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We characterize the full family of soliton solutions sitting over a background plane wave and ruled by the
cubic-quintic nonlinear Schrödinger equation in the regime where a quintic focusing term represents a saturation
of the cubic defocusing nonlinearity. We discuss the existence and properties of solitons in terms of catastrophe
theory and fully characterize bistability and instabilities of the dark-antidark pairs, revealing mechanisms of
decay of antidark solitons into dispersive shock waves.
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I. INTRODUCTION

Optical spatial solitons are important for their capability to
beat diffraction and their potential for engineering a variety of
optical reconfigurable structures including (and not limited to)
couplers, deflectors, and logic gates. In Kerr media where the
paraxial propagation is described by the nonlinear Schrödinger
(NLS) equation, only one soliton solution exists once the
parameters (i.e., nonlinearity and peak intensity or width)
are fixed and that solution is stable. However, more general
nonlinear responses can result in bistability of solitons (strictly
speaking solitary waves) and/or their instability against the
growth of weak perturbations.

In this paper we are interested in investigating such features
for solitons sitting on a finite background (i.e., dark-like) in the
context of the cubic-quintic NLS (CQNLS) with a defocusing
cubic and focusing quintic nonlinear response. The importance
of such a model lies in the fact that it constitutes the simplest
model for a defocusing saturable Kerr effect [1,2], whose
parameters can be effectively measured in a relatively simple
way by two-wave coupling or Z scan [3,4].

As far as bistability is concerned, the case of dark solitons
has been investigated with reference to various models,
including the CQNLS [2,5–9]. In particular, Hermann has
shown that dark solitons exhibit bistability of the second kind;
namely, characterized by solutions possessing the same full
width at half maximum (FWHM), albeit possessing different
amplitudes (and generally invariants of motion). This type
of bistability was introduced in Refs. [10,11] by Gatz and
Hermann to distinguish it from the earlier definition [12–14]
which implies the existence of different solutions possessing
the same value of one invariant of motion (e.g., the power)
for different values of the internal parameter, typically the
nonlinear propagation constant β. The analysis carried out by
Herrmann, however, is limited to stationary solitons, while a
full family of moving dark solitons can exist. The analysis is
further complicated by the fact that the CQNLS in the regime
considered here is known to possess coexisting antidark (or
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bright on pedestal) solutions [9,15]. The full family of dark and
antidark solitons, once parametrized by the velocity, exhibits
intriguing features which have been overlooked and which we
discuss below. Furthermore, whether the full family of the
dark-antidark moving pairs is stable or not, and which are the
instability mechanisms, is still an open problem. Our system-
atic investigation of these problems provides two answers: (i) it
shows that the criterium demonstrated by Barashenkov [16]
for dark solitons provides the correct exhaustive answer to
the stability problem also for antidark solitons; (ii) it clarifies
that the decay of antidark solitons can follow new scenarios
in proper regions of the parameter space, rather than always
blowing up as conjectured in the previous literature, although
collapse is in general allowed even in 1 + 1 dimension
[(1 + 1)D] because of the high power of the focusing term.

Besides being important per se, the knowledge of the
dynamics of the whole soliton family of the CQNLS is also
important in view of recent studies which extend the investi-
gation of competing nonlinearities to the nonparaxial [17] and
nonlocal [18,19] regimes. Moreover, the full characterization
of the soliton solutions and their instabilities constitute the
starting ground for describing the feature of dispersive shock
waves (DSWs, involving multiple solitons in the weakly
dispersive regime) [20], which is an active area of research
where successful experiments have been recently performed in
non-Kerr media under different excitation conditions [21–23].
In this respect, here we provide the first prediction of a
dispersive shock wave produced directly by the decay of a
solitary wave of the CQNLS model.

II. DARK-ANTIDARK SOLUTIONS

We start from the (dimensionless) CQNLS equation

i
∂u

∂z
+ 1

2

∂2u

∂x2
− |u|2u + α

2
|u|4u = 0, (1)

which describes a saturable Kerr-like nonlinearity through its
truncated expansion at second order in the normalized intensity
|u|2, with α being an external free parameter that weights the
quintic nonlinear response (the smaller is α, the weaker is
the saturation effect). Solitons of such a system have been

063809-11050-2947/2011/84(6)/063809(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.063809


M. CROSTA, A. FRATALOCCHI, AND S. TRILLO PHYSICAL REVIEW A 84, 063809 (2011)

reported before. However, we reformulate the full problem
from the beginning, giving useful analytical formulas which
prove convenient for the purpose of our analysis. Solitons
correspond to translationally invariant solutions of the the
form u(z,x) = √

ρ(θ ) exp[iφ(θ ) + iβz], where θ = x − vz

and β = g(ρ0) is the nonlinear phase shift experienced by
a plane-wave background with intensity ρ0 ≡ |u0|2, in the
medium where the nonlinear refractive index varies with
intensity ρ = |u|2 according to the law g(ρ) = −ρ + αρ2/2.
These solutions depend on two internal parameters which
we choose, in analogy to general dark soliton solutions of
the defocusing NLS equation, as ρ0 (intensity background,
which fixes also β) and v (soliton velocity, which fixes also
the darkness or brightness of the soliton). Note that, here, the
quintic term prevents the simple rescaling to ρ0 = 1 without
rescaling α, and the velocity complicates further the scenario,
so we keep the three parameters free. The modulus ρ plays
the role of equivalent “position,” and obeys the standard
Hamiltonian dynamics with “momentum” p = ρ̇ ≡ dρ/dθ :

ṗ = −∂H
∂ρ

, ρ̇ = ∂H
∂p

, H = p2

2
+ V (ρ),

V = 2ρ

[
α

3

(
ρ3 − ρ3

0

) − (
ρ2 − ρ2

0

) + 2k0
(
ρ − ρ0

) − c2
0

ρ0

]
.

(2)

Here c0 = vρ0 and k0 = v2

2 + ρ0 − α
2 ρ2

0 . Once ρ(θ ) is obtained
by solving Eqs. (3), the phase profile φ(θ ) can be found by
integrating the following equation:

φ̇ = v

(
1 − ρ0

ρ

)
. (3)

A. Soliton solutions

Soliton solutions sitting on the plane-wave background
ρ = ρ0 correspond to homoclinic separatrix trajectories of
Eqs. (3), characterized by the energy level H = E with E =
V (ρ0) = −2c2

0. Such separatrices emanate from the saddle
point (ρ,p) = (ρ0,0) of the Hamiltonian H(ρ,p). For α �= 0,
the potential V (ρ) − E is a double well corresponding to
a double-loop separatrix, as shown in Figs. 1(a) and 1(b).
Therefore, one has, in general, a coexisting pair of dark and
antidark solitons that corresponds to the motion along the left
well ρm � ρ � ρ0 (dark solitons) and the right well ρ0 � ρ �
ρa (antidark solitons), respectively. Here ρm � ρ0 � ρa are
the roots of V (ρ) − E (explicit expressions for ρm and ρa are
reported in appendix). In terms of such roots, we derive (see
Appendix) the following explicit solutions for dark solitons:

ρd (θ ) = ρm + rρa tanh2[w(θ − θ0)]

1 + r tanh2[w(θ − θ0)]
, (4)

where r = (ρ0 − ρm)/(ρa − ρ0) and w =√
α(ρa − ρ0)(ρ0 − ρm)/3 is the inverse soliton width,

while the minimum intensity (dip) is given by the root
ρ = ρm. Similarly, for antidark solitons, we obtain

ρa(θ ) = ρa + 1
r
ρm tanh2[w(θ − θ0)]

1 + 1
r

tanh2[w(θ − θ0)]
, (5)

where r and w are the same as for dark solitons.
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FIG. 1. (Color online) Dark-antidark pair sitting on the unit
background ρ0 = 1 for α = 0.6, v = 0.3. Panel (a) shows the
potential V (ρ) − E vs ρ and panel (b) shows the phase-space picture
(contour lines of H). Panels (c) and (d) show the relative intensity
(thick black solid line) and phase (thin red solid line) profiles of dark
and antidark solitons, respectively.

The expressions in Eqs. (4) and (5) allow us to obtain,
by integrating Eq. (3), the nonlinear phase associated to the
two soliton families. We obtain for dark and antidark solitons,
respectively,

φd = − v

w
s tan−1

(√
rρa

ρm

tanh[w(θ − θ0)]

)
+ φ0, (6)

φa = v

w
s tan−1

(√
ρm

rρa

tanh[w(θ − θ0)]

)
+ φ0, (7)

where s ≡ √
(ρa − ρ0)(ρ0 − ρm)/(ρaρm). From Eqs. (6) and

(7) one can easily calculate the phase jump �	 = 	(+∞) −
	(−∞) across the soliton.

Interestingly, the existence domain of the soliton pairs
can be described with the aid of catastrophe theory [24],
already applied to characterize dark-antidark soliton pairs in
a different context (i.e., gap soliton theory [25]). In fact, the
quartic potential V in Eqs. (3) belongs to the A+ family and
gives rise to the so-called cusp catastrophe. According to this
picture, the potential V (ρ) in Eq. (3), which is of the general
form V (ρ) = c4ρ

4 + c3ρ
3 + c2ρ

2 + c1ρ, can be cast into the
canonical form [24] V (y) = y4/4 + ay2/2 + by by means of
the change of variable ρ = (4c4)−1/4y − c3/(4c4). Then, in the
control parameter plane (a,b) (explicit expressions of a and
b as a function of α,ρ0,v are cumbersome but can be easily
derived), solitons exist in the inner region bounded by the
curve (so-called bifurcation set [24])

(
a

3

)3

+
(

b

2

)2

= 0, (8)

shown in Fig. 2. Such a curve marks the values where the
critical points (∂yV = 0) of the potential become doubly
degenerate (∂2

yV = 0) and exhibits the characteristic shape of
a cusp in the origin (three-fold degenerate point, ∂3

yV = 0).
In terms of the original parameters ρ0,v,α, the existence

063809-2



BISTABILITY AND INSTABILITY OF DARK-ANTIDARK . . . PHYSICAL REVIEW A 84, 063809 (2011)

−1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

b

a

ρ
0
=1, v=0

ρ
0
=1, v=0.5

ρ
0
=3, v=0

ρ
0
=3, v=0.5

ρ
0
=4, v=0

ρ
0
=1, v=0.7

FIG. 2. (Color online) Cusp-catastrophe picture for dark-antidark
soliton pairs. Each curve shows the evolution of the parameters a and b

of the normal-form potential V (y) = y4/4 + ay2/2 + by, calculated
for a dark-antidark soliton pair with fixed internal parameters v and
ρ0, with α changing from zero up to its critical value αc, where all the
curves arrive tangentially on the cusp curve [Eq. (8), red solid line]
that bounds the soliton existence domain.

condition requires α � αc, with the following critical value
of the quintic coefficient αc:

αc = 1

ρ0

(
1 − v2

ρ0

)
. (9)

Taking fixed internal parameters ρ0 and v, while changing
α continuously, makes the control parameters a and b

calculated for the soliton to span a smooth curve in the control
parameter plane (a,b), until at α = αc, the curve hits (arriving
tangentially) the boundary set by the cusp curve [Eq. (8)].

Different values of ρ0 and v result in different control curves, as
displayed in Fig. 2. We point out that a similar behavior occurs
by varying ρ0 or v, keeping the other two parameters fixed.
In particular, in the latter case, the existence domain turns out
to be −vc � v � vc, with the cutoff velocity vc = √

ρ0 − αρ2
0

obtained by expressing Eq. (9) in terms of v = vc.
As an example, we show in Fig. 3 how the typical phase

plane (potential) changes when α is varied between zero and
the critical value αc. In this case we choose ρ0 = 1 and still
solitons, viz. v = 0, yielding ρm = 0 which means that the dark
soliton is black regardless of the value of α, while the antidark
soliton is characterized by a peak intensity ρa = 3/α − 2ρ0. In
the limit α = 0 shown in Figs. 3(a) and 3(b), which represents
the ideal Kerr case, the potential is cubic, and the separatrix
has only one branch corresponding to the well-known black
soliton solution [ρ = tanh2(x)] of the NLS equation, whereas
for ρ > 1 the motion is unbounded and no coexisting antidark
solutions exist. In fact, the unbounded motion for ρ > 1 can
be thought of as the motion in the right well that, however,
becomes infinitely deep [V (θ = ∞) → −∞)] and wide (since
ρa → ∞). Vice versa, as α grows from zero, the behavior of
the potential at θ = ∞ is inverted, and the right well becomes
finite, allowing for an eight-shaped separatrix corresponding
to the dark-antidark pair [see Figs. 3(c) and 3(d)]. For small
values of α the antidark soliton has high peak intensity ρa

above the background ρ0, which, however, decreases as the
saturation parameter α increases. For α approaching its critical
value αc, antidark solitons become shallow [see Figs. 3(e)
and 3(f)], until they reduce to the plane wave exactly at α = αc,
where ρa → ρ0. The behavior of dark-antidark solitons with
velocity exhibits intriguing features, which can be gathered
by plotting the minimum (dip) intensity ρm of dark solitons
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FIG. 3. (Color online) Potential and phase-space picture for v = 0, ρ0 = 1, and different values of α: (a), (b) α = 0 (ideal Kerr case);
(c), (d) α = 0.5; (e), (f) α = 0.9 (close to critical value αc = 1, where the right branch of the separatrix becomes vanishingly small).
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FIG. 4. (Color online) (a) Dip intensity (darkness) of dark solitons
and (b) maximum intensity of antidark solitons as a function of
velocity v for different values of α. Here the background is ρ0 = 1.
The dashed curves represent the existence threshold set by Eq. (9).
Note the vertical log scale in (b).

(the larger is ρm, the lower is the darkness) and the peak
intensity ρa of antidark solitons (the higher is ρa , the brighter
is the antidark soliton) versus v at constant ρ0, for different
values of α, as displayed in Fig. 4. For nonzero but small
velocities, the picture remains qualitatively unchanged with
respect to the case v = 0, in the sense that the peak intensity
ρa of antidark solitons decreases continuously from infinity
(at α = 0) to ρa = ρ0 at the critical value αc, such that the
solitons become infinitely shallow (i.e., they reduce to a pure
plane wave). In this case, however, the dip intensity of dark
solitons is no longer zero (i.e., they becomes gray solitons
with darkness ρ0 − ρm). The darkness decreases for growing
velocities v up to a minimum value at the bound velocity
vc = √

ρ0 − αρ2
0 [obtained by solving Eq. (9) with respect

to v for fixed α]. This is clearly shown in Fig. 4, where we
summarize the result for a fixed background ρ0 = 1. Note
from Fig. 4(a) that Kerr (NLS) dark solitons (α = 0) are
always darker than the corresponding CQNLS solitons of
the same velocity [the curve ρm(v) for α = 0 is always below
the other curves relative to α �= 0], and have also a larger phase
jump �	 than their CQNLS counterparts.

Interestingly, however, as the velocity grows large enough
(above v = 0.5 in Fig. 4), it turns out that dark solitons
can become infinitely shallow at the cutoff condition for
their existence (ρa → ρ0 and hence darkness tends to zero).
Conversely, under the same conditions, antidark solitons cease
to become infinitely shallow, rather reaching a finite minimum
peak intensity at the cutoff condition for their existence [see
Fig. 4(b)]. From Fig. 4(b) it is also clear that, for small α,
the brightness of antidark solitons is nearly independent on
the velocity. This change of behavior at the cutoff condition
for the existence (from infinitely shallow antidark solitons
to infinitely shallow dark solitons) depends the background
ρ0. It can be shown to occur at the value of α0 = 3/(4ρ0),
in correspondence to the velocity v0 = √

ρ0/2 (in Fig. 4,
α0 = 0.75 and v0 = 0.5).

The coexistence of dark and antidark solitons constitute
a bistable mechanism such that two different solutions exist
with same parameters (ρ0 and v) and different renormalized
invariants M,H,P (see Appendix for their definition). How-
ever, these soliton families can be bistable also according
to the definition by Gatz and Herrmann; that is, for fixed
α different solutions of the same width can exist although
they sit on a different background ρ0. This type of bistability
was investigated for still (v = 0) dark solitons [7]. In order to

generalize this result to the full family (any v, and antidark
case), we have calculated the FWHM as

θFWHM = 2

w
tanh−1

√
f (ρ0,ρm,ρa), (10)

where f (ρ0,ρm,ρa) = (ρa − ρ0)/(2ρa − ρ0 − ρm) for dark
solitons (FWHM taken at half the intensity between ρ0 and
the dip ρm) and f (ρ0,ρm,ρa) = (ρ0 − ρm)/(ρa + ρ0 − 2ρm)
for antidark solitons (FWHM at half the intensity between
ρ0 and the peak ρa), respectively. The results obtained by
mapping θFWHM in the plane (α,ρ0) are summarized in Fig. 5.
As shown, dark solitons exhibit bistability for sufficiently large
α, regardless of their velocity. However, the range of values of
α where bistability occurs is greatly reduced for large velocities
[see Fig. 5(c)]. Conversely, as shown in Fig. 5(d), antidark
solitons are never bistable in the same sense (no folding of the
level curves of θFWHM is ever observed at any velocity).

III. INSTABILITY SCENARIOS

Having characterized the features of dark-antidark soliton
pairs, we discuss their stability. We proceed by applying a
known stability criterium according to which the stability is
related to the derivative of the invariant momentum M (see
Appendix) of the soliton against its velocity v. The marginal
condition

∂M

∂v
= 0, (11)

separates stable solutions (∂vM < 0) from unstable ones
(∂vM > 0). Such a criterium, proved by Barashenkov [16]
for dark solitons of the generalized NLS equation, is found
to account also for the instabilities of antidark solitons.
We emphasize, however, that such a criterium accounts for
real eigenvalues crossing into the right-half plane (usually
bifurcating from zero eigenvalues associated with neutral
modes; that is, symmetries of the model). Other instability
mechanisms such as oscillatory instabilities resulting from
edge bifurcations leading to pairs of complex conjugate
eigenvalues entering the right-half plane, need an independent
characterization. However, we have found (numerically) no
evidence for instabilities of such kind. Moreover, the condition
for the existence of solitons [Eq. (9)] turns out to coincide with
the region where the background plane-wave is modulationally
stable. Therefore, the condition (11) turns out to be an
exhaustive criterium to assess the linear stability of all the
solutions presented so far.

The calculation of the function M(v) for dark soliton family
shows that such a function has always a negative slope.
Therefore, the whole family of dark solitons is stable in its
existence domain; a conclusion that is fully supported by our
numerical simulation of the propagation.

Vice versa instabilities take place for antidark solitons.
In particular, for small α, it turns out that they are always
unstable in the whole domain of existence since M(v) exhibits
always positive slope. Conversely at sufficiently large α, the
momentum M(v) changes its slope near the cutoff value for
existence vc. This is shown in Fig. 6, where we compare the
momentum M(v) for dark and antidark solitons at α = 0.7
and ρ0 = 1. Note that the change of slope of the momentum
means that two antidark solutions with same momentum and
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FIG. 5. (Color online) Color-level plot of FWHM [θFWHM in Eq. (10)] in the parameter plane (α,ρ0) for v = 0.1, dark (a) and antidark (b)
solitons. Panels (c) and (d) show dark solitons with v = 0.4 and v = 0.8, respectively. The dashed lines give the critical condition αc(ρ0,v).

different velocity exist. These two solutions differ by their
Hamiltonian H (see Appendix for its expression). Indeed, as
shown in Fig. 6(b) the Hamiltonian H as a function of M

is folded, showing an upper (unstable) branch and a lower
(stable) branch.

The velocity which gives the marginal stability (∂vM = 0)
clearly depends on ρ0 and α. The results of Fig. 6 could be
repeated for different values of ρ0 and α and are summarized
by drawing stability maps in the plane v,α at constant ρ0.
These are displayed in Fig. 7 for two different values of the
background ρ0. As shown, a relatively small island of stability
is found in the vicinity of the boundary for existence, where
they have small brightness. In particular, stability requires α >

αm, where αm corresponds to the vertex of the stability island
[see Fig. 7]. In order to test the validity of the marginal stability
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FIG. 6. (Color online) (a) Renormalized momentum M vs soliton
velocity v and (b) Hamiltonian H (v) vs M(v) for dark and antidark
solitons with fixed ρ0 = 1 and α = 0.7. The red bullets mark the
marginal condition ∂vM = 0 for antidark solitons.

condition we have made extensive simulations performed by
means of the well-known split-step method. Such simulations
confirm indeed that ∂vM = 0 gives the threshold for stability
also for antidark solitons. The numerics also reveal two basic
mechanisms of instability, which are illustrated below by
means of numerical runs performed by launching the exact
soliton profile, while the perturbation arises from intrinsic
roundoff and discretization errors.

The first scenario is valid for relatively large α, such that a
stable range of velocities exists. As an example for illustration
purposes, we have chosen α = 0.7, ρ0 = 1, which yield a range
of stable velocities v = (0.4644,0.5477) [see Fig. 6(a)]. The
dynamics for three different values of v, marked by bullets
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FIG. 7. (Color online) Stability maps for antidark solitons in the
parameter plane (v,α) for (a) ρ0 = 1 and (b) ρ0 = 2. The light-shaded
(cyan) and dark-shaded (red) domains correspond to unstable and
stable solutions, respectively. The dot-dashed line sets the value α0

below which antidark solitons have finite brightness at cutoff. The
dynamics illustrated in Fig. 8 and Figs. 9 and 10 are relative to the
sampled values marked by bullets and stars in (a), respectively.
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FIG. 8. (Color online) Dynamics of antidark solitons with ρ0 =
1, α = 0.7, exhibiting different behavior depending on the initial
velocity v [see bullets in Fig. 7(a)]: (a) v = 0.5, stable propagation;
(b) v = 0.4, decay into a nearby stable antidark soliton; (c) v = 0,
decay into a pair of antidark shallow solitons with opposite velocities.

in the map of Fig. 7(a), is displayed in Fig. 8. As shown
in Fig. 8(a), for v = 0.5, the antidark soliton propagates in
stable fashion. Conversely, when v is decreased just below the
threshold for instability [v = 0.4 in Fig. 8(b)], the initial soliton
decays into a different antidark soliton of higher velocity,
which is stable. However, for lower velocities such that the
soliton lies far from the threshold for stability, the decay
into a pair of stable antidark solitons is observed, a process
which is accompanied by radiation. Note that the instabilities
are extremely long-range in both cases (i.e., they manifest
themselves only after tens of diffraction lengths). As shown
in Fig. 8(c), the two antidark solitons are symmetric in the
limit v = 0 in such a way that the initial zero momentum
is conserved, otherwise they appear to be asymmetric (case
not shown). The scenario illustrated in Fig. 8 holds also
for different values of α, providing α > αm (i.e., a stable
range of velocities exists). It is interesting to note that the
value ρ0 = 3/(4ρ0), which discriminates the fact that antidark
solitons can be or not infinitely shallow at cutoff, lies in the
region of stability for any ρ0 (see dot-dashed lines in Fig. 7).
Therefore, antidark solitons with arbitrarily small brightness
that exist for α > α0 around cutoff, are always stable, whereas
antidark solitons which have finite brightness at cutoff can
propagate stably only for α > αm.

The scenario discussed above change qualitatively when
α < αm, where the island of stability shrinks to zero. In this
case the decay instability toward other antidark solitons is
forbidden because no stable solutions exist. In this case, the
only stable solutions are dark solitons and therefore the decay

FIG. 9. (Color online) Decay of an unstable antidark solitons
(ρ0 = 1, v = 0, α = 0.1) into two symmetric dispersive shock
fans (trains of dark solitons): (a) color level plot of the intensity;
(b) snapshot of intensity (black solid line) and phase (red solid line)
at z = 5. For comparison, the input intensity (renormalized to the
maximum of the plot) is shown (solid blue line).

instability occurs toward these solutions, even though their
shape differs dramatically (indeed being “opposite”) from the
input antidark-soliton shape. Importantly when α is small
(weak saturation) the antidark solitons possess large amplitude
and large power Pa (or number of particles, see Appendix for
its definition). Under these conditions we have found that the
decay instability of the antidark soliton leads to a DSW (see
Refs. [20–23] and references therein); that is, an expanding
region filled with fast oscillations which behave asymptotically
as solitons. In the present case, starting with a zero-velocity
antidark soliton, the decay instability leads to two symmetric
DSW fans, as displayed in Fig. 9 for α = 0.1. In each of
the two fans, the inner edge is set by the darkest and slowest
soliton, whereas on the outer edge the fan is linked to the plane
wave through a train of solitons with progressively decreasing
darkness and increasing velocity, which become denser as
the background is approached. Although this behavior is
reminiscent of that ruled by the integrable NLS equation (limit
α = 0) in the semiclassical regime (i.e., nonlinearity much
stronger than diffraction or dispersion) under excitation of, for
example, a Gaussian on a pedestal [21], it must be emphasized
that this is an example where the dispersive shock waves occur
directly through the decay of an unstable solitary wave of the
system. Furthermore, characterization of the shock fan needs
to develop the Whitham modulational theory for the system,
which is beyond the scope of this paper. However, simple argu-
ments based on the features of solitons, as shown in Fig. 4, let
us predict that the fan ruled by Eq. (1) is narrower as compared
to the one ruled by the integrable NLS equation under the same
excitation. This is due to the fact that the soliton with vanish-
ingly small darkness, constituting the outer edge of the fan, cor-
respond to progressively reduced velocity as the quintic non-
linearity grows (i.e., α increases), as clearly shown in Fig. 4(a).
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FIG. 10. (Color online) As in Fig. 7 for v = 0.8.

The decay scenario shown in Fig. 9 does not change
when starting with an antidark soliton with nonzero velocity
(v,M �= 0), except that the two shock fans become asymmetric
(the higher is the velocity, the higher is the asymmetry), in
both the number of solitons and the velocity of the darkest
soliton (inner edge of the fan), as shown in Fig. 10. This
asymmetry is definitely expected, based on the fact that a
symmetric configuration would have M = 0 and hence would
lead to violation of momentum conservation. Moreover, the
asymmetric development of the shock is analogous to a DSW
generated in the integrable NLS limit when starting from a
gray beam with nonzero velocity and momentum [23].

Finally, we point out that, for larger α, yet with α < αc,
the scenario remains qualitatively unchanged, although the
number of dark solitons generated in the decay of the antidark
soliton decreases.

Although the aim of this paper was the full characterization
of solitary waves sitting on a finite background, we point,
before concluding, out that such solitons can also coexist
with bright solitary waves with zero pedestal. Seeking bright
solitons of the form u(x,z) = √

ρ(x) exp(iβz), a simple
calculation shows that the peak intensity of these solutions
turns out to be ρa = 3(1 + √

1 + 8βα/3)/(2α). The existence
domain of such solutions include arbitrarily small α, and
hence they coexist with dark-antidark soliton pairs. Given the
defocusing nature of the leading-order (cubic) nonlinearity,
this might appear surprising. However, it is not difficult to
understand that such bright solitons are sustained entirely
by the quintic focusing nonlinearity since ρa diverges in the
limit α → 0, where the quintic nonlinearity vanishes indeed.
Without deepening the study of the bright case, already
investigated in the framework of the CQNLS equation, we
expect them to be unstable at least in the limit of small α,
where they do not affect the decay dynamics of antidark
solitons or the stable dynamics of dark solitons discussed
above.

IV. CONCLUSIONS

In summary we have discussed the main properties of
solitary solutions with finite background of the CQNLS equa-
tion with focusing quintic term. Bistability and instabilities
have been studied for the full family of solutions obtained
in new analytical form, and parametrized by the intensity of
the background wave and the velocity. We have found that the
solutions exhibit a nontrivial behavior against the velocity such
that, depending on the value of the quintic nonlinearity, either
dark or antidark solitons become infinitely shallow at their
bound for existence. Furthermore, dark solitons are bistable for
any velocity, whereas antidark solitons are never bistable. Fi-
nally, dark solitons are stable against weak perturbations while
antidark solitons are mostly unstable, exhibiting different
mechanisms of instability. In particular, a useful mechanism
involving the decay of an antidark soliton into a dispersive
shock wave has been characterized. Furthermore, work will
be devoted to assess how the quintic nonlinearity affects the
formation and dynamics of dispersive shock waves which
develop from more general (nonsolitary) inputs. Potentially
the collapse (i.e., blow up at a finite distance, which is known
to occur even in the (1 + 1)D case that we dealt with, owing
to the high order of the focusing term [26,27]) could also play
a substantial role that needs further investigation.

From the experimental point of view, the most natural
setting for testing these results is the study of paraxial beam
evolution in the nonlinear optics of centrosymmetric media,
where the quintic term accounts for the saturation of the
Kerr nonlinear index n2 (n2 < 0, defocusing media), usually
quantified in terms of the high-order nonlinear index n4 [7],
the overall index change being �n = −|n2|I + n4I

2, where
I is the optical intensity. While the nonlinear indices n2,n4

(or equivalently the nonlinear susceptibilities) depend solely
on material properties and can be accurately characterized
by means of consolidated techniques [3,4], the normalized
coefficient α used throughout the paper turns out to depend on
the input intensity as well, and hence the impact of the quintic
nonlinearity can be tuned by changing the optical power [17].
Another area where the predictions based on the present
model can be relevant and can lead to experimental test, is
the dynamics of ultracold atoms (Bose-Einstein condensates),
where the quintic term arises from higher-order (three-body)
atom interactions [28], and tuning of the nonlinearities can be
achieved by means of Feshbach resonances.
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APPENDIX

Analytical solutions can be worked out from the equation
which follows directly from Eq. (3):

ρ̇ =
√

4α

3

√
Q(ρ), (A1)
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where Q(ρ) = 3
4α

[E − V (ρ)]. The polynomial Q(ρ) can be
expressed in terms of its ordered roots ρm, ρ0 (double root),
and ρa , with ordering ρm � ρ0 � ρa , as Q(ρ) = (ρ − ρa)(ρ −
ρm)(ρ − ρ0)2. From Eq. (A1) one obtains the following
quadrature integral:

∫ ρ(θ)

ρ(θ0)

dρ√
Q(ρ)

=
√

4α

3

∫ θ

θ0

dθ, (A2)

where ρ(θ0) = ρm or ρ(θ0) = ρa for dark or antidark solitons,
respectively. The integral (A2) gives, upon inversion, the
solutions given in the text. Explicitly, the extremal roots
ρm and ρa are expressed by

ρm = 3 − 2αρ0 −
√

(3 − 2αρ0)2 − 12v2α

2α
,

(A3)

ρa = 3 − 2αρ0 +
√

(3 − 2αρ0)2 − 12v2α

2α
.

Note that, in the limit v = 0, the smaller root ρm vanishes
and, as a consequence, the dark soliton becomes a black
soliton.

Once the soliton solutions are known one can easily cal-
culate the renormalized invariants (momentum, Hamiltonian)
which are defined as follows:

M = i

2

∫ +∞

−∞
(u∗

xu − uxu
∗)

(
1 − ρ0

ρ

)
dx, (A4)

H =
∫ +∞

−∞

[ |ux |2
2

+
∫ ρ(x)

ρ0

[g(ρ0) − g(ρ)]dρ

]
dx, (A5)

and the power or number of particles, Pa (antidark) and Pd

(dark),

Pa =
∫ +∞

−∞
(|u|2 − ρ0)dx; Pd =

∫ +∞

−∞
(ρ0 − |u|2)dx (A6)

The quantities M and H are those employed in the text to
assess the stability of soliton solutions.
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