ωt − ω′t)]

× T1[φ(ω′) + �φs(ω′,	)]T ∗
1 [φ(ω) − �φs(ω,	)],

(9)

where T1 and W (ω,ω′) are the dispersion relation and the
cross-spectral density of the incident light, respectively. The
dispersion relation is T1(φ) = κ1(t)/[1 − aρ1(t) exp(iφ)],
where ρ1(t) = [1 − κ2

1 (t)]0.5, a = a0ρ2(t), a0, and
ρ2(t) = [1 − κ2

2 (t)]0.5 are the transmission coefficient
of Coupler 1, the general round-trip loss coefficient,
the round-trip intrinsic loss coefficient, and the
transmission coefficient of Coupler 2, respectively. And
the cross-spectral density that can be deduced from
the Fourier transformation of Eq. (8) is W (ωa,ωb) =
(A0T0/2π�ω) exp[−(ωa − ω0)2/2�ω2−(ωb − ω0)2/2�ω2]

exp[−(ωb − ωa)2/2�ω2
c ], where �ω =

√
1/T 2

0 +2/T 2
c

and �ωc = (Tc/T0)�ω characterize the spectral linewidth
and the degree of spectral coherence [39]. In Eq. (9),
[φ(ω) ± �φs(ω,	)] as the round-trip phases accumulated
along the loops consist of both the propagation phase
φ(ω) = ωneL/c and the rotation-modified (Sagnac) phase
shifts ±�φs(ω,	) = ±2ωπR2	N/c2 for clockwise (+)
and counterclockwise (–) light waves due to the Sagnac
effect, where ne, L, c, 	, N , and R = L/2πN represent
the dispersion-free effective index of the resonator, the total
circumference of the ring resonator, the velocity of light in
vacuum, the clockwise angular velocity of the resonator,
the loop number of the resonator, and the radius of the
loop, respectively. According to Eq. (9), the enhanced
rotation-dependent phase difference (differential Sagnac
phase shift) between the counter-rotating intracavity light
waves accumulated in Step 1 can be represented by the angle
of the correlation ��(t) = arg[�(t,t)] (−t1 � t � 0) and the
rotation-detection sensitivity enhancement factor [22,23] (in
comparison to a conventional FOG with equal fiber length
and same footprint) is related as η(t) = ��(t)/2�φs(ω0,	)
(−t1 � t � 0) for the general case of polychromatic
incident light. For monochromatic incident light in
Step 1, η(t) reduces to Eq. (5), only if the group
index is substituted by ng1 (φ) = (c/L)[∂ arg(T1)/∂ω] =

neaρ1(t)[cos φ − aρ1(t)]/[1 − 2aρ1(t) cos φ + a2ρ2
1 (t)] in

Eq. (5). If the incident light is slowly time-varying, ��(t)
and η(t) in Step 1 are approximately time independent in
that the resonator is still a static resonator in Step 1. For
example, in Fig. 3(c), η(t) is approximately a constant
(16.29 � η(t) � 16.40) for −5 μs � t � 0 in Step 1.

Subsequently, in Step 2, when the counter-rotating intra-
cavity light waves captured by the ring resonator in Step 1 are
stored and propagate in the rotating and closed resonator, the
Sagnac phase shift continues to be accumulated in addition to
the enhanced phase shift obtained in Step 1 and the intracavity
light intensity will decay slowly without coupling loss. (Here
the active optical fiber can be used to fabricate the resonator
to reduce the loss and increase the photon lifetime further
[40,41]). In Step 3, when the stored light waves in Step 2 are
released through Coupler 2, the counter-rotating intracavity
light waves that determine the property of the released light
waves will also acquire the additional Sagnac phase shifts
due to the nonvanishing photon lifetime in this release step.
Accordingly, in Steps 2 and 3 for 0 < t � t2 + t3, the cross
correlation of the counter-rotating intracavity light waves at
Coupler 2 becomes

�(t,t) = �(t − �t−,t − �t+) exp{−[θ (t) + θ (t2 − t)]t/2τ2}
× exp[−θ (t − t2)(t − t2)/τ3], (10)

where τ2 = Q2/ω0 = −neL/2c ln a0 and τ3 = Q3/ω0 =
neL/cκ2

2 (t)−neL/2c ln a0 are the intracavity photon lifetimes
of Steps 2 and 3, θ (t) is the stepwise function and �t± denotes
the rotation-modified delay times of the clockwise (+) and
counterclockwise (–) intracavity light waves. The first term
on the right-hand side of Eq. (10), which can be calculated
by Eq. (9), indicates that the intracavity light waves in Steps
2 and 3 evolve from the intracavity light waves captured
by the ring resonator in Step 1. The rotation-modified delay
times �t± = neL(M + 0.5)/c ± LR	(M + 0.5)/c2 (M sat-
isfies neL(M − 0.5)/c < t� neL(M + 0.5)/c and is a pos-
itive integer), that approximate �t± ≈ neL(M + 0.5)/c ±
tR	/nec once t � neL/c, can be obtained by integrating the
rotation-modified delay time differential equation [20]:

dt = (Rdθ/c)[β ′ + ne(ω) + (β − β ′)ωne(ω)(∂ne/∂ω)

+ (β − β ′)ne(ω)2], (11)

where we assume that β= 	R/c and β ′ = 	mR/c as the
relative velocities of the resonator and the filling medium are
equal and the medium is free of dispersion (∂ne/∂ω = 0).
According to Eq. (10), the rotation-dependent phase difference
between the counter-rotating intracavity light waves and the
rotation-detection sensitivity enhancement factor are still re-
lated as ��(t) = arg[�(t,t)] and η(t) = ��(t)/2�φs(ω0,	)
in the case of polychromatic incident light in Steps 2 and 3 for
0 < t � t2 + t3, respectively.

Indeed, for neL/c � t � t2 + t3, the rotation-dependent
phase difference �ϕ(ω,t) = ω(�t+ − �t−) ≈ 2ωtR	/nec

at a specific frequency ω accumulated in Steps 2 and 3 is
approximately proportional to the time t in the long time
range. It is an intuitive result, since the propagation distance
on which the Sagnac effect depends in Steps 2 and 3 is
determined by the time t during which the intracavity light
waves are trapped in the resonator. Moreover, the impact
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of the linewidth �νin of incident light on the rotation-
dependent phase difference [��(t) − ��(0)] accumulated
in Steps 2 and 3 is negligible, since the relative devia-
tion of �ϕ(ω,t) caused by the linewidth �νin can satisfy
[�νin/�ϕ(ω0,t)]d�ϕ(2πν,t)/dν = 2π�νin/ω0 � 1 gener-
ally and the narrow-band cavity buildup |T 2

1 | in Step 1 may
reduce the impact further. Therefore, the rotation-dependent
phase difference [��(t) − ��(0)] of polychromatic light
accumulated in Steps 2 and 3 will be determined only by the
trapped time t in the long time range and may not be influenced
by linewidth and the constraint of the SLP.

As shown in Fig. 3(c), the numerical simulation of
Eq. (10) demonstrates that the rotation-detection sensitivity
enhancement factor [η(t) − η(0)] (proportional to the rotation-
dependent phase difference [��(t) − ��(0)]) of polychro-
matic light accumulated in Steps 2 and 3 will actually increase
linearly approximately in time despite �νin � W , where W

represents the FWHM spectral width of the add-drop resonator
in Step 1 (W = 0.19 MHz for the parameters in Fig. 3). Also,
the result in Fig. 3(c) indicates that the optical gyroscope
employing the storage of light in the dynamically tuned add-
drop resonator may acquire ultrahigh sensitivity as ultrahigh
η(t2 + t3) beyond the trade-off relation between the sensitivity
and the linewidth, since only η(t2) = 326.90 in Fig. 3(c) is
much larger than the maximum rotation-detection sensitivity
enhancement factor max(η′) = 80.86 of the corresponding
static single side-coupled resonator with equal fiber length and
same footprint in the case of monochromatic incident light.

IV. COMPARISON BETWEEN A DYNAMICALLY TUNED
ADD-DROP RESONATOR AND A STATIC SINGLE

SIDE-COUPLED RESONATOR FOR ROTATION
SENSING

According to the preceding analysis, the total rotation-
detection sensitivity enhancement factor of the optical gy-
roscope based on the dynamically tuned add-drop resonator
obtained after the three tuning steps is η(t2 + t3), which
is determined by the photonic-induced dispersion relation
T1 , the storage time t2, and the release time t3. Thus the
optical gyroscope may acquire ultrahigh sensitivity beyond
the constraint of the SLP only if the moderate dispersion
T1 is implemented and the moderate t2 and t3 are chosen.
To demonstrate this viewpoint, we will closely compare the
rotation-detection sensitivity enhancement factor, the SLP, and
the detuning property of the optical gyroscope employing the
storage of light in the dynamically tuned add-drop resonator
with those of the optical gyroscope based on the static single
side-coupled resonator [23] with equal total circumference and
same resonator footprint, since the static single side-coupled
resonator is a specific example of the static add-drop resonator.

For the static single side-coupled resonator, the property
of the dispersion is determined by the coupling regime.
In the over-coupled regime (ρ ′ < a′

0) [42,43], the photonic
coherence-induced normal dispersion that can be used to
enhance the sensitivity of optical gyroscopes occurs. When
the counterpropagating polychromatic incident light waves
represented by Eq. (8) are launched into the rotated resonator
from Ports 1 and 2 as shown in Fig. 4, the rotation will result
in the differential Sagnac phase shift between counter-rotating

FIG. 4. Schematic of the static single side-coupled resonator used
for rotation sensing.

light waves accumulated in the loops of the resonator and the
photonic coherence-induced normal dispersion will enhance
the phase difference. The enhanced rotation-dependent phase
difference (differential Sagnac phase shift) ��′ can also be
calculated by the angle of the cross correlation represented
by Eq. (9) only if the dispersion relation is substituted by
T ′(φ) = [ρ ′ − a′

0 exp(iφ)]/[1 − a′
0ρ

′ exp(iφ)], where a′
0 and

ρ ′ are the round-trip intrinsic loss coefficient and the trans-
mission coefficient of Coupler 1. Moreover, the parameters
with the superscript such as ��′, a′

0, ρ ′, and T ′ are the
corresponding parameters of the static single side-coupled
resonator; for instance, κ ′ =

√
1 − (ρ ′)2, n′

e, L′, 	′, W ′, ω′
re,

N ′, R′ = L′/2πN ′, and η′ represent the coupling coefficient
of Coupler 1, the effective index, the total circumference, the
clockwise rotation angular velocity, the FWHM spectral width,
the resonant frequency, the loop number, the radius of the loop,
and the rotation-detection sensitivity enhancement factor of the
static single side-coupled resonator, respectively.

A. Comparison of dependence of sensitivity on linewidth

Figure 5(a) illustrates the dependence of the rotation-
detection sensitivity enhancement factor on the linewidth of
incident light for the gyroscope employing the storage of
light in the dynamically tuned add-drop resonator and the
gyroscope based on the static single side-coupled resonator
with equal total circumference (L = L′ = 10 m) and same
footprint (N = N ′ = 10,R = R′). To prevent too much loss
of light intensity in Steps 2 and 3, we choose the storage time
t2 = 15.546 μs ≈ 3τ2 and the release time t3 = 0.051 μs ≈
0.5τ3 for the parameters of the dynamically tuned add-
drop resonator in Fig. 5. When the linewidth of incident
light �νin satisfies 0 � �νin � W = W ′ = 0.19 MHz, the
rotation-detection sensitivity enhancement factor η(t2 + t3)
of the gyroscope based on the dynamically tuned add-drop
resonator that will satisfy 336.85 � η(t2 + t3) � 343.81 is
boosted by at least three times with respect to the rotation-
detection sensitivity enhancement factor η′ (46.76 � η′ �
80.86) of the gyroscope based on the static single side-coupled
resonator. If the linewidth increases further in Fig. 5(a),
the sensitivity enhancement factor of the dynamically tuned
add-drop resonator will decrease slightly whereas that of
the static single side-coupled resonator will drop rapidly.
When 0.19 MHz < �νin < 20 MHz, despite the slight decay
of η(t2 + t3) the dynamically tuned add-drop resonator is
more superior to the static single side-coupled resonator,
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FIG. 5. (a) The rotation-detection sensitivity enhancement factor
η(η′) versus the linewidth �νin of incident light. (b) The SLP
η�(η′�) versus the linewidth �νin. The solid and dashed curves
represent the dynamically tuned add-drop resonator and the static
single side-coupled resonator, respectively. The parameters of the
dynamically tuned add-drop resonator are L = 10 m, N = 10,
ne = 1.5, a0 = 0.9952, 	 = 0.0157 rad/s, t2 = 15.546 μs, t3 =
0.051 μs, and ω0 = ωre. The parameters of the static single side-
coupled resonator are L′ = 10 m, N ′ = 10, n′

e = 1.5, a′
0 = 0.9952,

	′ = 0.0157 rad/s, ω0 = ω′
re, and |κ ′|2 = 0.05, which are similar to

those of the dynamically tuned add-drop resonator. The dotted curve
in Fig. 5(b) denotes the constraint value (0.6462) of the SLP of the
static single side-coupled resonator represented by Eq. (6).

since η(t2 + t3) of the dynamically tuned add-drop resonator
that satisfies 327.87 � η(t2 + t3) � 336.85 is at least seven
times larger than η′ (0.7524 � η′ � 46.76) of the static
single side-coupled resonator. Therefore, in contrast to the
gyroscope based on the static single-coupled resonator, the
gyroscope based on the dynamically tuned add-drop resonator
is more sensitive, especially in the case of broad linewidth.

Moreover, as shown in Fig. 5(b), when the linewidth
increases and satisfies �νin � 0.39 MHz, the SLP η′� of
the static single side-coupled resonator will arise and be
smaller than the constraint value 0.6462 of SLP due to small
linewidth. When the linewidth increases further and satis-
fies 0.39 MHz � �νin � 20 MHz, the SLP η′� (0.5520 �
η′� � 0.7529) of the static single side-coupled resonator
will be in the vicinity of the constraint value 0.6462 of the
SLP and hence the trade-off relation between the sensitivity
and the linewidth will occur. However, for the gyroscope

based on the dynamically tuned add-drop resonator, when
the linewidth increases and satisfies �νin � 0.39 MHz, the
SLP η(t2 + t3)� will rise and be larger than that of the static
single side-coupled resonator. When the linewidth increases
further and satisfies 0.39 MHz � �νin � 20 MHz, the SLP
η(t2 + t3)� [6.50 � η(t2 + t3)� � 328.11] is boosted by at
least one order of magnitude with respect to the constraint
value 0.6462 of the SLP. This result indicates that the trade-off
relation between the sensitivity and the linewidth is overcome
due to the large SLP of the dynamically tuned add-drop
resonator. Thus, the optical gyroscope employing the storage
of light in the dynamically tuned add-drop resonator can
acquire higher sensitivity without a high-performance laser
source of narrow linewidth �νin(� W ), which is necessary for
the optical gyroscope based on the static single side-coupled
resonator [23], other slow-light structures [15–22,28], and a
resonant fiber optic gyroscope (RFOG) [28].

B. Comparison of dependence of sensitivity
on frequency detuning

It is interesting to note that the gyroscope employing the
storage of light in the dynamically tuned add-drop resonator
can also acquire ultrahigh and uniform sensitivity irrespective
of arbitrary frequency detuning. When the linewidth �νin

approaches the free spectral range �νFSR of the dynamically
tuned add-drop resonator (�νin ∼ �νFSR), the incident light
field will be resonant with at least one resonance mode of
the ring resonator for arbitrary frequency detuning. Moreover,
Fig. 5 shows that the optical gyroscope based on the dynami-
cally tuned add-drop resonator can actually acquire ultrahigh
sensitivity and a large SLP on resonance (ω0 = ωre) in the
case of �νin ∼ �νFSR. Thus it is possible to obtain ultrahigh
and uniform sensitivity at arbitrary frequency detuning for the
optical gyroscope in the case of �νin ∼ �νFSR.

As illustrated by Fig. 6(a), the numerical simulation of Eq.
(10) indicates that, if the linewidth of incident light approach-
ing the free spectral range �νFSR = 19.99 MHz is �νin =
17.67 MHz, the optical gyroscope employing the storage of
light in the dynamically tuned add-drop resonator possessing
the SLP of 289.86 as shown in Fig. 5(b) will actually acquire
the ultrahigh and uniform sensitivity. When the detuning
(ω0 − ωre)/2π varies from −25 MHz to +25 MHz (this
variation range exceeds �νFSR = 19.99 MHz), the rotation-
detection sensitivity enhancement factor η(t2 + t3) that satis-
fies 327.30 � η(t2 + t3) � 327.43 will be at least four times
as large as the maximum sensitivity enhancement factor
max(η′) = 80.86 of the static single side-coupled resonator
with equal total circumference (L = L′ = 10 m) and same
footprint (N = N ′ = 10,R = R′) as shown in Fig. 6(a), and
the fluctuation of η(t2 + t3) will be <0.1% of its maximum
(max[η(t2 + t3)] = 327.43) at resonance (ω0 = ωre). How-
ever, for the optical gyroscope based on the static single
side-coupled resonator with similar parameters, one can only
obtain high sensitivity as 31.48 � η′ � 80.86 provided that
the detuning is less than the half of the FWHD spectral width
of the resonator as (1/2)W ′ = 0.09695 MHz in Fig. 6(a).

In other words, when the dynamically tuned add-drop res-
onator and the static single side-coupled resonator with equal
total circumference (L = L′ = 10 m) and same footprint
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FIG. 6. (a) Dependence of the rotation-detection sensitivity
enhancement factor η(η′) on the frequency detuning. (b) Depen-
dence of the rotation-dependent phase difference ��(��′) on
the frequency detuning. The solid and dashed curves represent
the dynamically tuned add-drop resonator and the static single
side-coupled resonator, respectively. The parameters of the dynam-
ically tuned add-drop resonator are L = 10 m, N = 10, ne = 1.5,
a0 = 0.9952, 	 = 0.0157 rad/s, t2 = 15.546 μs, t3 = 0.051 μs,
and �νin = 17.67 MHz. The parameters of the static single side-
coupled resonator are L′ = 10 m, N ′ = 10, n′

e = 1.5, a′
0 = 0.9952,

	′ = 0.0157 rad/s, and |κ ′|2 = 0.05, and the incident light wave is
a monochromatic light wave.

(N = N ′ = 10,R = R′) in Fig. 6 are rotated at 	 =
0.0157 rad/s, the dynamically tuned add-drop resonator can
obtain the rotation-dependent phase difference 2�φs(ω0,	) ×
min[η(t2 + t3)] = min[��(t2 + t3)] = 0.2213 at least and can
maintain the ultrahigh phase difference as 0.2213 � ��(t2 +
t3) � 0.2214 at arbitrary detuning as shown by the solid curve
of Fig. 6(b), where 2�φs(ω0,	) = 0.000 6761 is the phase
difference of the conventional FOG with equal total circumfer-
ence and the same footprint. However, for the static single side-
coupled resonator, the maximum rotation-dependent phase
difference is only max(��′) = 0.054 67. Moreover, once the
detuning of a monochromatic incident light wave exceeds half
of the FWHD (1/2)W ′ = 0.096 95 MHz, one can only obtain
the small phase difference as ��′ � 0.021 28 that is less than
half of its maximum max(��′) = 0.054 67 as shown by the
dashed curve of Fig. 6(b). Thus it indicates that the optical
gyroscope based on the dynamically tuned add-drop resonator
can acquire and maintain ultrahigh and uniform sensitivity for
an arbitrary detuning and hence does not require a complex

laser frequency stabilization system which is necessary for
the optical gyroscopes based on the static single side-coupled
resonator [23], other slow-light structures [15–22,28], and an
RFOG [28].

In practice, the gyroscope based on the dynamically tuned
add-drop resonator is feasible even though the response time
of the modulation on the coupling coefficient κi(t) (i = 1,2)
is nonvanishing or the modulation is not perfectly stepwise.
Assume that t re1 and t re2 are the response times of the mod-
ulations on κ1(t) and κ2(t), respectively. In time domain, the
nonvanishing t re1 and t re2 result in the time-dependent intensity
and phase changes of the counter-rotating intracavity light
waves in the response time t rei (i = 1,2) with respect to those in
the case of the stepwise modulation considered here. However,
since the ultrafast (2 × 2) silicon electric-optic switch [36,37]
provides such a short response time (< 4 ns [36] and ∼ 6 ns
[37]) that even satisfies t rei � neL/c � τi (i = 1,2) (neL/c,
τ1, and τ2 are the round-trip time of the resonator, the
intracavity photon lifetime in Step 1, and the intracavity photon
lifetime in Step 2; in Figs. 3, 5, and 6, neL/c ≈ 50 ns, τ1 =
neL/cκ2

1 (t)−neL/2c ln a = 0.8385 μs, and τ2 = 5.174 μs),
the time-dependent intensity and phase shift changes will
occur in such a short time range (t rei ) that a large proportion
[(neL/c) − t rei ] of the intracavity light field will not be influ-
enced. In frequency domain, the time-dependent intensity and
phase changes can induce the additional spectrum broadening
�ν in Steps 2 and 3, which may result in the deviation
of �ϕ(ω,t) and then retard sensitivity enhancement. Since
the relative deviation of �ϕ(ω,t) caused by �ν(∼1/trei )
due to t rei (several nanoseconds [36,37]) is approximately
[�ν/�ϕ(ω0,t)]d�ϕ(2πν,t)/dν ≈ 2π�ν/ω0 ∼ 10−5 at the
wavelength of 1550 nm, the impact of the spectrum broadening
on the sensitivity can be negligible. Thus the stepwise tuning
on the coupling strength considered in the present paper is
feasible in practice.

In addition, the further improvement of the SLP and
the differential Sagnac phase shift of the optical gyroscope
employing the storage of light in the dynamically tuned
add-drop resonator can be foreseeable. For instance, one can
fabricate the ring resonator of the dynamically tuned add-drop
resonator by the active optical fiber [40,41] or by introducing
the intracavity dispersion [34,44–46] in order to obtain longer
intracavity photon lifetime. Due to the longer lifetime, one
may increase the storage time t2 moderately to acquire higher
sensitivity η and a larger SLP. On the other hand, if the
optical gyroscope possesses a constant SLP C in some specific
situations approximately, we can deduce the formulas as

��(t)�νin � C(c/Lne)4ωπR2	N/c2, (12)

or

��(t) � CF4ωπR2	N/c2, (13)

where F = �νFSR/W is the finesse of the resonator. Ac-
cording to the conditions of Eqs. (12) and (13), increasing
the circumference of the dynamically tuned ring resonator
moderately can also enhance the differential Sagnac phase
shift of the optical gyroscope with a constant SLP. Thus, a
more sensitive optical gyroscope employing the storage of
light can be expected by optimizing the photon lifetime and the
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circumference of the dynamically tuned resonator. On the other
hand, longer intracavity photon lifetime and larger circumfer-
ence of the resonator will actually reduce the impact of the non-
vanishing response times t re1 and t re2 on the gyroscope further.

It is important to note the implication of the rotation-
detection sensitivity enhancement factor η [22,23]. In the
present paper, we always refer to the rotation-detection
sensitivity enhancement factor η of a slow-light resonator
structure gyroscope as the sensitivity or rotation-detection
sensitivity for simplicity. The rotation-detection sensitivity
enhancement factor η, which is the ratio between the differ-
ential Sagnac phase shift of a slow-light resonator structure
gyroscope and that of a conventional FOG with equal fiber
length and the same footprint, describes the enhancement
of the differential Sagnac phase shift under the condition
of equal fiber length and the same footprint. Thus it is not
only related to sensitivity of a slow-light resonator structure
gyroscope under the constraint of equal fiber length and the
same footprint but is generally also inversely proportional to
the requirement of fiber length for this slow-light resonator
structure gyroscope. That is to say, the benefit of a large η of a
slow-light resonator structure gyroscope lies in the realization
of a highly sensitive and compact integrated optical gyroscope
with short fiber length. Therefore the gyroscope based on
the dynamically tuned add-drop resonator has the potential
of further miniaturization in contrast to the gyroscope based
on the static single side-coupled resonator, since the dyna-
mically tuned add-drop resonator can acquire the higher
rotation-detection sensitivity enhancement factor η than the
static single side-coupled resonator with equal fiber length
and the same footprint as shown in Fig. 6.

V. THE ULTIMATE DETECTION SENSITIVITY OF THE
GYROSCOPE BASED ON A DYNAMICALLY TUNED

ADD-DROP RESONATOR IN COMPARISON TO A
CONVENTIONAL FOG

Besides the rotation-detection sensitivity enhancement
factor describing the potential of miniaturization, there is
another distinct concept of sensitivity as the ultimate detection
sensitivity which can be utilized to investigate the superiority
of the ultimate theoretical sensitivity of a slow-light resonator
structure gyroscope in contrast with a conventional FOG [28].
The ultimate detection sensitivity of a slow-light resonator
structure gyroscope is determined by and proportional to
the differential Sagnac phase shift of the gyroscope under
the constraint of given propagation loss of light field and
given resonator footprint [28]. Apparently the constraint of
the ultimate detection sensitivity is different from that of
the rotation-detection sensitivity enhancement factor we used
in the present paper. Moreover, it has been proven that
the static CROW gyroscope (a static slow-light resonator
structure gyroscope) which can reduce the requirement of
fiber length due to the large rotation-detection sensitivity
enhancement factor (1/2κ) does not enhance the ultimate
detection sensitivity beyond that of a conventional FOG [28].
Even though the parameters of the static CROW gyroscope are
optimized, the optimized CROW gyroscope consisting of one
ring that resembles a RFOG has only the approximately same
ultimate detection sensitivity as an “equivalent” conventional

FOG, since the differential Sagnac phase shifts of them are
approximately equal under the constraint of equal propagation
loss of light field and the same footprint [28].

Thus, to evaluate the enhancement of the ultimate detection
sensitivity of the gyroscope employing the storage of light
in the proposed dynamically tuned add-drop resonator in the
present paper with respect to a conventional FOG, one can also
compare the differential Sagnac phase shift of the gyroscope
with that of a conventional FOG with equal propagation loss
and the same footprint.

One first needs to calculate the differential Sagnac phase
shift accumulated by the gyroscope based on the dynamically
tuned add-drop resonator. In Step 1, the differential Sagnac
phase shift can be derived by the equation ��(t,ω0,	) =
2
∫ �φs (ω0,	)
�φs (ω0,0) [ng(�φs)/ne]d�φs (t < 0) in the case of

monochromatic incident light, where the group index in Step 1
is ng1 (φ) = nea0ρ11[cos φ − a0ρ11]/[1 − 2a0ρ11 cos φ +
a2

0ρ
2
11] and ρ11 denotes the transmission coefficient of

Coupler 1 in Step 1. If the incident light field is resonant
with one resonance mode of the ring resonator and the
resonator is of high quality factor (the round-trip intrinsic loss
coefficient a0 approaches 1), the differential Sagnac phase
shift accumulated in Step 1 will approximate ��(t,ω0,	) =
4πR2Nω0	ρ11

c2(1−ρ11) (t < 0). Moreover, in Steps 2 and 3, as is
shown in Sec. III, the additional differential Sagnac phase
shift determined by the storage time t2 and the release
time t3 is approximately 2R	ω0(t2 + t3)/nec. Therefore,
one can obtain the total differential Sagnac phase shift as
��(t2 + t3,ω0,	) = 4πR2Nω0	ρ11

c2(1−ρ11) + 2R	ω0(t2+t3)
nec

after the
three steps.

To guarantee the equal propagation loss on the condi-
tion of equal incident power and a given loss coefficient,
the loop number NFOG and the loop radius RFOG of the
“equivalent” conventional FOG will satisfy NFOGRFOG =
NRρ11

(1−ρ11) + c(t2+t3)
2πne

, since it takes ρ11

(1−ρ11) and c(t2+t3)
2πRNne

times for
the resonant incident light field to go around the dynamically
tuned add-drop resonator in Step 1 and in Steps 2 and 3,
respectively. Moreover, the requirement for the same foot-
print yields the condition as πR2

FOG = πR2. Under the
preceding two conditions, one may compare the differential
Sagnac phase shift [��(t2 + t3,ω0,	)] of the gyroscope
based on the dynamically tuned add-drop resonator with that
(��FOG(ω0,	) = 4πR2

FOGNFOGω0	/c2) of the “equivalent”
conventional FOG to evaluate the enhancement of the ultimate
detection sensitivity of the former.

After the comparison, it is shown that the differential
Sagnac phase shifts of them are indeed equal. Thus, the
proposed gyroscope based on the dynamically tuned add-drop
resonator has about the same ultimate detection sensitivity as
a conventional FOG and an RFOG under the constraint of
equal propagation loss of light field and the same footprint.
Nevertheless, in contrast to a conventional FOG and an
RFOG, the proposed gyroscope based on the dynamically
tuned add-drop resonator can acquire the approximately same
ultimate detection sensitivity by shorter fiber length due to its
higher rotation-detection sensitivity enhancement factor η.

In the present paper, we do not aim to explore a slow-light
resonator structure gyroscope with enhanced ultimate detec-
tion sensitivity but to explore a slow-light structure gyroscope
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with a larger sensitivity-linewidth product (SLP) in order to
overcome the fundamental trade-off between the rotation-
detection sensitivity enhancement factor (η) and the line-
width. When the SLP of the proposed gyroscope using the
storage of light in the dynamically tuned add-drop resonator
is enormously enhanced in comparison to the SLP of the
gyroscope based on the corresponding static resonator, the
proposed gyroscope not only can acquire ultrahigh differential
Sagnac phase shift by shorter fiber length due to higher η

and hence has the potential of further miniaturization, but also
does not require a high-performance laser source of narrow
linewidth, a complex laser frequency stabilization system,
or even a stringent control of optical path of the resonator.
Whereas, for a static slow-light resonator structure gyroscope
and an RFOG, a high-performance laser source of narrow
linewidth, a complex laser frequency stabilization system, and
a stringent control of optical path of the resonator which
significantly increase engineering complexity are necessary
and at the expense of miniaturization of a static slow-light
resonator structure gyroscope and an RFOG [28]. Thus, the
gyroscope employing the storage of light in the dynamically
tuned add-drop resonator with a large SLP, which can acquire
ultrahigh sensitivity by the gyroscope system of further
miniaturization and can overcome the disadvantages of a
static slow-light structure gyroscope and an RFOG due to
their miniaturization, enables the highly sensitive optical
gyroscopes of compact size by slow-light structures to become
more promising and feasible in practice.

VI. CONCLUSION

We propose to dynamically compress the bandwidth
of the add-drop resonator reversibly or dynamically tune

the quality (Q) factor of this slow-light structure to re-
alize the storage of light for rotation sensing. This pro-
posal provides a scheme to realize an optical gyroscope
of ultrahigh sensitivity and compact size beyond the
fundamental trade-off relation of the sensitivity and the
linewidth. In contrast to the static single side-coupled resonator
with equal total circumference and footprint, when the incident
linewidth approaches the free spectral range, the optical
gyroscope based on this proposed scheme can acquire higher
and more uniform rotation-detection sensitivity without a
high-performance laser source of narrow linewidth, a complex
laser frequency stabilization system, or even a stringent control
of optical path of the resonator, since the SLP of the optical
gyroscope based on this proposed scheme is enhanced by at
least two orders of magnitude with respect to the constraint
of the SLP of the optical gyroscope based on the static single
side-coupled resonator. It implies that the single side-coupled
resonator [23] of higher Q factor [34] and even other optical
resonance structures [15–22] (slow-light resonator structures)
with stronger photonic coherence-induced dispersion and
narrower dispersion range may be improved and utilized as
a miniature gyroscope for high-precision rotation sensing
by the scheme. Therefore, the proposed scheme enables the
highly sensitive and compact integrated optical gyroscopes by
slow-light structures [15–23] to become more promising and
feasible in practice.
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