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Coherent x-ray generation from below-threshold harmonics
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The possibility of x-ray emission employing below-threshold-harmonic generation in the nontunneling regime
is considered. The interaction of a tightly bound valence electron in a highly charged ion with intense extreme-
ultraviolet laser radiation is investigated in the weakly relativistic regime by numerical solution of the two-
dimensional relativistically corrected Schrödinger equation. Nondipole effects and the relativistic mass correction
are taken into account by expansion of the total Klein-Gordon Hamiltonian up to the second order in the ratio
between the electron velocity and the speed of light. The harmonics below the ionization energy of the tightly
bound system are found to be emitted with much higher probability than the standard plateau harmonics of
loosely bound systems in the tunneling ionization regime for the same photon energy. This paves a path toward
coherent hard x rays.
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I. INTRODUCTION

As a promising way to produce coherent extreme-ultraviolet
(XUV) and soft-x-ray radiation and attosecond pulses, high-
order-harmonic generation (HHG) has been a leading research
field in nonlinear optics [1–3]. The generation of above-
threshold harmonics with energies higher than the ionization
potential has been widely investigated and has been well un-
derstood by means of the semiclassical three-step model [4,5]
and the quantum trajectory approach [6–9] within the strong
-field approximation (SFA) [10]. In the SFA, the electron
dynamics in the continuum is assumed to be dominated by the
strong laser field and the influence of the Coulomb potential is
neglected after tunneling. This theory explains well the main
characteristics of high-order-harmonic generation above the
ionization threshold, such as the plateau and cutoff of the
harmonic spectrum and the intensity dependence of the phase
of the dipole moment, but its description of the below- and
around-threshold harmonics is not accurate due to the strong
influence of the atomic potential on the electron dynamics.

Usually, low-order-harmonic generation is considered to
be a nonlinear process that can be fully explained within
perturbation theory. The first nonperturbative analysis of the
below-threshold harmonics (BTHs) within the SFA-based
quantum-orbit theory (neglecting the Coulomb field effect of
the atomic core) [11] has shown that the major contribution
to BTHs comes from a specific trajectory which does not
belong to the usual “short-long” classification scheme and
corresponds to the electron moving straight back to the atomic
core from the tunneling exit, providing significantly larger
HHG probability than the usual trajectories. The recent new
findings of experimental studies [12,13] shed more light
on the physics of the strong-field BTHs. Yost et al. [12]
studied the vacuum-ultraviolet frequency combs from BTHs
in xenon gas irradiated by an intense infrared laser field.
They found that both the laser-driven continuum dynamics
and the presence of the Coulomb potential contribute to
the generation of BTHs. Moreover, they showed that in the
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BTH regime multiple emission pathways also exist, as in
the case of above-threshold harmonics. The experimental
study of Power et al. [13] found that the BTH driven by
a strong mid-infrared laser field shows a nonperturbative
behavior and semiclassical characteristics dominated by the
long electron trajectory which can still be properly interpreted
with the modified three-step model. Hostetter et al. [14]
studied theoretically the generation of BTHs in a model
atom by extending the three-step semiclassical model to
include the effects of the atomic potential, obtaining a
good agreement with the experimental observations [12,13].
The experimental and theoretical analysis of quantum path
contributions to BTHs have been carried out in [15] and
conclusions are derived for the use of BTHs in molecular
spectroscopy.

The investigations of [11–15] belong to the nonrelativistic
regime. Nontunneling harmonics in the weakly relativistic
regime have been considered by Hu et al. in [16,17]. They
identified a so-called “surfing” mechanism of HHG during
the interaction of ultraintense laser radiation with a highly
charged ion [18] which enhances a limited spectral region in
the HHG spectrum within the BTHs. The latter, in contrast
to the usual three-step mechanism of HHG, is explained by
bound dynamics of the part of the electron wave packet which
is trapped in the laser-dressed atomic potential. In this way
efficient HHG up to 300 eV photon energies is shown in [16].
Can the BTHs be extended to cover the hard-x-ray domain?
This would lead to tabletop sources of hard x rays alternative to
the large-scale x-ray free-electron lasers [19] aimed at ultrafast
imaging and time-resolved study of the electron dynamics in
atoms and molecules.

The state-of-the-art technique based on the usual three-step
HHG mechanism allows generation of coherent x-ray photons
up to the keV energy range [20] and production of short XUV
pulses of less than 100 as [21]. The most favorable conversion
efficiency for nonrelativistic keV harmonics is anticipated with
mid-infrared driving laser fields in a medium of pressurized gas
cells [22–24]. The further increase of the driving field intensity
transfers the interaction regime into the relativistic domain
where the drift motion of the ionized electron in the laser field
propagation direction prohibits recollision and, consequently,
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suppresses the three-step HHG [25]. Moreover, for high
intensities a severe phase-matching problem arises because
of a large free-electron background causing phase mismatch
between the driving infrared laser wave and the emitted x
rays. Although various methods exist for counteracting the
relativistic drift [26–36] and even for solving both issues
of relativistic HHG, the drift and the phase-matching [37]
problem, the HHG yield achieved is small nevertheless.
This is due to fundamental limitations arising from the
energy scaling of the recombination probability, the smaller
macroscopic solid emission angle, and the natural decrease of
the emission yield per harmonic for high intensities because
the recolliding wave packet is spread over a larger energy
bandwidth [37].

In this paper, we investigate the possibility for coherent
hard-x-ray production up to several keV photon energies
employing below-threshold harmonic generation regime with
highly charged ions (HCIs) and a strong XUV driving field.
HCIs with a large ionization potential Ip ∼ 100 a.u. are applied
because in the BTH regime the HHG emission frequency (ωH )
is limited by the ionization potential (Ip), i.e., ωH � Ip. A
high density of HCIs is necessary for sizable HHG yield,
which can be realized using an underdense plasma [38].
However, in this case a large free-electron background will
exist, hindering the realization of phase matching for the
emitted x rays with the driving infrared laser field. To weaken
the phase-matching problem, we employ a strong XUV field to
drive the harmonic generation process, as at higher frequencies
the plasma refractive index is closer to one. High frequencies
are also necessary to avoid the fully relativistic regime because,
as we will see below, the laser magnetic-field-induced drift also
has consequences for BTHs. The intensity of the driving field
should be rather high and is dictated by the high ionization
potential of the HCIs. Let us aim for 3 keV harmonics,
which requires Ip ≈ 110 a.u. The HHG yield increases with
increasing driving field intensity up to ionization saturation,
i.e., the BTHs will be most efficient when the laser intensity
approaches the barrier suppression field of the HCIs: EBS ≈
I 2
p/4Z [39] (atomic units are used throughout the paper unless

specified otherwise), where Z is the charge of the ionic core.
For a given ionization potential, the necessary intensity of
the driving field will be smaller for a multielectron HCI (at
higher Z). For instance, if one uses lead ions, Ip = 112 a.u.
is achieved at Pb51+ when IBS ≈ 1.3 × 1020 W/cm2. Strong
XUV fields with a frequency ω ∼ 1 a.u. are available at the
FLASH facility in DESY [40]. We will consider intensities up
to 1020 W/cm2, approaching the barrier suppression limit. In
such HCIs the remaining core electrons are strongly bound,
e.g., the barrier suppression intensity is noticeably larger
for Pb52+ than for Pb51+ and increases sharply by orders
of magnitude on going to inner-shell electrons. BTHs are
due to the dynamics of the valence electron, and we apply
the single-active-electron approximation. Our investigation is
based on a direct solution of the time-dependent Schrödinger
equation (TDSE) in the weakly relativistic regime. The strong
laser field as well as the ionic potential are fully taken into
account. The relativistic corrections are taken into account
by expanding the Klein-Gordon Hamiltonian in the velocity
gauge up to the second order in the ratio of the electron velocity
to the speed of light.

The question arises as to whether the usual three-step HHG
process could not provide the same hard-x-ray frequencies
at the cutoff ωH = Ip + 3.17 Up. Here, Up = E2

0/4ω2 is the
ponderomotive potential, and E0 and ω are the laser field
amplitude and the frequency, respectively. In this paper, we
show the advantage of our BTH scheme in efficiency with
respect to two possible three-step HHG schemes. In one case,
the driving field is an XUV field with less intensity than used
for the BTH case, providing the desirable harmonic frequency
ωH ∼ 3 keV at the cutoff of the three-step tunneling HHG
scheme with a smaller ionization potential of the HCI. In the
second case, the three-step tunneling HHG is used with an
infrared driving laser and with an even smaller HCI charge.
Both three-step HHG schemes can provide harmonic energies
of 3 keV at the cutoff but with a significantly lower rate than
the proposed BTH regime.

The outline of our work is as follows. Section II presents our
theoretical model where we introduce the Schrödinger-type
equation used for the weakly relativistic regime and the poten-
tial employed to model the HCI. The computational details are
given in Sec. III and the results of the numerical simulations
are discussed in Sec. IV. Our findings are summarized in
Sec. V.

II. THEORETICAL MODEL

We consider the response of the highly charged ions to the
laser pulse in the single-active-electron approximation [41]. In
a strong laser-matter interaction, when the velocity of the de-
tached electron promoted by the laser field is comparable with
or larger than the speed of the light c, namely, ξ = E/cω � 1,
the fully relativistic treatment must be adopted; see, e.g., [42].
However, relativistic effects already start to play a role in
atomic processes when the relativistic parameter is smaller
than 1. Thus, the recollision-based effects, such as HHG and
nonsequential double ionization, are influenced by the rela-
tivistic drift when the drift distance becomes comparable with
the recolliding-electron wave packet size [43], which happens
already at intensities above 3 × 1016 W/cm2 in infrared fields
(ξ � 0.14). In the weakly relativistic regime with ξ � 1, which
is the regime considered in this paper, the main deviations
from the nonrelativistic dynamics are the breakdown of the
dipole approximation and correspondingly the drift caused by
the magnetic component of the laser field, and the relativistic
mass shift [25]. Therefore, we expand the fully relativistic
Hamiltonian up to the second-order corrections in the ratio
of the electron velocity to the speed of light, and neglect the
higher-order terms. Then, the Hamiltonian of an electron in a
laser field interacting with a binding potential in the velocity
gauge is given by

H (r,t) = 1

2
[p̂ + A(r,t)/c]2 − 1

8c2
[p̂ + A(r,t)/c]4 + V (r),

(1)
where p̂ is the canonical momentum operator, A(r,t) is the
vector potential of the laser field, and V (r) is the Coulomb
potential. The second term on the right-hand side is the rela-
tivistic mass shift. We do not adopt the dipole approximation
for the vector potential and in this way include the magnetic
field effects. We assume that the laser field is linearly polarized
along the x direction and propagates in the z direction. In this
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case, the dynamics of the electron induced by the laser field is
mainly confined in the (x,z) plane, so it is accurate enough to
solve the two-dimensional (2D) TDSE. We will further justify
the reduction to 2D at the end of Sec. IV. In order to model
the Coulomb field experienced by the active electron, the 2D
“soft-core” potential

V (x,z) = − q√
x2 + z2 + a2

(2)

is employed, which can reproduce the main features of the
laser-atom interaction in the strong-field regime. The choice
of the q and a parameters determines the depth of the potential
and its smoothness at the origin [as a rule of thumb q ∼ Z

is the charge of the ionic core and a ∼ Ne/(Ne + Z − 1) the
radius of the HCI, where Ne is the number of electrons in the
HCI].

The laser-driven photoemission from an isolated ion in the
laser propagation direction can be obtained from the time-
dependent electron acceleration in the polarization direction,
ax(t) = ∂2

∂t2 〈x〉. The dipole approximation for the emitted light
is applied because the harmonic wavelength at 3 keV (λH ∼
5 Å) is larger than the HCI size: λH � a. Harmonic emission
taking retardation effects into account is treated, e.g., in [44].
By application of the Ehrenfest theorem, the expectation value
of the acceleration is expressed as [45]

ax(t) = 〈ψ(t)| − ∂

∂x
V (x,z) − Ex(z,t)|ψ(t)〉, (3)

where Ex(z,t) = − 1
c

∂
∂t

Ax(z,t) is the laser electric field. The
time-dependent electronic wave packet ψ(t) is obtained by
numerical integration of the 2D TDSE with the Hamiltonian
of Eq. (1). The single-ion emission spectrum is proportional
to the power spectrum of acceleration of the time-dependent
atomic dipole,

σ (ω) ∝ |ax(ω)|2 =
∣∣∣∣ 1

T2 − T1

∫ T2

T1

dt e−iωtax(t)

∣∣∣∣
2

. (4)

To investigate the detailed spectral-temporal structures
of the harmonic emission, we perform a time-frequency
analysis of the electron acceleration via window Fourier
transform:

ax(t,ω) =
∫

dt ′ax(t ′)e−iωt ′ exp[−(t − t ′)2/�t], (5)

where �t is the width of the time window.

III. COMPUTATIONAL DETAILS

We solve directly the weakly relativistic TDSE. The grid-
based solution allows us to treat the laser field and the
atomic potential on an equal footing, which is necessary to
describe harmonics with photon energies below and close to
the ionization threshold. The spectral method [46] is employed
for solving the TDSE in Cartesian coordinates with a split-
operator algorithm [47]. Within the dipole approximation,
the total Hamiltonian can be written in two parts, namely,

the kinetic energy and the potential energy operators. The
momentum space is the eigenspace of the kinetic energy
operator, while the potential term can act directly on the
wave function in the coordinate space. Therefore, the TDSE
can be efficiently solved by Fourier transform of the wave
function back and forth between the momentum and the
coordinate spaces with a fast-Fourier-transform algorithm; this
is accurate enough to perform the time-dependent propagation
with second-order splitting propagators for a sufficiently small
time step. Generally speaking, the split-operator algorithm is
not applicable in the nondipole approximation case because of
the existence of the cross terms of the canonical momentum
operator p̂ and the vector potential A(r,t). However, there is
an exception for a linearly polarized laser field for which
the vector potential polarized along the x direction is only
a function of the coordinate along the propagation direction
z. In this case, the split-operator method can be applied to the
nondipole terms such as px(t)Ax(z,t) and px(t)2Ax(z,t) by
keeping the z component of the wave function in the coordinate
space and Fourier transformation of the x component into the
momentum space [17,18,25].

The electronic wave packet will extensively spread out in
the space domain due to strong-field photoionization. In this
case, the accurate numerical solution of the TDSE requires
a quite dense and huge number of grid points to account for
the motion of the detached electron in the continuum energy
region. As one can see from Eq. (3), the dominant contribution
to the acceleration comes from the region near the ion core,
ax(t) ∼ 〈∂V/∂x〉 ∼ x/r3. Therefore, the integration required
to calculate this expectation value can be truncated at places
where the force on the electron is negligible. The finite grid
size employed for the propagation of the wave function causes
the problem of unphysical reflections of the wave packet
at the boundary and will give rise to spurious HHG [48].
The reflection can be minimized by introducing an absorbing
component into the atomic potential or using mask functions.
We use here a broad and smooth masking function of the
form

M(xi) = cos1/8 |xi − xb|π
2dm

, (6)

where dm is the length of the absorbing region over which M

changes smoothly from 1 to 0, and xb are the boundary points
along the integrated coordinate xi .

The initial electronic wave packet is assumed to be the
ground state of the potential V (x,z); see Eq. (2). For a
certain ionization potential, the values of the parameters
q and a can be determined from the eigenvalue solu-
tion of the Schrödinger equation by the spectral method
[46]. In this paper, atomic systems with ionization ener-
gies of 112.2 a.u. (q = 52, a = 0.3735 a.u.), 32.54 a.u.
(q = 21, a = 0.480 94 a.u.), and 4.42 a.u. (q = 5, a =
0.6993 a.u.) are used, which correspond approximately
to the ground-state energies of Pb51+, Kr20+, and Ne4+,
respectively.

The vector potential of the laser field has five-cycle linear
turn-on and turn-off ramps,
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Ax(z,t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0
t− z

c

ton
cos

[
ω

(
t − z

c

) + φ0
]
, 0 < t − z

c
� ton,

A0 cos
[
ω

(
t − z

c

) + φ0
]
, ton < t − z

c
� ton + ttop,

A0
Ttot−(t− z

c )
toff

cos
[
ω

(
t − z

c

) + φ0
]
, ton + ttop < t − z

c
� Ttot,

(7)

where ω = 2π/T is the angular frequency and φ0 is the carrier-
envelope phase of the pulse, ttop = 10T is the duration of
the field with a constant amplitude A0, ton = toff = 5T is the
duration of the turn-on and turn-off ramps, and Ttot = ton +
ttop + toff = 10T is the whole pulse duration.

IV. RESULTS AND DISCUSSION

In this section we present the results of numerical calcula-
tions on x-ray generation up to the 3 keV photon energy region
via BTH. A comparison of the BTH scheme with the possible
three-step tunneling HHG schemes is carried out as well.

The BTH spectra for a tightly bound electron in the soft-core
potential with Ip = 112.2 a.u. ≈ 3.06 keV (corresponding to
the ground-state energy of the Pb51+ ion) are obtained by the
numerical integration of the 2D weakly relativistic TDSE.
The laser pulse contains 20 optical cycles with five-cycle
linear turn-on and -off ramps specified in Eq. (7). The spectra
shown in Fig. 1 are calculated from the Fourier transform of
the dipole acceleration of Eq. (3) over the ten optical cycles
during which the field amplitude of Eq. (7) is constant. The
latter will exclude the contribution to the HHG because of the
nonadiabatic evolution of the atomic system in the laser pulse.
The laser intensity is 2 × 1020 W/cm2 which is close to the
barrier suppression intensity. Two cases are considered with
the incident photon energies of 3 and 1 a.u., which correspond
to a weakly relativistic regime with ξ = 0.18 and 0.55,
respectively; see also Table I. These intensities are slightly
above the typical beam parameters of FLASH in Hamburg,
given by a peak power of 5 GW [40] and corresponding to

FIG. 1. (Color online) The HHG spectra for an electron in the
soft-core potential of Eq. (2) with parameters shown in Table I. The
spectrum for Ip = 4.42 a.u. (purple line, lowest curve) is multiplied
by 106.

an intensity of 5 × 1017W/cm2 when focused to a micrometer
spot size. The ionization probability at the end of the pulse is
0.86 at ω = 3 a.u. and 0.89 at ω = 1 a.u.. The dimensions of
the integration box for the numerical solutions, Lz = 40 a.u.
and Lx = 200 a.u., are taken to be much larger than the
electron excursion amplitudes α0 = E0/ω

2, which are 8.39
and 75.49 a.u., respectively, and the spatial and temporal
grids with the respective step values of dx = 9.76 × 10−3 a.u.,
dt = 2.56 × 10−3 a.u. and dx = 2.4 × 10−2 a.u., dt = 4.79 ×
10−4 a.u. are dense enough to get converged spectra. The
harmonics ωH � Ip are due to a nontunneling mechanism,
which can be proved by calculating HHG with a smaller box
size; see Fig. 2. Decrease in the size of the simulation box from
Lx = 40 a.u. to Lx = 10 a.u. does not modify the HHG spec-
trum noticeably up to harmonic frequencies ωH ∼ 100 a.u.,
while the emission of higher harmonic frequencies is de-
creased. One can deduce that the excursion of the electron
wave packet out of the atomic size has no effect on BTH.
Both of the spectra at Ip = 112.2 a.u. show an enhancement
of BTH at ωH ≈ 20 a.u. as in the case of ω = 3 a.u. as well as
at ω = 1 a.u. As the enhancement position does not depend on
the driving frequency but only on the atomic potential and the
driving laser field intensity, we attribute it to the bound-bound
transition resonance.

In the following, the efficiency of the BTH generated
from the tightly bound system is investigated. We show in
Fig. 1 the HHG spectra for parameters where the standard
three-step mechanism is present, which provide the same
hard-x-ray frequencies in the plateau (cutoff) of the spectra,
using HCIs with a weaker ionization potential. For the purpose
of comparison, the harmonic spectra for atomic systems with
Ip = 32.54 a.u. (corresponding to Kr20+) and ω = 1 a.u., and
with Ip = 4.42 a.u. (corresponding to Ne4+) and ω = 0.05 a.u.
are computed. The appropriate field and atomic parameters for
these potentials, shown in Table I, are chosen to make sure
that the ionization by the strong laser field is in the tunneling
regime with the Keldysh parameter γ = √

Ip/(2Up) < 1, with
comparable ionization probabilities for all cases (the ionization
probability is 0.9 in the case of Ip = 32.54 a.u., ω = 1 a.u., and
0.4 in the case Ip = 4.42 a.u., ω = 0.05 a.u.), and that the HHG
plateau (cutoff) energy is of order of the ionization potential

TABLE I. Ionization energies and laser parameters used for
calculations.

Ip (a.u.) q ω (a.u.) I0 (W/cm2) ξ γ ωmax (a.u.) α0 (a.u.)

112.2 52 3 2 × 1020 0.1836 0.595 651 8.39
112.2 52 1 2 × 1020 0.5509 0.198 4669 75.49
32.54 21 1 8.5 × 1018 0.1136 0.518 235.2 15.56
4.42 5 0.05 3 × 1016 0.1349 0.161 277.1 369.83
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FIG. 2. (Color online) The below-threshold harmonic spectra
in the case of Ip = 112.2 a.u., ω = 3 a.u., and laser intensity
I0 = 2 × 1020 W/cm2, obtained for different box sizes applied in
the simulation.

for the BTH generation. Figure 1 clearly indicates that, for a
fixed emitted harmonic photon energy, e.g., ωH = 110 a.u., the
absolute yield of the BTH for a tightly bound system (Pb51+,
Ip = 112.2 a.u.) induced by the high-energy photons (ω =
3 a.u.) is larger by more than three orders of magnitude than
the three-step HHG from HCIs of a smaller charge (Kr20+,
Ip = 32.54 a.u. and ω = 1 a.u.) and by more than 12 orders
magnitude than the three-step HHG driven by an infrared laser
field (Ne4+, Ip = 4.42 a.u. and ω = 0.05 a.u.). One can infer
from Fig. 2 that the reason for this is the different nature
of the BTH process: For BTH essentially bound dynamics
is responsible for emission. However, tunneling harmonics
occur only with a weaker potential where the recolliding
wave packets undergo large continuum excursion (see Table I),
suffering from spreading, which leads to a small single-atom
efficiency of the process.

It is worth noting that Hu et al. [16–18] studied the
nontunneling high-order harmonics from ultraintense-laser-
driven tightly bound systems. The low-order-harmonic spectra
they obtained showed the existence of a spectral plateau with
a well-defined cutoff, which was explained by a “surfing”
mechanism of the electron in the effective potential. However,
this kind of plateau is absent in our calculations, which is
probably connected with the fact that the surfing regime of

0 1 2 3 4 5
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10-9

10-8

10-7

10-6

10-5

|a
x( ω

)|
2  (

a.
u.

)

Photon Energy (a.u.)

FIG. 3. The HHG spectrum for a neon atom in a linearly polarized
laser pulse of sub-1.5-cycle duration with a wavelength λ = 720 nm
and an intensity of I0 = 5.8 × 1014 W/cm2. The parameters corre-
spond to the experiment of [49].

HHG is very sensitive to the laser and atomic parameters and
is not realized in the considered case.

To have an idea on the absolute yield of BTH, we show in
Fig. 3 a typical example for low-energy HHG at ωH ∼ 80 eV
realized in the experiment of Goulielmakis et al. [49]. In
this experiment sub-100-as pulses containing ∼0.5 nJ of
energy with the single-photon energy of ∼80 eV were
measured with a conversion efficiency of ∼10−6. In Fig. 3,
we have calculated the single-atom HHG response for the
above-mentioned experimental parameters: neon atoms in
a linearly polarized 720 nm laser field with I0 = 5.8 ×
1014 W/cm2. The spectrum is obtained by numerical simula-
tion of the 3D nonrelativistic TDSE with the code QPROP [50].
We see that the yield of BTH for a single-atom response in
Fig. 1 is orders of magnitude higher than that of the single
neon atom shown in Fig. 3. This indicates the real chances for
BTH generation.

Additionally, we estimate the total photon number per shot
emitted from a typical gas target in the BTH regime for the
black highest curve in Fig. 1. From the acceleration we can
deduce the spectral density of the emitted photon number per
solid angle of a single atom as [51]

d2N

d
 dωH

= sin2 θ

4π2c3ωH

|ax(ωH )(T2 − T1)|2, (8)

where 
 is the solid emission angle. Under perfect phase-
matching conditions the total emitted photon number is given
as

N = (ρV )2
∫

dωH

d2N

d
dωH

�
(ωH ), (9)

where ρ is the number density of the gas and V the
contributing volume. The solid emission angle is approximated
by �
(ωH ) ∼ πθ2, with the angular width θ ∼ 2πc/DωH

of the central speckle of an interference pattern caused by a
circular aperture of diameter D. As the length of the medium
we choose the coherence length lcoh = πc/[ωH (1 − ne)] in a
free-electron gas, where ne =

√
1 − ω2

p/ω2 is the refractive
index, with the plasma frequency ωp = √

4πZρ and the
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FIG. 4. (Color online) The relativistic and nondipole effects on
the photon emission of an electron in the soft-core potential of Ip =
112.2 a.u. exposed to a laser field with an intensity of 2 × 1020 W/cm2

and photon energy of ω = 3 a.u. (a) and ω = 1 a.u. (b). The other
parameters are the same as in Fig. 1 and are shown in Table I.

number of free electrons per atom Z. For a gas density
of ρ = 1017/cm3 and an ion charge Z = 51, we find a
coherence length on the order of 1 mm in the center of
the harmonic spectrum. Assuming a gas target of diameter
D = 10 μm, we calculate an emitted photon number of 107 for
the spectral window between 6 and 100 a.u. from Eq. (9). The
number is competitive with results of standard nonrelativistic
experiments despite the low gas density and tiny emission
angle at these high energies. The pulse energy of the applied
driving XUV pulse is 200 μJ in the considered case, yielding
a conversion efficiency of 10−8.

To find the impact of the magnetic components of the
laser field and the relativistic mass shift on the photon
emission process for BTH, the HHG spectra obtained with the
dipole approximation and with the nondipole nonrelativistic
approximation by omitting the relativistic mass shift term
in the Hamiltonian of Eq. (1) are shown in Fig. 4. The
nonrelativistic TDSE calculations in dipole approximation
using the 3D QPROP code with a Crank-Nicolson propagator
is also shown for comparison. Figure 4(a) shows the harmonic
spectra for Ip = 112.2 a.u. and ω = 3 a.u. For those parameters

FIG. 5. (Color online) Time-frequency analysis of the electron
acceleration (3) by use of Eq. (5) with a time window of �t = 0.05T .
The other parameters are the same as in Fig. 1 with Ip = 112.2 a.u.
and ω = 1 a.u.. In (a) we show the total analysis whereas in (b) the
seventh cycle is shown in more detail. The upper panels in (a) and (b)
show the time dependence of the laser field.

the relativistic corrections are negligible. The 2D and
3D results show a similar spectral distribution, which
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indicates that for this tightly bound system the electron wave
packet spreading plays no essential role in the BTH generation
and converges within a discrepancy smaller than one order
of magnitude. In the case of Ip = 112.2 a.u. and ω = 1 a.u.
[see Fig. 4(b)], the magnetically induced drift in the laser
propagation direction shows a strong influence on HHG
spectra for higher photon energies ωH , in contrast to the ω =
3 a.u. case. Harmonics larger than ωH � 40 a.u. are damped
by more than one order of magnitude, which is because of
a rather large ξ ≈ 0.55. The role of the relativistic drift is
quantified by the parameter η ≡ √

2Ipξ 3c/ω which is defined
in [36] as the ratio of the drift distance in the laser propagation
direction to the electron wave packet spreading during a laser
period. η = 0.27 in the case of Ip = 112.2 a.u., ω = 3 a.u.
and η = 21 at Ip = 112.2 a.u., ω = 1 a.u. (η = 2.1 in the
case of Ip = 4.42 a.u., ω = 0.05 a.u.), giving an explanation
for the conspicuous damping impact of the relativistic drift in
the ω = 1 a.u. case. An unexpected fact is that the relativistic
drift can have an impact not only in the three-step regime of
HHG but also in the BTH regime where the bound dynamics
dominates, damping the high-energy tail of BTHs. This could
be the reason why we do not observe the same enhancement
for the BTH with Ip = 112.2 a.u. and ω = 1 a.u. (dashed red
line in Fig. 1) as the for the case of ω = 3 a.u. (top black solid
line). In fact the BTHs for Ip = 112.2 a.u. and ω = 1 a.u.
(dashed red line) have a lower yield comparable to that
of the tunneling harmonics (dotted blue line). Figure 4(b)
indicates also that the relativistic mass shift still does not
play a role in the BTH regime at this ξ value. For ω = 1 a.u.
[Fig. 4(b)] we were not able to obtain convergent 3D
numerical results within a practical time span. Although
both the split-operator and the Crank-Nicolson propagators
are claimed to be accurate to the second order in the
time step, we found that a much smaller time step is
required for the convergence of the QPROP calculations. We
employed dt = 3.2 × 10−4 a.u. for the convergent results of
Fig. 4(a). For ω = 1 a.u. we decreased the time step down
to dt = 1.2 × 10−4 a.u., which was not sufficient to obtain
convergence for the high-energy tail of the spectrum. For this
reason we do not show the results in Fig. 4(b). Nevertheless,
in the low-energy part of the spectrum convergence occurred
and we found agreement between these 3D results and the
nonrelativistic 2D results within the dipole approximation
(dashed blue line), as in Fig. 4(a). The bottom line is that the
observations justify the restriction to a two-dimensional grid
for the problem under investigation.

To gain more insight into the BTH generation, we have
carried out a time-frequency analysis using a window Fourier
transformation based on Eq. (5); see Fig. 5. In Fig. 5(a), we
distinguish two signatures: On the one hand, the horizontal
emission areas below 10 a.u. and at about 20, 40, 60, and
80 a.u. with an enhanced HHG yield are recognizable on the
time-frequency map. The corresponding energies of the areas
depend only on the atomic potential and the driving laser field
intensity but not on the driving laser frequency. They match the
transition energies of the bound system. Therefore, we think
those photon energies correspond to a bound-bound transition
between Stark-shifted states. On the other hand, spikelike
structures within the plateau of the driving pulse between 5
and 15 optical cycles are visible, which are responsible for

the high-frequency BTHs. Both signatures lose strength in the
course of time because they are affected by depletion due to
ionization.

As an example, we discuss the seventh cycle in Fig. 5(b).
We observe a periodic resonant emission at the photon energies
ωH < 10 a.u. and ωH ≈ 20 a.u. Two characteristic regions of
BTHs can be identified in Fig. 5(b) based on the characteristic
time of the harmonic emission, i.e., low-frequency BTHs with
ωH < 10 a.u. and high-frequency BTHs with 10 a.u. < ωH <

Ip. The low-frequency BTHs are emitted near the peak of the
laser field with a slight phase delay. The emission times of
the high-frequency BTHs 20 a.u. < ωH < Ip form a bowlike
structure which recalls the one well known from tunneling
HHG; cf. Fig. 3 in [11]. In contrast to the usual three-step HHG,
here the widths of the bowlines for the emission time are rather
broad, which indicates that the quasiclassical description is less
applicable for BTHs than for the above-threshold harmonics.
The emission times of the low-frequency BTHs relative to the
high-frequency BTHs indicate that they are probably due to the
L-type quantum orbit [11] of the essentially bound electron.

Figure 5(a) shows that the depletion of the bound state
has the largest impact on the long trajectories (see the right
part of the bowlike structure), i.e., the long trajectories of
BTHs are more vulnerable to the influence of the Coulomb
field of the atomic core. These findings require further
investigation.

V. SUMMARY

The interaction of a tightly bound single-active-electron
system with an ultraintense laser field in the weakly relativistic
regime is investigated by numerical solution of the two-
dimensional weakly relativistic Schrödinger equation in which
the nondipole effects and the relativistic mass shift correction
are included. The strong-field approximation is not accurate
enough to describe the dynamics of the electronic wave packet
in the XUV field because of the increased importance of
the atomic potential. Within the intensities considered, the
relativistic mass shift effect is found to be much smaller than
the nondipole effect. The plateau and the well-defined cutoff
which characterized the standard tunneling-recombination
HHG are absent in the below-threshold harmonic spectrum
which we have obtained. However, the intensity of these
harmonics is found to be orders of magnitude stronger than that
of the standard above-threshold harmonics of the same photon
energy. By use of highly charged ions with a large atomic
number, it is expected that highly efficient below-threshold
harmonics can be extended to the higher-energy region, which
opens a way for the generation of coherent hard-x-ray radiation
from the harmonic emission processes. On the other hand,
we should also recall that the radiation signal generated in
a strong-field laser-matter interaction is determined not only
by the radiation pattern from a single ion, but also by the
phase-matching process during propagation. We provided a
preliminary estimate for the macroscopic yield showing that
107 harmonic photons in the keV energy range can be obtained
in the BTH regime with an efficiency of 10−8. However,
accurate investigations of the macroscopic propagation effects
based on a solution of the Maxwell equations are required

063817-7



LIU, KOHLER, KEITEL, AND HATSAGORTSYAN PHYSICAL REVIEW A 84, 063817 (2011)

in order to draw a reliable conclusion about the applicability
of below-threshold harmonics for coherent hard-x-ray gener-
ation.
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