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Consistency of certain constitutive relations with quantum electromagnetism
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Recent work by Philbin [New J. Phys. 12, 123008 (2010)] has provided a Lagrangian theory that establishes a
general method for the canonical quantization of the electromagnetic field in any dispersive, lossy, linear dielectric.
Working from this theory, we extend the Lagrangian description to reciprocal and nonreciprocal magnetoelectric
(bianisotropic) media, showing that some versions of the constitutive relations are inconsistent with a real
Lagrangian, and hence with quantization. This amounts to a restriction on the magnitude of the magnetoelectric
coupling. Moreover, from the point of view of quantization, moving media are shown to be fundamentally
different from stationary magnetoelectrics, despite the formal similarity in the constitutive relations.
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I. INTRODUCTION

In classical electromagnetism, life is made much simpler
by the introduction of ε and μ. The microscopic current and
charge densities can be forgotten, and in place of these we
can deal with the macroscopic Maxwell equations [1]. Indeed,
for the purposes of further speeding up calculations, classical
electromagnetism allows us to make artificial simplifications,
such as the existence of media without dispersion, or loss.

Quantum mechanics does not take to this description so
easily. Although the quantization of the free electromagnetic
field can be found in standard textbooks [2], there has been
some historical difficulty in quantizing the electromagnetic
field within a dielectric medium. The field can be quantized
in a fictional medium without dispersion or loss [3], but
as soon as dispersion is introduced, the procedure becomes
awkward [4]. Moreover, it was not immediately obvious how
an effective description of loss might be implemented in
quantum mechanics. The classical field amplitudes ought to
decay, whereas their operator counterparts must satisfy the
canonical commutation relations uniformly throughout space,
at all times.

In fact, these apparently distinct difficulties have their
origins within a single physical effect. Dispersion and loss
are the two sides of one phenomenon: the finite response time
of a material to events that happened in the past. It is therefore
through reintroducing some degrees of freedom associated
with the medium that quantization may be carried out.

Canonical quantization was achieved for a model La-
grangian by Huttner and Barnett [5], who introduced a bath of
harmonic oscillators to account for the dynamics of a uniform,
dispersive, and lossy dielectric. Subsequently, this model was
extended to nonuniform dielectrics [6,7], and more recently, it
was recognized that some model aspects of the theory could be
removed, and that the theory could describe general features
of nonisotropic magnetodielectrics [8–10], and even moving
media [11].

Most recently, a Lagrangian density was found in Ref. [12]
that describes the electromagnetic field within any linear
magnetodielectric that satisfies the Kramers-Kronig relations.
From this Lagrangian, a Hamiltonian was derived that allowed
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a canonical quantization of the electromagnetic field, and from
this, formerly phenomenological results, such as the theory of
Casimir forces (Lifshitz theory) have been given a canonical
basis [13].

The approach here is to take seriously the Lagrangian
in Ref. [12]. This Lagrangian represents an arbitrary linear
material that automatically satisfies the Kramers-Kronig rela-
tions, as well as some general properties usually arising from
thermodynamics (see Sec. II). On top of this, the theory can be
quantized, which suggests that this may be a more fundamental
and correct way to describe macroscopic electromagnetism:
the material degrees of freedom have returned, but only in the
most minimal way.

We examine extensions to the Lagrangian that describe
the effects of magnetoelectric coupling as well as time
irreversibility (e.g., a medium in an external magnetic field).
Here, we understand magnetoelectric materials to include
chiral media, moving media, and any other media where the
constitutive relations are of the form D̃ = ε · Ẽ + χE B · B̃
and H̃ = μ−1 · B̃ − χB E · Ẽ. Throughout what follows, a tilde
over a vector denotes it being in the frequency domain.

The aim is so that (a) we may understand the origin of
these various effects in terms of interaction terms within a
Lagrangian; and (b) we may ask whether the requirement of the
existence of a corresponding Hamiltonian (from which we may
quantize the field) places restrictions on the parameters within
the constitutive relations. We find that the answer to (b) is posi-
tive, a result which may clarify the apparent confusion over the
restrictions placed on magnetoelectric media1 (see [14–17]).
This confusion between the various proposed restrictions is not

1Several separate inequivalent inequalities for the magnetoelectric
susceptibility appear in the literature, containing the permittivity
and permeability [14], the susceptibilities [15], and the imaginary
parts of the permittivity and permeability [16]. It does not seem to
be agreed which of these is correct, and here we propose that the
restriction involving the imaginary parts is the most fundamental.
Moreover, most often no distinction is made between the reciprocal
magnetoelectrics (e.g., chiral media) and the nonreciprocal ones (e.g.,
Tellegen media) (for example, see [37]). We also note that it is
pointed out in Ref. [17] that, for a fixed frequency, there is no obvious
restriction on the real parts of the chiral parameters.
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negligible and is important for metamaterial design [18,19] as
well as a possible route to a repulsive Casimir effect [20].

II. SUMMARY OF THE LAGRANGIAN THEORY OF
MACROSCOPIC ELECTROMAGNETISM

We begin with a brief review of the basic features of the La-
grangian theory of macroscopic electromagnetism presented
in Ref. [12]. It is worth emphasizing that here we are concerned
with the existence of a Hamiltonian that can be used to describe
the interaction of electromagnetism with more general materi-
als. We do not examine the subsequent quantization procedure,
leaving this aspect for a future publication.

A. Lagrangian and the equations of motion

The Lagrangian density of macroscopic electromagnetism
can be motivated as follows. First, we have the familiar term
associated with the electromagnetic field in vacuum,

LF = ε0

2
[E2 − c2 B2], (1)

where E = −∇φ − Ȧ and B = ∇ × A.
All media are dispersive and, hence, via the Kramers-

Kronig relations exhibit significant loss at some frequencies.
When the medium does not depend explicitly on time, the
Lagrangian must conserve energy, and this field energy lost
from the dynamics of Eq. (1) must be transferred into another
system. The response of the medium is assumed to have
an arbitrary spatial dependence, so the additional system is
proposed to be a reservoir of independent harmonic oscillators
that exists at all points in space, and at each point contains
every possible frequency of oscillator

LR = 1

2

∫ ∞

0

[
Ẋ

2
ω + Ẏ

2
ω − ω2

(
X2

ω + Y 2
ω

)]
dω. (2)

In the Lagrangian density associated with the reservoir (2),
two oscillators Xω and Yω are present at every frequency to
account for the fact that we must distinguish between a loss
of field energy through the electric interaction (the imaginary
part2 of ε ) and through the magnetic interaction (the imaginary
part of μ).

Finally, the field must be coupled to the bath of oscillators in
such a way that the classical macroscopic Maxwell equations
give an extreme value for the action. It is found that such a
coupling is given by

LINT = E ·
∫ ∞

0
αE E(ω) · Xωdω + B ·

∫ ∞

0
αB B(ω) · Yωdω,

(3)

where the interaction with the material is determined via the
coupling tensors αE E(ω) and αB B(ω), which vanish in vacuum.
Note that all quantities appearing in Eqs. (1)–(3) are implicitly
functions of position, and all of the fields are also functions of
time.

2In general, loss is determined by the non-Hermitian part of
the susceptibility. However, the complex elements of a Hermitian
susceptibility are related to time irreversibility, or spatial dispersion,
effects which are not included in the theory of Sec. II.

The interaction (3) can be understood in terms of the local
polarization P and magnetization M of the medium

P =
∫ ∞

0
αE E(ω) · Xωdω,

(4)

M =
∫ ∞

0
αB B(ω) · Yωdω.

With this notation, (3) takes the usual dipolar form, which
would be expected from a local interaction with a neutral
medium (see, e.g., [21]).

As usual, the action is equal to a four-dimensional integral
of the Lagrangian density, which in this case is given by L =
(1) + (2) + (3):

S[φ,A,Xω,Yω] =
∫

[LF + LR + LINT]d4x. (5)

The remarkable features of (5) only become clear in the
equations of motion, which are derived from finding an
extremum of S.

Using the usual field equations [22], each of the oscillators
is found to evolve according to

Ẍω = −ω2 Xω + αT
E E(ω) · E,

(6)
Ÿω = −ω2Yω + αT

B B(ω) · B,

with the field obeying the usual Maxwell equations

∇ · D = 0,
(7)

∇ × H = ∂ D
∂t

,

where D = ε0 E + P and H = B/μ0 − M, with P and M
determined by the solution to (6) via (4).

When the coupling αE E does not depend on time, the
simplest way to solve (6) is in the frequency domain, where,
for example, Xω = ∫

X̃ω(�) exp (−i�t)d�/2π . This leads to

X̃ω(�) = αT
E E(ω) · Ẽ(�)

(ω + � + iη)(ω − � − iη)
+ 2π [hXωδ(� − ω) + h


Xωδ(� + ω)], (8)

where the hX (Y)ω are solutions to the homogeneous equation.
A similar relation also holds for Ỹω. We understand the
transformation of (8) into the time domain in the limit as
η → 0, where the choice of poles has been constrained by
X̃




ω(�) = X̃ω(−�). The choice of the sign of η corresponds
to retarded versus advanced solutions. As we shall see, in
this case the choice also amounts to the physics of absorption
versus gain.

Transforming (8) into the time domain, along with the
corresponding expression for Ỹω, we insert these quantities
into (4) and find the general evolution of P and M in terms of
the field amplitudes and the hω. For the electric polarization,
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this gives

P = P
∫ ∞

0

d�

2π

∫ ∞

0
dω

αE E(ω) ·αT
E E(ω) · Ẽ(�)e−i�t

(ω2 − �2)

± i

∫ ∞

0
dω

αE E(ω) · αT
E E(ω) · Ẽ(ω)e−iωt

4ω

+
∫ ∞

0
dω αE E(ω) · hXωe−iωt + c.c., (9)

where P denotes the Cauchy principal value of the integral,
and the choice of sign comes from the choice of sign of η

before the limit is taken. If we consider Eq. (9) in the case of
sgn(η) = +1, then it becomes clear that if we write

αE E (B B)(ω) · αT
E E (B B)(ω) = 2ω

π
Im[χE E (B B)(ω)], (10)

with χE E (B B)(ω) interpreted as the electric (magnetic) suscep-
tibility,3 then the Kramers-Kronig relations [1] are automati-
cally satisfied:

Re[χE E (B B)(ω)]

= 2

π
P

∫ ∞

0

� Im[χE E (B B)(�)]

�2 − ω2
d�, (11)

and that the electric polarization in (9) can be written in the
usual form

P = P0 +
∫ ∞

−∞

dω

2π
χE E(ω) · Ẽ(ω)e−iωt , (12)

where P0 = ∫ ∞
0 αE E(ω) · hXω exp (−iωt)dω + c.c. is the

“undriven” part of the polarization that does not depend
on the electromagnetic field. Similar relations hold for the
magnetization M, with the substitutions E → B and X → Y .
It is striking that, with the identification given in Eq. (10), the
classical equations of motion arising from (5) can represent
electromagnetism within any material that may be character-
ized by linear electric and magnetic susceptibilities.

The fact that the theory can be written in terms of
a Lagrangian containing only first-order time derivatives,
from which we can derive a Hamiltonian, enables it to
be quantized canonically, with Poisson or Dirac brackets
becoming commutators. In quantizing the field, P0 and M0

are present by necessity: the classical amplitude hω becomes
an operator, related to the fluctuating “noise currents” already
found to be necessary within the phenomenological theory
(e.g., [23]). Furthermore, as the Kramers-Kronig relations (11)
arise from the dynamics of the reservoir of oscillators, it should
be possible to apply this technique to quantize any similar
theory of linear response.

B. Restrictions on the constitutive relations, and the origin
of loss versus gain

If we define the coupling to the reservoir via (10), then the
susceptibility tensors are only consistent with the Lagrangian
if they are symmetric, a requirement usually arising from
statistical physics [1,24], but automatically fulfilled here.

3Our definition of the magnetic susceptibility is H(ω) = (μ−1
0 13 −

χB) · B(ω).

Due to this symmetry of the susceptibility tensor, there is
also a well-defined procedure for determining αE E (B B) from
Im[χE E (B B)], although the result will not be unique.4 The
procedure also only produces a real αE E (B B) if Im[χE E (B B)] is
positive definite.

The lack of uniqueness of the coupling tensors plays no role
in the classical theory, as αE E (B B) only appears linearly in P0,
which may be given any form through a suitable choice of hω.
However, when the system is quantized, the equivalent of the
noise-current operator is given in terms of the operator versions
of P0 and M0 (with the hω now becoming operators with
certain commutation relations) [12], and therefore the choice
of αE E (B B) will make a difference to the vacuum fluctuation
of the polarization and magnetization of the medium. It is not
clear whether this difference has any observable consequences,
although we do not address this problem here.

Another interesting feature is that the sign of the imaginary
part of χE E (B B) in Eq. (9) is determined by a choice made in the
dynamics of the reservoir. Therefore, the distinction between
loss and gain in this theory does not appear at the level of the
Lagrangian, but in the boundary conditions imposed on the
equations of motion of the reservoir.

III. AN EXTENSION TO OTHER RESERVOIR-FIELD
COUPLING TERMS

As stated in the Introduction, there are several reasons to
investigate an extension of the Lagrangian theory of Sec. II
to magnetoelectric media. There is a history of controversy
regarding not only bounds on the magnetoelectric suscepti-
bilities χE B and χB E, but also the kinds of magnetoelectric
coupling that are possible in principle [25–28]. Moreover, it is
not clear to what extent moving media and magnetoelectrics
are equivalent, something which is important in the discussion
of a “frictional” component to the Casimir force [29–31].
Finding a Lagrangian that describes these materials and can
be quantized may help clarify these issues.

If there are macroscopic parameters that prove inconsistent
with a Lagrangian (or more precisely, a Hamiltonian), the
electromagnetic field can not be quantized within such media
in an obvious way, and we take this as a restriction on the
material parameters.

What additional coupling terms could be added into (3)?
Lagrangians containing time derivatives of the fields higher
than the first (which can not be removed with a gauge
transformation) do not have well-defined canonical momenta,
and consequently we can not derive a Hamiltonian. If we also
consider the polarization and magnetization to only depend
upon the local values of the oscillators Xω and Yω, then we

4As Im[χE E (B B)] is symmetric and real, it is a normal matrix, which
can be diagonalized with an orthogonal matrix O: Im[χE E (B B)] =
OT DO, where D = diag(λ1,λ2,λ3). It is therefore possible to write
down an expression for the coupling αE E (B B) = OT D1/2, where
D1/2 = diag(±√

λ1, ± √
λ2, ± √

λ3). This expression is not unique,
due to the eight possible choices of sign, and is only real if
Im[χE E (B B)] is positive definite (λi > 0).
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TABLE I. Symmetry of coupling tensors under spatial inversion
and time reversal. A plus sign indicates that the coupling tensor does
not change under the inversion operation, and a minus sign indicates
that the tensor is multiplied by −1.

x → −x t → −t

αE E + +
αE B − −
αB B + +
αB E − −
βE E + −
βE B − +
βB B + −
βB E − +

have the following generalization of (4):

P =
∫ ∞

0

[ (
αE E + βE E

∂

∂t

)
· Xω

+
(

αE B + βE B
∂

∂t

)
· Yω

]
dω (13)

and

M =
∫ ∞

0

[ (
αB B + βB B

∂

∂t

)
· Yω

+
(

αB E + βB E
∂

∂t

)
· Xω

]
dω. (14)

Table I shows the properties of the coupling tensors that
arise from assuming that the value of the action is separately
invariant under an active time reversal (t → −t) and space
inversion (x → −x) of the fields; e.g., Xω(x,t) → Xω(x, − t)
and Xω(x,t) → Xω(−x,t). In obtaining Table I, we have
assumed that the Xω and Yω oscillator amplitudes obey the
same symmetry properties as the electric and magnetic fields,
respectively.

If a coupling tensor is nonzero and changes sign under
time reversal, then the medium possesses an intrinsic time
irreversibility (e.g., due to an external magnetic field or
motion). Meanwhile, a change of sign under spatial inversion
shows that the medium possesses a certain handedness (e.g.,
chiral media).

Table I therefore shows that magnetoelectrics violating
spatial inversion symmetry, while exhibiting time reversibility,
such as those constructed from chiral inclusions, must be
described by the coupling terms βE B and βB E. On the other
hand, inversion-symmetric, time-irreversible media, such as a
dielectric in an external magnetic field (a Faraday medium),
must be described by βE E and βB B. Finally, time-irreversible
magnetoelectrics that also violate spatial inversion symmetry,
such as moving media or Tellegen media [32], must arise from
αE B and αB E.

We now examine the macroscopic theory that results from
using the interaction Lagrangian with the polarization and
magnetization [Eqs. (13) and (14)].

A. Evolution of the oscillator amplitudes

With the interaction Lagrangian defined by Eqs. (13) and
(14) as in Eq. (3), the equations of motion for each of the
oscillators in the reservoir are now

Ẍω = −ω2 Xω +
(

αT
E E − βT

E E
∂

∂t

)
· E

+
(

αT
B E − βT

B E
∂

∂t

)
· B (15)

and

Ÿω = −ω2Yω +
(

αT
B B − βT

B B
∂

∂t

)
· B

+
(

αT
E B − βT

E B
∂

∂t

)
· E. (16)

In Fourier space, we therefore obtain

X̃ω(�) =
(
αT

E E + i�βT
E E

) · Ẽ + (
αT

B E + i�βT
B E

) · B̃

(ω − � − iη)(ω + � + iη)
+ · · · ,

(17)

Ỹω(�) =
(
αT

B B + i�βT
B B

) · B̃ + (
αT

E B + i�βT
E B

) · Ẽ

(ω − � − iη)(ω + � + iη)
+ · · ·

with the poles dealt with as in Sec. II, and the homogeneous parts of the solution omitted [cf. Eq. (8)]. Note that from now on we
consider the case of media with loss rather than gain.

Transforming (17) into the time domain gives us the final expressions for the evolution of the reservoir. The Xω oscillator
obeys

Xω = P
∫ ∞

0

d�

2π

[(
αT

E E + i�βT
E E

) · Ẽ + (
αT

B E + i�βT
B E

) · B̃

(ω2 − �2)

]
e−i�t

+ i

4ω

[(
αT

E E + iωβT
E E

) · Ẽ + (
αT

B E + iωβT
B E

) · B̃
]
e−iωt + hXωe−iωt + c.c., (18)

and the Yω obeys

Yω = P
∫ ∞

0

d�

2π

[(
αT

B B + i�βT
B B

) · B̃ + (
αT

E B + i�βT
E B

) · Ẽ

(ω2 − �2)

]
e−i�t

+ i

4ω

[(
αT

B B + iωβT
B B

) · B̃ + (
αT

E B + iωβT
E B

) · Ẽ
]
e−iωt + hYωe−iωt + c.c. (19)
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Equations (18) and (19) now determine the evolution of P and
M in terms of the field amplitudes.

B. Polarization and magnetization in terms
of the field amplitudes

Inserting Eqs. (18) and (19) into (13) and (14) gives us a
polarization and magnetization of the form

P = P0 +
∫ ∞

−∞
[χE E(ω) · Ẽ + χE B(ω) · B̃]e−iωt dω

2π
,

(20)

M = M0 +
∫ ∞

−∞
[χB B(ω) · B̃ + χB E(ω) · Ẽ]e−iωt dω

2π
,

where the electric-electric and magnetic-magnetic susceptibil-
ities are given by

χE E(ω) = P
∫ ∞

0
d�

λE E · λ
†
E E(ω,�) + λE B · λ

†
E B(ω,�)

(�2 − ω2)

+ iπ

2ω
[λE E · λ

†
E E(ω,ω) + λE B · λ

†
E B(ω,ω)],

(21)

χB B(ω) = P
∫ ∞

0
d�

λB B · λ
†
B B(ω,�) + λB E · λ

†
B E(ω,�)

(�2 − ω2)

+ iπ

2ω
[λB B · λ

†
B B(ω,ω) + λB E · λ

†
B E(ω,ω)],

and the magnetoelectric susceptibilities are

χE B(ω) = P
∫ ∞

0
d�

λE E · λ
†
B E(ω,�) + λE B · λ

†
B B(ω,�)

(�2 − ω2)

+ iπ

2ω
[λE E · λ

†
B E(ω,ω) + λE B · λ

†
B B(ω,ω)],

(22)

χB E(ω) = P
∫ ∞

0
d�

λB B · λ
†
E B(ω,�) + λB E · λ

†
E E(ω,�)

(�2 − ω2)

+ iπ

2ω
[λB B · λ

†
E B(ω,ω) + λB E · λ

†
E E(ω,ω)],

where

λE E(ω,�) = αE E(�) − iωβE E(�),

λB B(ω,�) = αB B(�) − iωβB B(�),
(23)

λE B(ω,�) = αE B(�) − iωβE B(�),

λB E(ω,�) = αB E(�) − iωβB E(�).

The physical interpretation of the dependence of (23) on two
frequencies ω and � is that, in general, the medium responds
to the field amplitudes and the rate of change of the field
amplitudes. Therefore, in the integrals within (21) and (22),
we have factors of ω that arise from a linear response to a
change in the field (e.g., a polarization due to the EMF from
a changing magnetic field) and factors of � that relate to the
dispersion due to the finite response time of the medium.

With the results (21) and (22), we can see that the
susceptibilities are divided into parts related to dissipation
and lossless response, the connection between the two being
an interesting generalization of the Kramers-Kronig relation
(11).

For the electric-electric and magnetic-magnetic suscepti-
bilities, the dissipation is determined by the anti-Hermitian

part of the susceptibility (cf. [1]), while the magnetoelectric
dissipation is determined by χE B − χ

†
B E (as can be verified

through substituting the magnetoelectric constitutive relations
into Sec. 80 of [1]). It is interesting that these two suscepti-
bilities are automatically related in such a way that a nonzero
χE B necessitates a nonzero χB E.

The undriven parts of the polarization and magnetization in
(20) involve a coupling between the two reservoirs

P0 =
∫ ∞

0
[λE E(ω,ω) · hXω + λE B(ω,ω) · hYω]

× e−iωtdω + c.c. (24)

and

M0 =
∫ ∞

0
[λB B(ω,ω) · hXω + λB E(ω,ω) · hYω]

× e−iωtdω + c.c. (25)

Having now established a general form for P and M, we
develop the physical interpretation of the various coupling
tensors within the Lagrangian.

C. Physical interpretation

The constitutive relations (20) are, as anticipated, those
of a magnetoelectric. However, this is a very general form,
where the material obeys neither time reversal nor spatial
inversion symmetry. We now consider three special cases
of (21) and (22): time-reversible, odd-parity media; time-
irreversible, even-parity media; and media that exhibit a static
magnetoelectric response.

1. Time-reversible, odd-parity media

If we demand that the medium be time reversible, then,
from Table, I, αE B = αB E = βE E = βB B = 0, and we obtain
the frequency domain constitutive relations

D̃ = ε · Ẽ + iωκ · B̃,

H̃ = μ−1 · B̃ + iωκT · Ẽ,

where ε = ε013 + χE E, μ−1 = μ−1
0 13 − χB B, and

2ω Im(κ) = αE E · βT
B E − βE B ·αT

B B, and the real and
imaginary parts of κ are connected by (11). Consistent with
the time reversibility of this situation, the permeability and
permittivity are symmetric tensors.

These are the constitutive relations of an anisotropic chiral
medium in Boys-Post form [33]. Notice the necessity of having
κT appearing in H̃ versus κ appearing in D̃. No other choices
of κ appear to be consistent with the theory. The prefactor
of ω in the magnetoelectric coupling is crucial, as it has the
consequence that in the static limit (ω → 0), unless κ diverges,
the medium no longer has a magnetoelectric response.

2. Time-irreversible, even-parity media

Applying Table I in this case means that αE B = αB E =
βE B = βB E = 0, and the magnetoelectric susceptibilities (22)
vanish. We are then left with

D̃ = ε · Ẽ,
(26)

H̃ = μ−1 · B̃,

where ε = ε013 + χE E and μ−1 = μ013 − χB B.

063822-5



S. A. R. HORSLEY PHYSICAL REVIEW A 84, 063822 (2011)

The consequence of having broken the time reversibility
of the medium is that, at frequencies where the loss is
negligible, ε = ε† and μ = μ†. The fact that these tensors
become Hermitian is consistent with the generalized principle
of the symmetry of kinetic coefficients in the case when
time-reversal symmetry is broken, and the medium is without
loss [1,24]. Again, results from statistical physics emerge
from this Lagrangian description. As ω → 0, ε and μ become
symmetric tensors.

One physical example of a medium which would be
described by a βE E term would be an ordinary dielectric in an
external magnetic field. For frequencies where such a medium
is without loss, ε is a Hermitian tensor [1].

3. Media exhibiting a static magnetoelectric response

In the limit when the electromagnetic field becomes static
(ω → 0), all of the quantities in (23) become real, and
only the α coupling tensors play a role. The reason for
considering this limit is that here we isolate the terms in
the Lagrangian that describe the physics of media in motion,
and distinguish Tellegen from chiral media (something that
has caused controversy in the past [26,28]). The static field
constitutive relations are

D̃(ω → 0) = ε · Ẽ + χE B · B,
(27)

H̃(ω → 0) = μ−1 · B̃ − χT
E B · E.

Observe that, if a medium is to have a static magnetoelectric
response, then this must be characterized with the coupling
terms containing the αE B and αB E tensors. In this limit, ε and μ

become symmetric tensors, and the magnetoelectric coupling
χE B must appear with a minus sign and a transpose in H̃ versus
D̃. It is inconsistent with the Lagrangian to suppose that the
static magnetoelectric coupling can have any other form.

The constitutive relations (27), when extended to arbitrary
ω, are consistent with the kinds of magnetoelectric coupling
required for both moving media and Tellegen media [1,32,34].
From the point of view of the matter-field coupling terms in
the Lagrangian description, there does not appear to be any
contradiction in assuming that, through violating both parity
and time-reversal symmetry, such media could be constructed
in the laboratory.

This may well be true for Tellegen media, however, for
real moving media there is a subtlety that means that the
magnetoelectric coupling in Eq. (27) does not contain all of
the physics of electromagnetism interacting with a medium in
motion. As shall be shown in Sec. IV, the reservoir Lagrangian
density LR also has to be altered in this case, and it is not
obvious how one would engineer a medium where the loss
mechanism works in such a peculiar way.

D. Further restrictions on the constitutive relations

From the above discussion, it appears that the general
susceptibility tensors (21) and (22) encompass all known
magnetoelectric constitutive relations and naturally restrict the
relationship between χE B and χB E. Our point of view is that
this is the correct description, as the electromagnetic field may
be quantized within such a formalism. This point of view is

bolstered by the fact that some of the expected restrictions
from thermodynamics have also arisen along the way.

This formalism puts further restrictions on the susceptibili-
ties due to the fact that (21) and (22) are related to one another.
For example, χE E and χB B together contain the same eight
coupling tensors as χE B. Therefore, it is not possible to choose
the magnetoelectric coupling in a way that is independent
of the value of the electric-electric and magnetic-magnetic
susceptibilities. We now proceed to work out the implications
of this relationship.

The dissipative part of the susceptibilities can be summa-
rized as follows:

ω

iπ
[χE E − χ

†
E E] = λE E · λ

†
E E + λE B ·λ

†
E B,

ω

iπ
[χB B − χ

†
B B] = λB B · λ

†
B B + λB E · λ

†
B E, (28)

ω

iπ
[χE B − χ

†
B E] = λE E · λ

†
B E + λE B · λ

†
B B.

The problem of finding the constraints on the components of
the magnetoelectric susceptibilities versus the electric-electric
and magnetic-magnetic ones is now one of linear algebra.
There are four complex matrices, and we have to work out
how the components resulting from multiplying them together
in one way are related to multiplying them together in another
way. In the Appendix, this is calculated and the following
restriction on the susceptibility tensors is obtained:

|[χE B − χ
†
E B]ij |2 � |[χE E − χ

†
E E]ii ||[χB B − χ

†
B B]jj |.

(29)

If the Lagrangian with the coupling (13) and (14) is taken to
describe the most general kind of magnetoelectric medium,
then every such medium should exhibit dissipation that
satisfies (29) in order to be consistent with quantization.

It is worth examining (29) in a few specific cases. In the
case of chiral media, using the notation of Sec. III C 1, the
inequality becomes

ω2Im[κ]2
ij � Im[χE E]iiIm[χB B]jj ,

which in the isotropic case is identical to the result5 of [16].
For the case of magnetoelectrics in the ω → 0 limit, the

inequality is neither that of [14] nor [15]:

Im[χE B]2
ij � Im[χE E]iiIm[χB B]jj .

The restriction (29) affects the dissipative part of the
susceptibilities at all frequencies. Of course, this restricts
the nondissipative parts in some way as well, via the
Kramers-Kronig relations. However, for a given fixed fre-
quency, the Lagrangian does not appear to place restrictions
on the nondissipative parts of (21) and (22). This is contrary
to the inequalities that are often used in the literature, which
do not seem to fully treat dispersion or loss.

5One should remember to translate between the difference in the
forms of constitutive relations used in Ref. [16], and that used here
(cf. [38]).
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IV. LAGRANGIAN FOR A MOVING MEDIUM

It was established in Sec. III C 3 that the magnetoelectric
coupling terms involving αE B(B E) within the Lagrangian can
in principle reproduce the constitutive relations for a moving
medium (with the β tensors equal to zero). This section is
motivated by a recent discussion regarding the existence of
a frictional component to the Casimir force [30,31], where it
has been pointed out that if a magnetoelectric could perfectly
mimic a moving medium, then the frictional force could extract
work from the vacuum. There is either no frictional force, or
a magnetoelectric can not perfectly reproduce the physics of a
moving medium. Here, we argue that, from the point of view
of a Lagrangian description, a magnetoelectric coupling alone
is not sufficient to mimic a moving medium.

Suppose that in the comoving (primed) frame we have a
medium that can be described via ε and μ alone, as was
assumed in Sec. II:

L = LF + LR + E′ ·
∫ ∞

0
α′

EE(ω′) · X ′
ω′dω′

+ B′ ·
∫ ∞

0
α′

BB(ω′) · Y ′
ω′dω′. (30)

Now consider the laboratory (unprimed) frame, where the
medium is in uniform motion. Without loss of generality, we
can assume the motion is along the x axis, V = Vx x̂. The
form of the Lagrangian density associated with the free field
is unchanged in terms of the field strengths, as it is a scalar
formed from FμνF

μν . However, LINT and LR will not take
the same form in terms of the oscillator amplitudes in both
frames. To find the form of the Lagrangian density in terms
of laboratory frame quantities, we begin by transforming the
field strengths

E′
x = Ex, B ′

x = Bx, E′
y = γ (Ey − VxBz),

B ′
y = γ (By + VxEz/c

2), E′
z = γ (Ez + VxBy), (31)

B ′
z = γ (Bz − VxEy/c

2),

with γ = (1 − V 2/c2)−1/2. Inserting these into (30) yields an
interaction Lagrangian

LINT = E ·
∫ ∞

0
[αE E(ω) · Xω + αE B(ω) · Yω]dω

+ B ·
∫ ∞

0
[αB B(ω) · Yω + αB E(ω) · Xω]dω (32)

with the following coupling tensors:

αE E(ω) = � ·α′
E E(ω), αE B(ω) = γ V × α′

B B(ω)/c2,
(33)

αB B(ω) = � ·α′
B B(ω), αB E(ω) = −γ V × α′

E E(ω),

where � = diag(1,γ,γ ). When the medium is nonuniform in
the rest frame, the coupling tensors become functions of time in
the laboratory frame [e.g., αE E(x ′) = αE E(γ (x − Vxt))]. Thus
far, the coupling tensors have been assumed to be independent
of time.

The primes on the oscillator amplitudes and frequency have
been dropped in obtaining (32) from (30). This is because, as

explained in the Introduction, these oscillator amplitudes are
an unobservable accounting device for the lost field energy.
We only have to make sure that their dynamics and coupling
to the field are properly described in terms of laboratory frame
coordinates and fields. The amplitudes themselves can not be
observed in either frame, and so there is no useful meaning in
transforming them.

As initially anticipated, in terms of the interaction La-
grangian, a moving medium falls into the category of a
time-irreversible medium without spatial inversion symmetry
(see Table I). In both types of inversion, the velocity changes
sign, which represents different medium. Notice that the trans-
formed interaction Lagrangian (32) automatically contains the
Aharonov-Casher interaction [35] V · M × E/c2, which has
a subtle origin in the multipolar expansion [21].

Despite the familiar interaction Lagrangian, moving media
are fundamentally distinct from stationary magnetoelectrics.
This is due to the behavior of the reservoir part of the
Lagrangian density. In the rest frame, this is as in (2), but with
primed quantities. However, the derivatives of the oscillator
amplitudes with respect to time in the rest frame ∂ X ′

ω′/∂t ′ and
∂Y ′

ω′/∂t ′ are not equal to the derivatives with respect to time in
the laboratory frame. To describe the dynamics of the reservoir
correctly in the laboratory frame, the time derivative must be
transformed; ∂/∂t ′ = γ (∂/∂t + V · ∇), and the reservoir part
of the Lagrangian density becomes

LR = 1

2

∫ ∞

0

{
γ 2

(
∂ Xω

∂t
+ (V ·∇)Xω

)2

+ γ 2

(
∂Yω

∂t
+ (V · ∇)Yω

)2

− ω2
(
Xω

2 + Yω
2
) }

dω,

(34)

where the primes are again dropped from the amplitudes and
frequency, for the reason described earlier. This is not the
same modification to the reservoir Lagrangian that was made
in Ref. [11], although as shown below, our form does produce
the correct constitutive relations.

We propose that the sum of (1), (32), and (34) represents
the Lagrangian for the description of a medium in uniform
motion, when, in the rest frame this medium can be described
by the tensors ε and μ.6 An extension to nonuniform motion is
possible through considering a local rest frame Lagrangian at
each point in the medium, however, this case is not considered
here. Notice that the key feature of (34) is that the reservoir
is fundamentally altered, even in the absence of the field. This
is encoded within a coupling between neighboring oscillators
through the terms (V · ∇)Xω and (V ·∇)Yω.

To show that L = (1) + (32) + (34) is the correct La-
grangian, we examine the polarization and magnetization
of the medium that arises from the equations of motion.
Examining (32) shows that the polarization and magnetization

6It would be interesting to consider the motion of general magneto-
electrics, for in this case there is a mixing of magnetoelectric coupling
terms due to the motion. For example, see [39].
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are given by

P =
∫ ∞

0
[αE E(ω,x,t) · Xω + αE B(ω,x,t) · Yω]dω,

(35)

M =
∫ ∞

0
[αB B(ω,x,t) · Yω + αB E(ω,x,t) · Xω]dω.

To find the quantities in Eq. (35) in terms of the fields, we
solve the equations of motion of the oscillators, which are now

γ 2

(
∂

∂t
+ V · ∇

)2

Xω = −ω2 Xω + αT
E E · E + αT

B E · B,

(36)

γ 2

(
∂

∂t
+ V ·∇

)2

Yω = −ω2Yω + αT
B B · B + αT

E B · E.

The dynamics of (36) clearly demonstrates some kind of spatial
dispersion. Assuming a uniform medium, we write (36) in
Fourier space to find X̃ω:

X̃ω(k,�) = αT
E E(ω) · Ẽ(k,�) + αT

B E(ω) · B̃(k,�)

(ω − �′ − iη)(ω + �′ + iη)

+ 2πγ [h̃Xω(k)δ(ω − �′) + h̃



Xω(−k)δ(ω + �′)],
(37)

where �′ = γ (� − V · k), sgn(η) = +1 (a moving medium
with loss), and the result for Yω is obtained from interchanging
the subscripts and fields E ↔ B and X ↔ Y . Note that spatial
dispersion occurs in the denominator, which changes the
positions of the poles. In short, the modified dynamics of the
reservoir represents the physics of the Doppler effect, which
is a very special kind of spatial dispersion. We emphasize that,
for this reason, this medium is not entirely equivalent to a
stationary one with a magnetoelectric coupling such as that
of Sec. III C 3. When (37) is inserted in Eq. (35) along with
the corresponding expression for ˜Yω, we obtain the following
polarization and magnetization vectors:

P = P0 +
∫
R3

d3k
(2π )3

∫ ∞

V · k
{[χE E(ω′) · E(k,ω)

+χE B(ω′) · B(k,ω)]ei(k · x−ωt) + c.c.}dω (38)

and

M = M0 +
∫
R3

d3k
(2π )3

∫ ∞

V · k
{[χB B(ω′) · B(k,ω)

+χB E(ω′) · E(k,ω)]ei(k · x−ωt) + c.c.}dω, (39)

where ω′ = γ (ω − V · k), and the real and imaginary parts of
the susceptibilities are related by (11), with ω → ω′. The first
thing to notice about (38) and (39) is that, in the laboratory
frame, some of the positive rest frame frequencies (ω′ > 0)
appear as negative frequencies (ω < 0). The response of the
medium to a constant field ω′ = 0 also appears at a finite
frequency in the laboratory, ω = V · k. These peculiar features
are a consequence of the Doppler effect, which has arisen
from the modified reservoir dynamics encoded in (34), and
would not have occurred for any stationary magnetoelectric.

The undriven part of the polarization and magnetization also
exhibits this behavior, for example,

P0 = γ

∫
R3

d3k
(2π )3

∫ ∞

V · k
[αE E(ω′) · h̃Xω′ (k)

+αE B(ω′) · h̃Yω′ (k)]ei(k · x−ωt)dω + c.c. (40)

The susceptibilities are given in terms of the coupling tensors
as in Sec. III C 3. By inserting Eq. (33) into (21) and (22), and
identifying the rest frame susceptibilities according to (10),
we find the following transformation formulas:

χE E = � ·χ ′
E E ·� − γ 2

c2

V
c

× χ ′
B B× V

c
,

χE B = γ

[
� · χ ′

E E × V + 1

c2
V × χ ′

B B ·�

]
,

χB B = � ·χ ′
B B ·� − γ 2V × χ ′

E E × V ,

χB E = −γ

[
V × χ ′

E E · � + 1

c2
� · χ ′

B B × V
]

,

which reduce to the well-known first order in V/c results when
the medium is isotropic (χ ′

E E = 13χ
′
E E and χ ′

B B = 13χ
′
B B) [1]:

D(k,ω) = ε′(ω′)E(k,ω) + [n′2(ω′) − 1]
V × H(k,ω)

c2
,

(41)

B(k,ω) = μ′(ω′)H(k,ω) − [n′2(ω′) − 1]
V × E(k,ω)

c2
,

where ε′(ω′) = ε0 + χ ′
E E(ω′), μ′−1(ω′) = μ−1

0 − χ ′
B B(ω′),

and n′2(ω′)/c2 = ε′(ω′)μ′(ω′). Therefore, the Lagrangian den-
sity L = (1) + (32) + (34) reproduces the correct macro-
scopic Maxwell equations for a medium in motion with any ε

and μ that satisfy the Kramers-Kronig relations.
From the point of view of the quantization of macroscopic

QED in terms of a fictitious bath of oscillators, it may seem
obvious that a moving medium should not be equivalent to
a stationary magnetoelectric: a harmonic oscillator is not a
relativistically invariant system. However, if we do not utilize
the bath of oscillators in the quantization, then it is not obvious
that the two are inequivalent. In regimes where dispersion is
negligible, the constitutive equations take the same form, and
this apparent equivalence has led to a paradox in the theory of
the Casimir effect [30], which we have hopefully shed some
light on.

V. CONCLUSIONS

We have shown that a natural generalization of the
Lagrangian in Ref. [12] provides a general description of
magnetoelectrics and media exhibiting Hermitian ε and μ

tensors. It has also been established that this generalization
is only consistent with quantization (i.e., the existence of
a Hamiltonian) with materials where the magnetoelectric
coupling satisfies (29), which reproduces some inequalities
previously derived from different physical arguments. We
propose (29) to be an accurate restriction on the magnitude
of the magnetoelectric coupling.

It has also been shown that, as far as the Lagrangian
description is concerned, moving media are not equivalent
to stationary magnetoelectrics. The coupling between the field
and the reservoir can indeed be the same in the two cases,
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however, the reservoir must be represented by (34) rather than
(2) to fully account for the physics of the Doppler effect.
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APPENDIX: A DERIVATION OF THE
MAGNETOELECTRIC INEQUALITY

Suppose we have four 3 × 3 matrices, α, β, γ , and δ,
all containing complex entries. We write these matrices in
a compressed notation as follows:

α =

⎛
⎜⎝

α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞
⎟⎠ =

⎛
⎜⎝

α1

α2

α3

⎞
⎟⎠ ,

where αi = (αi1,αi2,αi3). We now seek to find the relationship
between the following matrix products:

λ = α ·α† + γ · γ †,

ν = β · β† + δ · δ†,

σ = α · δ† + γ · β†.

Expanding out these matrix products, we find that their
elements can be written as

λij = αi · α

j + γ i · γ 


j ,

νij = β i ·β

j + δi · δ


j ,

σij = αi · δ

j + γ i · β


j .

We now examine the matrix element σij and look to write
it in terms of the diagonal terms λii and νjj . By multiplying
together both these diagonal terms, we obtain

λiiνjj = |αi |2|βj |2 + |αi |2|δj |2 + |γ i |2|βj |2 + |γ i |2|δj |2.
(A1)

We compare this with the absolute square of the element σij :

|σij |2 = |αi · δ

j |2 + |γ i ·β


j |2 + 2 Re[(αi · δ

j )(γ i · β


j )].

(A2)

By applying the Cauchy-Schwarz inequality [36] |x|2| y|2 �
|x · y|2 to (A2), we thus obtain

|σij |2 � |αi |2|δj |2 + |γ i |2|βj |2 + 2|αi ||δj ||γ i ||βj |
or, from (A1),

|σij |2 � λiiνjj − (|αi ||βj | − |γ i ||δj |)2.

So, finally, we find the following inequality must be satisfied
by the matrix elements:

|σij |2 � λiiνjj .
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