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Phase-mediated long-range interactions of cavity solitons in a semiconductor laser
with a saturable absorber
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We numerically study the dynamics of pairs of cavity solitons in a laser. We show that the solitons interact even
at distances much greater than their sizes in the intensity and carrier-densities profile. The interaction is mediated
by the phase. In a certain range of initial values of the distance, the solitons adjust their position until they form
bound states. There are two such bound states, corresponding to different equilibrium distances, in which the
solitons display partial phase locking, that is, their relative phase slowly oscillates as in a phase-entrained state.
In those states, the two solitons can be switched on and off independently. For smaller initial distances, only one
soliton survives. For larger initial distances, the solitons lock in phase and repel each other up to a distance of
about ten soliton diameters.
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I. INTRODUCTION

Recently, a new kind of laser has emerged from studies on
cavity solitons (CSs): the CS laser (CSL) [1]. An intermediate
step toward the realization of a CSL was the vertical-cavity
surface-emitting laser (VCSEL) with optical injection where
the CSs form through a mechanism that is essentially the same
as in early experiments with passive devices or amplifiers [2].
The only relevant difference was that, in a VCSEL above
threshold, optical injection can cause an instability in the lower
branch of the bistable curve, and this produces a turbulent
dynamics in the background of the solitons [3].

But the breakthrough was the demonstration that a CSL
can be realized without the need of an external driving field.
In this way, one has a laser that, although homogeneously
pumped over its transverse section, emits isolated beams
placed in arbitrary positions and surrounded by regions of
pure spontaneous emission. Such a device can be regarded
as an array of microlasers, which, compared to conventional
arrays, presents several applicative advantages related to
the fact that the positions of the single emitters are not
fixed a priori and they even can move, spontaneously or
not.

Two physical mechanisms make it possible to realize a CSL:
frequency-selective feedback from a volume Bragg grating
[4–6] and inclusion of a saturable absorber. In the latter case,
two different experimental setups were adopted: two VCSELs,
one above and the other below transparency, in a face-to-face
configuration [7–9], and a monolithic cavity that contains both
an amplifying and an absorbing stage [10,11].

The last configuration was studied extensively in a series of
theoretical papers [12–15] based on model equations similar
to those used by Rozanov and Fedorov [16] and Fedorov et al.
[17], who, almost 20 yr ago, made the prediction for localized
structures (autosolitons) in a laser with a saturable absorber.
With respect to an externally driven system where the coherent
holding beam locks the phases of all the CSs to the same value,

in a CSL, the absence of a driving field introduces a new degree
of freedom, the relative phase, in the interaction of CSs.

In driven systems, the CSs can merge, can repel until they
reach a critical distance beyond which they do not interact
anymore [18,19], and can form clusters at some equilibrium
distances, which are the minima of an oscillating potential
produced by the tails in their intensity profile [20]. The phase
plays no role in these interactions.

In a CSL, instead, phase-dependent interactions may be
expected, such as in spatial solitons [21], and the range of the
interactions can be very large because, as we show, the phase
profile of the CS has a size much larger than the intensity
profile. It must be stressed, however, that in the case of prop-
agating solitons the phases are determined by the launching
conditions, while in a CSL, they are free dynamical variables.

In this respect, CSs in a CSL are more similar to (mi-
cro)lasers in an array, where each laser can choose its phase
freely. It is known that semiconductor laser arrays manifest
a preference for the out-of-phase state. Such a preference
commonly is attributed to the fact that this state, where the
field intensity exactly is zero in between two lasers, better
matches the gain profile of etched arrays. Yet, the analysis
of the dynamical equations shows that such a preference
can also be attributed to the nonlinear dispersion induced by
the linewidth enhancement factor [22,23], which favors the
out-of-phase state because it is blue detuned with respect to
the in-phase state. Accordingly, the out-of-phase state should
be the preferred one in any array of semiconductor lasers, even
in an array of CSs with a homogeneous gain profile, such as a
CSL, at least, as long as the distance between the CSs is fixed.

Previous numerical analysis of the interaction of solitons in
a laser with a saturable absorber in the limit of fast material
dynamics showed that both in-phase [24] and out-of-phase [25]
pairs of two-dimensional stationary solitons can be stable.
When the finite-relaxation times of the material variables are
taken into account, moving clusters of solitons are found [26].
However, with respect to those papers, in our model we
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homogeneous solution

FIG. 1. Intensity of the homogeneous stationary states and of the
CS for s = 1, γ = 2, B = 0.1, α = 2, β = 1, and b1 = b2 = 0.003
as a function of the pump parameter μ. For the CS, the symbol
represents the peak intensity of the stable solution.

include the linewidth enhancement factor, which, for what
is mentioned above, is expected to play a relevant role.

In this paper, we study how the interaction of two CSs
depends on their distance. We start from an initial condition
where only one CS is present, and we switch on another one
at progressively larger distances. We use incoherent switching
because that is the technique adopted in the monolithic device
[11]. After reviewing the model and its stationary solutions in
Sec. II, in Sec. III, we classify the different behaviors observed
at various distances. Section IV contains a summary of the
results and a comparison with recent experimental findings.

II. DYNAMICAL EQUATIONS AND STATIONARY
SOLUTIONS

The dynamics of a VCSEL-based CS laser is described by
the following set of equations [13]:

Ḟ = [(1 − iα)D + (1 − iβ)d − 1 + i∇2]F, (1)

Ḋ = b1[μ − D(1 + |F |2) − BD2], (2)

ḋ = b2[−γ − d(1 + s|F |2) − Bd2]. (3)

F is the slowly varying amplitude of the electric field, and D

and d are population variables defined as

D = η1

(
N1

N1,0
− 1

)
, d = η2

(
N2

N2,0
− 1

)
, (4)

where N1 and N2 are the carrier densities in the active and
passive materials, respectively, N1,0 and N2,0 are their trans-
parency values, and η1 and η2 are adimensional coefficients
related to gain and absorption, respectively.

The parameters α and b1 (β and b2) are the linewidth
enhancement factor and the ratio of the photon lifetime to the
carrier lifetime in the active (passive) material, μ is the pump
parameter of the active material, γ is the absorption parameter
of the passive material, s is the saturation parameter, and B is
the coefficient of radiative recombination. For more details on
the definition of the parameters, see Ref. [12]. Notice, however,
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FIG. 2. Profiles of the field intensity, of the populations D and d ,
and of the field phase for the CS at μ = 4.6.

that in the definitions of μ and γ the inclusion of quadratic
recombination implies that the coefficients η1 and η2 must be
replaced by η1(1 − Bη1) and η2(1 − Bη2). Therefore, if the
absorber is not pumped, γ = η2(1 − Bη2).

For the choice of parameters s = 1, γ = 2, B = 0.1,

α = 2, β = 1, and b1 = b2 = 0.003, the homogeneous sta-
tionary solution and the stable CS branch are shown in Fig. 1
as a function of the pump parameter μ. The off solution is stable
below the laser threshold μthr � 5.18 and is unstable above it.
The nontrivial homogeneous solution is unstable everywhere
due to the diffraction term. The stability range of the CS is
very sensitive to the ratio r = b2/b1 of the two decay rates of
the population variables. For r = 1, the CSs are stable in the
interval 4.56 < μ < 5.15. In this paper, we focus on μ = 4.6
because, for that pump value, the CS can easily be switched
on and off incoherently as shown in Ref. [14].

Since we are interested in the interaction of two CSs,
it is important to know the size of a CS in the different
physical variables. The profiles of the field intensity, of the
two populations D and d, and of the field phase for the CS at
μ = 4.6 are shown in Fig. 2. The size of the CS in the two
population profiles is slightly larger than in the field intensity,
but the most striking feature is that the coherence area of the
CS, i.e., the region where the field has a definite phase, is much
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broader. We then expect long-range interactions between two
CSs mediated by the phase [27].

In Fig. 2, the horizontal axis is one adimensional transverse
coordinate. In order to estimate the real value of one spatial
unit, we can compare the FWHM (in the field intensity) of
the CS from the numerical simulations with the experimental
ones. The FWHM is about two space units in the numerical
simulations, and it ranges from 10 [4,9] to 12 μm [11] in the
experiments. Hence, one space unit in the numerical simulation
corresponds to about 5 to 6 μm. This must be kept in mind
when we want to obtain physical values of the distance between
the CSs from the numerical simulations.

From Figs. 6 and 7 of Ref. [9], it also is possible to evaluate
the actual size of the CS phase profile by looking at the spatial
area in the far field that is characterized by interference fringes:
Even if it is difficult to quantify it, one can estimate that the
phase profile is three to four times larger than the intensity
profile. The fact that, in our case, it is even larger can be
attributed to spatial disorder that limits the spatial coherence
of the CS in the experiment.

III. NUMERICAL SIMULATIONS

The dynamical equations were integrated numerically
using a split-step method with periodic boundary conditions.
We used a 128 × 128 grid with a space step ds = 0.25,
which, according to the above discussion, corresponds to
1.25–1.5 μm. The time unit is the photon lifetime, which is
typically on the order of a few picoseconds. The effects of
spontaneous emission noise are simulated adding stochastic
terms in the form of Gaussian white-noise sources with zero
mean and unit variance, uncorrelated both in time and in space,
to Eq. (1).

In order to incoherently switch the CS on and off, we
superimposed to the homogeneous pump a Gaussian pulse
of the form

μ(x,y) = μ0 + ηe[−(x−x0)2−(y−y0)2]/w2
, (5)

which simulates the injection of a Gaussian current pulse of
amplitude η and width w, centered in the point (x0,y0) for
a certain injection time tinj. The injection parameters that we
used to create a CS are η = 4.6, w = 2

√
2, and tinj = 300. As

shown in Ref. [14], to switch off the CS, narrower and more
intense beams must be used. Thus, we increased the amplitude
to η = 20, reduced the width to w = 1.2, and reduced the
injection time to tinj = 100.

Figure 3 shows the dynamics of the field intensity during
switch on and switch off. The switch-on dynamics resembles
that of a class-B laser, which is suddenly brought above
threshold: large damped pulses in the initial stage and damped
harmonic oscillations in the final stage. For what follows, it
is important that, immediately after the end of the injection,
the intensity falls to almost zero, and it remains very low for
some tens of time units. The switch-off process is much faster
because the CS simply disappears as soon as the associated
hole in the active population is filled by the injected carriers.

In the following, as initial condition of our numerical
simulation, we took a CS placed in the position (40,40) of
the grid and tried to create a new CS by injecting a switch-on
beam centered in the position (40 + N,40 + N ). Hence, both
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FIG. 3. Field intensity dynamics when a CS is switched on (upper
panel) and off (lower panel) by injection of carriers in the active
material. In both figures, the vertical dashed lines denote the time at
which injection ceases.

CSs are on the diagonal of the square, and their initial distance
is � = √

2N ds. We observed different behaviors as N varied.
The results can be classified in three groups: 16 � N � 26

(small distance), 27 � N � 36 (medium distance), and N �
37 (large distance). For N � 15, the situation is less clear. In
some cases, we find results similar to those obtained for larger
N because the injected beam repels the existing CS so that, at
the end, the distance of the two CSs is much larger than �.
In other cases, the injected beam switches off the existing CS
without creating a new one, and the laser ends in the off state.

A. Small distance

For 16 � N � 26 (5.66 � � � 9.19), the attempt to create
a second CS fails. For those relatively small distances, the
switch-on process of a new CS perturbs the existing one. In
particular, when the giant pulse that is formed in the injection
point falls to zero at the end of the injection, the intensity of the
existing CS also is strongly reduced. Hence, at the end of the
injection, the field intensity is very low everywhere, although
there are two dips in the carriers centered in the grid points
(40,40) and (40 + N,40 + N ).

Typical profiles of the field intensity and of the active
population D at the end of the injection are shown in Fig. 4
for N = 21. At this point, the possible outcomes are three:
(i) only the old CS recovers and survives, (ii) only the new CS
recovers and survives, and (iii) both CSs recover and compete,
but at the end, only one survives.

The last behavior has been found for N = 18,19,20, and
we show the results of the simulations for N = 18 in Fig. 5.
The two CSs exhibit strong intensity oscillations that last for
a relatively long time, on the order of 106 time units, i.e., a
few microseconds. Yet, in all three cases, one of the two CSs
switches off suddenly and unpredictably, leaving the other one
alone.
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FIG. 4. Profiles of the field intensity (upper figure) and of the
active population D along one diagonal of the integration square at
the beginning (dashed line) and at the end (solid line) of the injection
for N = 21.

We have analyzed the dynamics of the two oscillating CSs,
considering various temporal sequences extracted from the
complete evolution. The motion of intensities I1 and I2 and
phases θ1 and θ2, calculated at the peaks of the two CSs over
10 000 time units, are shown in Figs. 5(a) and 5(b). Both the
intensity and the phase plots look uncorrelated. To quantify
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FIG. 5. Two oscillating CSs for N = 18. Plots of the (a) inten-
sities I1 and I2, (b) phases θ1 and θ2 at the peaks of the two CSs,
(c) power spectrum of I1 calculated over a window of 10 000 time
units, and (d) time evolution of the horizontal coordinate for the whole
duration of the interaction. At about t = 1.5 × 106 the leftmost CS
disappears.

the degree of correlation, we have used the cross-correlation
function defined as

C(τ ) = 〈�I1(t + τ )�I2(t)〉√
〈�I1(t)2〉〈�I2(t)2〉

, (6)

where �I1 and �I2 are the deviations in the intensity of the
two CSs with respect to their time-averaged values. The cross-
correlation function is 1 for perfect correlation, −1 for perfect
anticorrelation, and 0 for no correlation. We always have found
values smaller in absolute value than 0.3, indicating a low
degree of correlation.

Figure 5(c) shows the power spectrum of I1; the one for
I2 is very similar. The spectrum displays a maximum at a
frequency close to the relaxation oscillation frequency, which
is given approximately by

√
b1,2/2π � 8.7 × 10−3. For higher

frequencies, we have the 1/f behavior typical of chaotic
dynamics.

As long as both CSs are present, they move randomly along
the straight line connecting them, i.e., the square diagonal. The
time evolution of the horizontal coordinate of the two CSs,
which is equal to the vertical one, is shown in Fig. 5(d). During
this motion, the distance remains more or less constant, which
means that the two CSs do not merge into one as in Ref. [19].
On the contrary, one of the two collapses.

B. Medium distance

For 27 � N � 36 (9.55 < � < 12.73), a new CS can be
created without destroying the preexisting one. The two main
features of the CS pairs are as follows: (i) their distance can
assume only two definite values, and (ii) they display partial
out-of-phase locking, as will be explained, accompanied by
small oscillations in the peak intensity.

The two possible values of the distance are 10.95 and
11.97, which are the final values obtained for 27 � N �
32 (9.55 � � � 11.31) and for 33 � N � 36 (11.67 � � �
12.73), respectively. The time evolution of the distance of the
two CSs toward the two different final values is shown in
Fig. 6. The irregularities visible in the curves are due to the
finiteness of the space step that prevents us from following
with continuity the position of the peak of the CS. The two
CSs experience repulsive or attractive forces depending on
their initial distance.

For the smaller initial distances (N = 27,28), the relative
phase of the two CSs, i.e., the difference in the phases at
the peaks, initially locks at π as the two CSs move rapidly
away, one from the other, but when the CSs are sufficiently far
apart, their phases unlock, as shown in Fig. 7 for N = 27. The
relative phase displays bounded oscillations around π , which
means that the two phases still are partially locked. In all the
other cases, the relative phase oscillates around π from the
beginning.

Figure 8 show the plots of intensities I1 and I2 and phases θ1

and θ2 for the two bound states at distances 10.95 (left column)
and 11.97 (right column).

First, let us consider the phase motion. If phases θ1 and θ2

were locked at π , the phase plots would be the straight lines of
slope 1 shown by the dashed lines. In our case, the two phases
advance in time at different velocities so that the trajectory is
different from a straight line. Yet, after one period, both phases
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FIG. 6. Time evolution of the distance for different values of the
distance of the injected beam from the existing CS. Moving upward,
N increases by 1 from 27 to 32 in the bottom figure and from 33 to
36 in the top figure.

have advanced by 2π , and then the trajectory repeats itself if
the phases are calculated mod 2π .

This is a behavior typical of biological systems, which is
called phase entrainment [28], and it has been demonstrated
to play an important role in heart diseases [29]. In nonlinear
optics, phase entrainment was found in solid-state laser arrays
[30], in a laser with optical injection [31], and, much more
recently, between two laser modes coupled by feedback
[32]. Strictly speaking, however, phase entrainment is a kind
of partial locking of two oscillators with different proper
frequencies. In our case, instead, the two CSs are identical
and, if alone, they would have the same carrier frequency.

The period of phase oscillations is much larger than that
of the relaxation oscillations (∼100 time units) and increases
with the distance. It is 2078.5 time units for the CSs at distance
10.95 and 3378 time units for the CSs at distance 11.97.

To understand the intensity plots, we must consider that,
unlike in conventional lasers, in a CSL frequency and intensity
of the CS are not independent of each other. Since, in a
partially phase-locked state, the frequency of each CS is
slightly modulated in time, this modulation necessarily is
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N = 27.
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and about 12 (right column). In the plots for the phases, the dashed
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difference equal to π ). In these simulations, the noise term was set
equal to zero to better appreciate the deterministic dynamics.

accompanied by small correlated oscillations in the intensities
of the CS, which produce the closed trajectories shown in the
upper row of Fig. 8.

In all the above cases, the two CSs, although correlated,
can be switched off independently with the same beam used
to switch off the single CS.

It is worth noting that the existence of two preferred
distances for CSs to form molecules cannot be attributed to
tails in the intensity profile of the CS as in externally driven
passive cavities [20] because, in our system, the CS profile
does not exhibit tails in any variable (see Fig. 2).

C. Large distance

For N � 37 (� � 13.08), the two CSs lock very soon at
the same phase, and they start moving apart. This behavior
resembles that of the solitons in the complex quintic Ginzburg-
Landau equations with large spectral filtering [33].

The solitons repel each other until their distance is about 21
to 22 space units, which is more than ten times the FWHM of
the soliton intensity profile. Long-range interactions, up to ten
soliton diameters, were found in optical solitons propagating in
materials exhibiting optical thermal nonlinearities, for which
the interaction was mediated by heat transfer [34]. But in
our case, thermal effects are neglected, and the interaction at
such a large distance cannot even be attributed to the charge
carriers because the final distance also is equal to several
soliton diameters in the population variables.

Thus, the only explanation is that the coherence domain
associated with a CS is much more extended than its intensity
FWHM as shown in Fig. 2.
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FIG. 9. Time average of the far-field intensity distribution of the
two CSs for N = 18 (left), N = 30 (center), and N = 37 (right).

IV. DISCUSSION AND CONCLUSIONS

Our numerical simulations have demonstrated that a pair of
CSs in a VCSEL with a saturable absorber interact in three dif-
ferent ways depending on their distances. For small distances
(16 � N � 26), only one of the two CSs survives, and in
the transient evolution, they may exhibit strong uncorrelated
oscillations. For medium distances (27 � N � 36), the two
CSs arrange their position to form a bound state at two possible
fixed distances, while their intensities display small amplitude
correlated oscillations, and the relative phase slowly oscillates
around π . Finally, for large distances (N � 37), the two CSs
lock in phase, and they move apart, one from the other, until
they reach a distance larger than ten soliton diameters at which
they do not feel each other.

These three different behaviors lead to different far-field
patterns as shown in Fig. 9 where we consider values of N

representative of the three behaviors: for N = 18, the absence
of correlation produces a single lobe in the far field, for N =
30, the partial phase locking around π manifests itself in two
bright fringes, and for N = 37, we have the typical interference
pattern produced by two in-phase sources. We can note that,
for the case of partial phase locking (N = 30), the contrast is
reduced because the interference fringes slowly move across
a fixed position.

We can compare these results with some recent experi-
mental findings. Mutual coherence of CSs in a VCSEL with
a saturable absorber in the face-to-face configuration was
investigated in Ref. [9], analyzing the interference patterns.
It was shown that two CSs well separated in space, i.e.,
with a region of zero intensity in between, always are
unlocked. Yet, a possible explanation was that the two CSs
had different frequencies associated with different longitudinal

modes because the face-to-face configuration allowed for the
oscillations of several longitudinal modes. The same happens
in the VCSEL with frequency-selective feedback [4].

Hence, the best candidate for the observation of phase
locking of two CSs is the monolithic VCSEL with a saturable
absorber because the shortness of the cavity ensures that only
one longitudinal mode can be active. In Ref. [11], however, the
question of the mutual coherence of two CSs has not been in-
vestigated. Instead, it has been shown that the minimal distance
at which two CSs can exist as separated entities is 28 μm. If we
assume, in agreement with Ref. [11], that one spatial unit in our
simulations corresponds to 6 μm, we must conclude that two
CSs cannot survive until their distance is smaller than about
55 μm and that, in the two states that are partially phase locked
around π , the distances of the two CSs are 66 and 72 μm,
respectively. Hence, the minimum distance is more than twice
as large as in Ref. [11]. A possible explanation is that our result
has been obtained with a particular set of parameters, and we
cannot exclude that the equilibrium distances depend strongly
on some parameter. Another reason may lie in the presence
of defects and roughness in the material and cavity [35–37],
which may pin the CS to preferred positions, even if, in an ideal
world, they would prefer to stay far apart from each other. For
the same reason, a weak phase coupling, as in the case of large
distances (where two CSs lock in phase), could completely be
screened by inhomogeneities effects.

Moving from optics to fluid dynamics, the existence of
bound states at discrete distances also was demonstrated for
droplets bouncing on the surface of a vibrated liquid. In that
case, the distances were shifted multiples of the wavelength of
the surface waves [38].

This is not the only aspect that makes CSs similar to
bouncing droplets. Analogies also were found in the motion
of self-propelled CSs and droplets (walkers) inside a square
domain [39–41].
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