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Effect of dephasing on transient and steady-state entanglement in a quantum-beat laser
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We study the role of dephasing on entanglement evolution in a two-photon quantum-beat laser. We rigorously
derived the pertinent master equation by taking into account dephasing, spontaneous emission, and cavity losses.
The dephasing rate, in general, is lager than the rates of other dissipation processes and might influence the
realizable quantum properties of the cavity field. We investigate the extent to which the dephasing rate affects the
transient as well as steady-state entanglement between the cavity modes. We show that the coherence induced
by initial coherent superposition of atomic levels leads to transient as well as steady-state entanglement, which
turns out to be susceptible to decoherence. However, the entanglement created via coherence induced by a strong
laser field exists for only short times and is relatively robust against decoherence.
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I. INTRODUCTION

Quantum properties of cavity radiation strongly rely on
the dissipation processes that the system is subjected to.
Among all dissipation processes, dephasing—the decay of
atomic coherence due to its interaction with the surrounding
environment—might lead to adverse effects on the quantum
features of the cavity field. In particular, quantum entan-
glement is fragile in the face of decoherence. Recently,
entanglement generation using two-photon lasers such as
correlated emission lasers [1–3] and quantum-beat lasers
(QBLs) [4–7] has received renewed interest. In these types of
lasers, the entanglement is dependent on quantum coherence
and is susceptible to dephasing processes. Here we address the
role of dephasing on entanglement generated by quantum-beat
lasers.

The quantum-beat laser concept was originally used as a
means of quenching of spontaneous emission noise [8–12] and
later for demonstration of lasing without population inversion
[13]. Recently, QBLs have also been proposed as a source
of entangled radiation [4–7]. In such lasers, the generated
entanglement is attributed to atomic coherence induced via
coupling the upper two levels of V-type three-level atoms
by a strong laser field or driven coherence. This coherence
translates into correlations between two modes of the cavity
field due to interference between the two pathways that lead
to the lower level. Note that since the generated coherence
crucially depends on the amplitude of the laser field [4–6],
the time for which the cavity exhibits entanglement strongly
relies on the strength of the driving field. It has also been
shown that the entanglement created via driven coherence only
exists in the transient regime and hence depends on the initial
condition of the cavity field. Besides, all previous studies of
QBLs neglected dephasing processes which otherwise lead
to fast decay of coherence and hence entanglement. For a
practical application of quantum information processing, it is
desirable to have entanglement which can survive for longer
times and is robust against decoherence.

*eyobas@physics.tamu.edu

This work is thus devoted to the formulation and analysis
of the role of dephasing on entanglement properties of the
cavity modes of a QBL. We present a detailed derivation
of the pertinent master equation in the good cavity limit
by taking into account all dissipation processes, namely
spontaneous emission, cavity losses, and dephasing. Unlike
earlier studies where driven coherence is used as a primary
way of inducing coherence in the system, our scheme includes
coherence induced via initial coherent superposition of the
two upper levels of V-type atoms or injected coherence.
We investigate to what extent the dephasing rate modifies
the entanglement between the cavity modes for the cases
of injected coherence as well as driven coherence using the
Hillery-Zubairy (HZ) entanglement criterion [14]. We also
discuss the interplay between the cavity mode detunings and
pumping rates in optimizing the entanglement. Our results
show that when the coherence is induced by initial coherent
superposition of atomic levels, the resulting entanglement
exists both in transient as well as steady-state regimes and
is more sensitive to dephasing processes. In particular, the
steady-state entanglement is achieved when only cavity mode
detunings are different. We also show that it is possible to
reduce the effect of dephasing on entanglement by injecting
atoms at higher rates and tuning the cavity modes at far-off
resonances (large detunings). In contrast, when coherence
is induced by coupling the upper two levels with a strong
laser field, we obtain only transient entanglement, which is
relatively robust against decoherence.

II. HAMILTONIAN AND MASTER EQUATION

We consider a two-photon QBL coupled to a vacuum
reservoir through the partially transmitting mirror of the cavity.
Atoms, in the so-called V configuration, are injected into
the laser cavity at rate ra and are removed after time τ

longer than the spontaneous emission time. During this time
interval, each atom nonresonantly interacts with the cavity
modes of frequencies ν1 and ν2. Moreover, to externally
induce coherence, a strong laser field of Rabi frequency � and
phase φ is resonantly coupled to the |a1〉 ↔ |a2〉 transition.
The energy level diagram for the atom is shown in Fig. 1. The
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FIG. 1. (Color online) Energy level diagram for a three-level atom
in a V configuration.

interaction picture Hamiltonian for the system, in the rotating
wave and dipole approximations, is given by (h̄ = 1)

ĤI =
2∑

j=1

�j |aj 〉〈aj | + gj (âj |aj 〉〈b| + |b〉〈aj |â†
j )

− �

2
(e−iφ|a1〉〈a2| + eiφ|a2〉〈a1|). (1)

Here â1(â†
1) and â2(â†

2) are the annihilation (creation) operators
for the cavity modes 1 and 2, respectively, and gi are atom-
cavity mode coupling constants. The modes of the cavity are
detuned from the transitions |a1〉 ↔ |b〉 and |a2〉 ↔ |b〉 by
�1 = ω1b − ν1 and �2 = ω2b − ν2, respectively.

We next derive the master equation for the cavity radiation
by applying the Hamiltonian (1). While there are several
approaches for obtaining the master equation, we here employ
the procedure outlined in [15–17]. Suppose that ρ̂AR(t,tj )
represent the density operator for the radiation plus an atom
in the cavity at time t that is injected at earlier time tj . Since
the atom stays in the cavity for time τ , it easy to see that
t − τ � tj � t . Then the density operator for all atoms in the
cavity plus the two-mode radiation at time t can be written as

ρ̂AR(t) = ra

∑
j

ρ̂AR(t,tj )�t ′j , (2)

where ra�t ′j is the total number of atoms injected into the
cavity in a small time interval �t ′j . Assuming that large number
of atoms are injected in time interval �tj , we can change the
summation by integration. Thus differentiating both sides of
the resulting equation, we arrive at

d

dt
ρ̂AR(t) = ra

d

dt

∫ t

t−τ

ρ̂AR(t,t ′)dt ′. (3)

In order to incorporate the initial preparation of the atoms into
the dynamics, we transform the above equation using a useful
mathematical identity to [18]

d

dt
ρ̂AR(t)

= ra

{
[ρ̂AR(t,t) − ρ̂AR(t,t − τ )] +

∫ t

t−τ

∂

∂t
ρ̂AR(t,t ′)dt ′

}
.

(4)

Here ρ̂AR(t,t) represents the density operator for atom plus
radiation at time t for an atom injected at an earlier time t .
Since the atomic and radiation variables are uncorrelated at
the instant the atom is injected into the cavity, one can write

ρ̂AR(t,t) ≡ ρ̂(t)ρ̂A(0), (5)

where ρ̂(t) is the cavity radiation density operator and ρ̂A(0) is
the initial density operator for an atom. For simplicity, we
further assume that the atomic and radiation variables are
uncorrelated just after the atom is removed from the cavity,
which allows us to write

ρ̂AR(t,t − τ ) ≡ ρ̂(t)ρ̂A(t − τ ), (6)

where ρ̂A(t − τ ) is the density operator for an atom injected at
t − τ . In this work, we assume that atoms are initially injected
into the cavity in coherent superposition of the upper two
levels. The corresponding initial density operator then reads

ρ̂A(0) = ρ
(0)
11 |a1〉〈a1| + ρ

(0)
22 |a2〉〈a2| + ρ

(0)
12 |a1〉〈a2|

+ ρ
(0)
21 |a2〉〈a1|, (7)

where ρ
(0)
ii and ρ

(0)
ij are initial population and coherence,

respectively. Using Eqs. (5), (6), and (4) becomes

d

dt
ρ̂AR(t)

= ra

{
[ρ̂A(0) − ρ̂A(t − τ )]ρ̂ +

∫ t

t−τ

∂

∂t
ρ̂AR(t,t ′)dt ′

}
. (8)

Furthermore, it is obvious that the time evolution of
the density operator ρ̂AR(t,t ′) has a form ∂ρ̂AR(t,t ′)/∂t =
−i[HI ,ρ̂AR(t,t ′)] which together with ∂ρ̂AR(t)/∂t =
ra

∫ t

t−τ
(∂ρ̂AR(t,t ′)/∂t)dt ′ leads to

d

dt
ρ̂AR(t) = ra[ρ̂A(0) − ρ̂A(t − τ )]ρ̂ − i[HI ,ρ̂AR(t)]. (9)

We are interested in the dynamics of the cavity radiation. In
this regard, we trace the atom plus radiation density operator
over atomic variables. This yields

d

dt
ρ̂(t) = −iTrA[HI ,ρ̂AR(t)], (10)

where we have used the fact that TrA[ρ̂A(0)] = TrA[ρ̂A(t −
τ )] = 1. By substituting the Hamiltonian in Eq. (10) we obtain

d

dt
ρ̂(t) = −ig1(a1ρ̂b1 − ρ̂b1a1 + a

†
1ρ̂1b − ρ̂1ba

†
1)

− ig2(â2ρ̂b2 − ρ̂b2â2 + â
†
2ρ̂2b − ρ̂2bâ

†
2). (11)

The next task is to obtain ρ̂b1, ρ̂b2 and their complex conjugates.
To this end, by multiplying Eq. (9) on the left by 〈α| and on
the right by |β〉 one gets

d

dt
ρ̂αβ(t) = ra〈α|[ρ̂A(0) − ρ̂A(t,t − τ )]|β〉ρ̂

− i〈α|[HI ,ρ̂AR(t)]|β〉 − γαβρ̂αβ, (12)

where α,β = a1,a2,b. We phenomenologically included the
last term to account for spontaneous emission and dephas-
ing processes. γαα is the spontaneous emission rate, and
γαβ(α �= β) is the dephasing rate. The equations of motion
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for the elements of the density operator that appear in Eq. (11)
read

˙̂ρ1b = −(
1 + i�1)ρ̂1b + ig1(ρ̂11â1 − â1ρ̂bb)

+ ig2ρ̂12â2 + i�

2
e−iφρ̂2b, (13)

˙̂ρ2b = −(
2 + i�2)ρ̂2b + ig2(ρ̂22â2 − â2ρ̂bb)

+ ig1ρ̂21â1 + i�

2
eiφρ̂2b. (14)

Here 
1 and 
2 are the dephasing rates for single-photon
coherence terms ρ̂1b and ρ̂2b, respectively.

To proceed further, we adopt certain approximation
schemes. The first is the good cavity limit where the cavity
damping rate is much smaller than the dephasing and sponta-
neous emission rates. In this limit, the cavity mode variables
vary more slowly than the atomic variables, and thus the
atomic variables reach steady state in a short time. The time
derivatives of such variables can be set to zero, keeping the
cavity mode variables at time t , which is also called adiabatic
approximation. Moreover, we apply a linearization scheme
which amounts to retaining terms up to second order in the
cavity-atom coupling constant g in the master equation. To do
so, we first write the equations of motion for ρ̂11,ρ̂22,ρ̂12, and
ρ̂bb in the zero order in the coupling constant:

˙̂ρ11 = raρ
(0)
11 ρ̂ + i�

2
(exp−iφ ρ̂21 − eiφρ̂12) − γ1ρ̂11, (15)

˙̂ρ22 = raρ
(0)
22 ρ̂ + i�

2
(expiφ ρ̂12 − e−iφρ̂21) − γ2ρ̂22, (16)

˙̂ρ12 = raρ
(0)
12 ρ̂ + i�

2
exp−iφ(ρ̂22 − ρ̂11) − 
12ρ̂12, (17)

˙̂ρbb = 0, (18)

in which γ1 and γ2 are spontaneous emission rates of levels |a1〉
and |a2〉 to lower level |b〉, respectively; 
12 is the two-photon
dephasing rate. Now we apply the adiabatic approximation,
that is, set the time derivatives in Eqs. (15)–(17) to zero to
obtain

ρ̂11 = raρ̂

χ
[γ2(1 − η)
12 + �2 + γ2�

√
1 − η2 sin φ], (19)

ρ̂22 = raρ̂

χ
[γ1(1 + η)
12 + �2 − γ1�

√
1 − η2 sin φ], (20)

ρ̂12 = raρ̂

2
12χ
{
√

1 − η2(χ cos φ − 2i
12γ1γ2 sin φ)

+ i
12[γ1 − γ2 + (γ1 + γ2)η]�}e−iφ, (21)

where χ = 2γ1γ2
12 + (γ1 + γ2)�2. Here we have introduced
a useful notation where ρ

(0)
11 = (1 − η)/2, ρ

(0)
22 = (1 + η)/2,

and ρ
(0)
12 = 1

2

√
1 − η2. It is easy to see that ρ(0)

12 = [0, 1
2 ], with 0

being no coherence and 1
2 corresponds to maximum coherence.

In Sec. III A, we will show that this coherence is responsible
for the entanglement of the cavity modes. By applying the
adiabatic approximation in Eqs. (13) and (14) and using the
solutions for ρ̂11,ρ̂22,ρ̂12, we obtain

−ig1ρ̂1b = ζ11ρ̂â1 + ζ12ρ̂â2, (22)

−ig2ρ̂2b = ζ22ρ̂â2 + ζ21ρ̂â1. (23)

Explicit expressions for the coefficients ζij (i = 1,2) are given
in Appendix A. Therefore, using Eqs. (22), (23), and (11) and
taking into account the damping of cavity modes by vacuum
reservoir, the master equation for the cavity radiation becomes

˙̂ρ = ζ ∗
11(â†

1ρ̂â1 − â1â
†
1ρ̂) + ζ11(â†

1ρ̂â1 − ρ̂â1â
†
1)

+ ζ ∗
22(â†

2ρ̂â2 − â2â
†
2ρ̂) + ζ22(â†

2ρ̂â2 − ρ̂â2â
†
2)

+ [ζ ∗
21(â†

1ρ̂â2 − â
†
1â2ρ̂) + ζ12(â†

1ρ̂â2 − ρ̂â
†
1â2)]e−iφ

+ [ζ ∗
12(â†

2ρ̂â1 − â1â
†
2ρ̂) + ζ21(â†

2ρ̂â1 − ρ̂â1â
†
2)]eiφ

+
2∑

j=1

κj

2
(2âj ρ̂â

†
j − â

†
j âj ρ̂ − ρ̂â

†
j âj ), (24)

where kj is the damping rate of the j th cavity mode. The terms
proportional to ζ11 and ζ22 represent gain for cavity modes 1
and 2, respectively, whereas terms proportional to ζ12 and ζ ∗

21
are phase sensitive and are due to atomic coherence.

III. ENTANGLEMENT OF CAVITY MODES

Here we analyze the behavior of entanglement of the
cavity field when the coherence is induced by initial coherent
superposition of atoms. In general, criteria proposed to detect
bipartite entanglement rely on the nature of the field, field
Gaussianity, and the form of the entanglement created. For
instance, in a three-level QBL, since there are two possible
pathways for an atom in coherent superposition of the upper
two levels to decay to the lower level |b〉 the form of
entanglement expected in our system is α|0112〉 + β|1102〉.
Such type of entanglement can be detected by only a certain
class of inseparability criteria [14,19,20]. In order to study
the behavior of entanglement between the cavity modes, we
employ the HZ entanglement criterion [14], which is sufficient
to test for two-mode non-Gaussian states. This criterion relies
on a combination of second- and fourth-order correlations
among the cavity mode variables. According to this criterion,
the two modes are entangled if the following inequality is
satisfied:

EHZ ≡ 〈n̂1n̂2〉 − |〈â†
1â2〉|2 < 0, (25)

where n̂1 = â
†
1â1 and n̂2 = â

†
2â2 are photon number operators

for the cavity modes.

A. Entanglement via injected coherence

In order to clearly see the contribution of the injected
coherence in creating entanglement between the cavity modes,
we turn off the driving field (� = 0). The master equation
corresponding to the injected coherence obtained by setting
� = 0 in the coefficients ζij (i,j = 1,2) in Eq. (24) reads

˙̂ρ = α∗
11(â†

1ρ̂â1 − â1â
†
1ρ̂) + α11(â†

1ρ̂â1 − ρ̂â1â
†
1)

+α∗
22(â†

2ρ̂â2 − â2â
†
2ρ̂) + α22(â†

2ρ̂â2 − ρ̂â2â
†
2)

+ [α∗
21(â†

1ρ̂â2 − â
†
1â2ρ̂) + α12(â†

1ρ̂â2 − ρ̂â
†
1â2)]e−iφ

+ [α∗
12(â†

2ρ̂â1 − â1â
†
2ρ̂) + β21(â†

2ρ̂â1 − ρ̂â1â
†
2)]eiφ

+
2∑

j=1

κj

2
(2âj ρ̂â

†
j − â

†
j âj ρ̂ − ρ̂â

†
j âj ), (26)
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where

α11 = g2
1ra
12γ2(1 + η)

(
1 + i�1)χ
, (27)

α12 = g1g2ra

√
1 − η2(χ cos φ + 2iγ1
12γ2 sin φ)

2
12(
1 + i�1)χ
, (28)

α21 = g1g2ra

√
1 − η2(χ cos φ − 2iγ2
12γ1 sin φ)

2
12(
2 + i�2)χ
, (29)

α22 = g2
2ra
12γ1(1 − η)

(
2 + i�2)χ
. (30)

It is worth noting that when atoms are pumped into the cavity
in state |a1〉 or |a2〉 (i.e., when η = ±1) the off-diagonal terms
α12 and α21 vanish. This implies that the cross-correlation
terms in the master equation disappear, which results in
disentanglement of the cavity modes.

1. Transient regime

Since the HZ criterion involves fourth-order correlation
and many coupled differential equations, obtaining analytical
solutions is an involved problem. We thus present the results
of our numerical simulations. We begin by investigating the
dependence of the entanglement on the detuning. Figure 2(a)
illustrates the HZ criterion as a function of dimensionless time
γ2t for various values of detunings �1 and �2. Here other
parameters are chosen so as to comply with the micromaser
experiments [21,22]. We assume that the cavity modes are
initially in a product state (cavity mode 1 in a number state
with 5 photons and cavity mode 2 in a vacuum state, i.e.,
|�(0)〉F = |5102〉) and atoms are injected into the cavity in a
state |�(0)〉A = 1

2 (|a1〉 + |a2〉) or η = 0. As can be seen from
Fig. 2(a), the quantity EHZ is negative for short time for all
cases indicating creation of entanglement between the cavity
modes. We also observe that the transient entanglement van-
ishes at longer time scale for identical detunings �1 = �2 =
80γ2. However, steady-state entanglement is achieved when
the cavity detunings are different. This is quite interesting and
markedly different from the result reported when one induces
the coherence via a strong laser field [4–6]. We thus note that
in order to create a steady-state entanglement, which is more
applicable for a quantum information processing schemes,
one should induce coherence between atomic levels before

injecting atoms into the cavity and by setting the cavity modes
at different detunings.

Next we explore how the initial populations and coherences
influence the entanglement dynamics. Figure 2(b) shows the
plot of the quantity EHZ versus γ2t for fixed detunings
(�1 = 20γ2 and �2 = 80γ2) and for various values of η.
Recall that η = ±1 corresponds to no coherence whereas other
values of η gives nonzero coherence. Figure 2(b) reveals that
whenever there is coherence, the system exhibit transient as
well as steady-state entanglement. Moreover, as the coherence
decreases from maximum value η = 0 to no coherence η =
−1, the value of the quantity EHZ approaches to zero faster.
That means, for weak coherence, the generated entanglement
is more susceptible to dephasing processes.

So far we have assumed no dephasing in the system, that is,
that the dephasing rate is the same as the spontaneous emission
rate 
 = γ2. However, the dephasing rates are in general
higher than the spontaneous emission and cavity decay rates
and may alter the entanglement behavior substantially. The
dephasing rates 
1 and 
2 corresponding to the single-photon
lasing transitions |a1〉 ↔ |b〉 and |a2〉 ↔ |b〉 are in general
smaller than the two-photon dephasing rate 
12. However,
for the sake of simplicity, we assume all dephasing rates to
be the same, 
 = 
12 = 
1 = 
2. Now, keeping the initial
atomic coherence at maximum value (η = 0), we explore the
effect of dephasing on the dynamics of the entanglement in
the system. Figure 2(c) shows the plots of the quantity EHZ

versus γ2t for �1 = 20γ2, �2 = 80γ2 for various values of
dephasing rate. This figure indicates that the entanglement
is sensitive to dephasing. For instance, when the dephasing
rate is increased to 
 = 4γ2, only the transient entanglement
survives. When one further increases the dephasing rate to

 = 5γ2 the entanglement disappears. To keep the entangle-
ment intact even in the presence of dephasing one can, in
principle, tune other system parameters. To produce a robust
steady-state entanglement one has to choose a parameter
range for which the system operates in a large detuning
condition. In Fig. 3, we plot the quantity EHZ versus γ2t

for g1 = 5γ2, g2 = 2.15γ2, 
 = 
12 = 
1 = 
2 = 5γ 2, γ1 =
1.25γ2, �1 = 500γ2, �2 = 100γ2, η = 0, and various values
of pumping rate ra . As can be seen from this figure, for
ra = 1.1γ2 the quantity EHZ is always positive, indicating
no entanglement. However, if one gradually increases the

1 20 Γ2, 2 80 Γ2

1 30 Γ2, 2 80 Γ2

1 80 Γ2, 2 80 Γ2
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Z
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FIG. 2. (Color online) Plots of HZ criterion vs γ2t for g1 = 50 kHz,g2 = 43 kHz,ra = 22 kHz,γ1 = 25 kHz,γ2 = 20 kHz, κ1 = 1.5 kHz,
and κ2 = 2 kHz, with 
12 = 
1 = 
2 = γ1 (no dephasing condition), φ = π/2 in the absence of the driving field (� = 0) and when cavity
mode 1 is initially in number state with 5 photons and mode 2 in a vacuum state: (a) η = 0 (maximum injected coherence) and various values of
detunings, (b) �1 = 20γ2,�2 = 80γ2, and various initial conditions for the atoms (various values of η), and (c) �1 = 20γ2,�2 = 80γ2,η = 0,
and various values of dephasing rates 
 ≡ 
1 = 
2 = 
12.
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ra 10 γ2

ra 7 γ2

ra 4 γ2

ra 1.1 γ2

0 20 40 60 80 100

0.8

0.6

0.4

0.2

0.0

γ2 t

E
H

Z

FIG. 3. (Color online) Plots of HZ criterion for g1 = 5γ2, g2 =
2.15γ2, γ1 = 1.25γ2, 
12 =
1 =
2 =5γ2, �1 =500γ2, �2 =100γ2,

κ1 = 0.2γ2, κ2 = 0.075γ2, η = 0, φ = π/2, γ2 = 20 kHz, in the ab-
sence of the driving field (� = 0) and for various values of the
pumping rate ra . The initial condition for the cavity field is the same
as in Fig. 2.

pumping rate, the system starts to exhibit transient entangle-
ment for short times. Steady-state entanglement can also be
achieved by further increasing the pumping rate of the atoms
into the cavity. It is noteworthy to mention here that since the
pumping rate is externally controllable, it is experimentally
feasible to control the effect of dephasing on the entanglement
at least for dephasing rates as high as 
 = 5γ2. In essence, the
adverse effect of dephasing can be counterbalanced by tuning
the pumping rate accordingly.

2. Steady-state regime

As pointed out earlier, the cavity modes exhibit steady-state
entanglement. We here explore the entanglement as a function
of system parameters and effect of dephasing. An analytical
solution for this case is also nontrivial; we thus solve the
coupled equations and evaluate the function EHZ numerically.
In order to see the entanglement behavior as a function of the
initial coherence, we then plot the quantity EHZ as a function
of η (see Fig. 4). It is easy to see from this figure that the
system exhibits steady-state entanglement for all values of η

except η = ±1, which confirms our previous assertion. We
also observe that the entanglement exists only when the two
cavity detunings are different. For example, for �1 = �2 =
80γ2, the entanglement vanishes. Besides, it is counterintuitive

1 20 γ 2

1 80 γ 2

1 40 γ 2

1 30 γ 2

1.0 0.5 0.0 0.5 1.0
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0.4

0.3

0.2

0.1

0.0

E
H

Z

FIG. 4. (Color online) Plots of HZ criterion in the steady state vs
η for �2 = 80γ2 and for various values of �1. All other parameters
as the same as in Fig. 2.
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FIG. 5. (Color online) Plots of HZ criterion in the steady state
vs η for dephasing rate 
 = 5γ2 and for various values of pumping
rates. All other parameters as the same as in Fig. 3.

to see that the minima for the EHZ function does not occur
at maximum initial coherence, η = 0. They rather appear for
values of η between 0 and 0.5, depending on the value of
the detuning �1. This shows that for this range of detunings,
robust steady-state entanglement can be obtained by initially
injecting more atoms in level |a2〉 than |a1〉.

To clearly see the effect of dephasing on steady-state
entanglement, we plot in Fig. 5 the HZ criterion as a function
of η for dephasing rate 
 = 5γ2, and �1 = 500γ2, �2 =
100γ2, and other parameters are the same as in Fig. 3. As
can be seen from this figure, by increasing the pumping
rates, one can counterbalance the dephasing effect. However,
this works only for the strong coherence condition, that
is, when η ≈ [−0.5,0.5]. We also note that the entangle-
ment is relatively robust at maximum coherence η = 0. We
thus observe that when the system is far detuned and at
higher pumping rates only strong initial coherence can create
entanglement.

B. Entanglement via driven coherence

In this section, the role of dephasing on entanglement
dynamics when the atomic coherence is induced by coupling
of the upper two levels by an external laser is investigated. We
assume that atoms are injected in their excited state |a1〉, that is,
no coherence at the initial time. The evolution of entanglement
in a quantum-beat laser when coherence is induced by a strong
laser field has been previously considered without taking into
account the dephasing processes [4–6]. Here we focus on how
the generated entanglement is modified by the dephasing rate.

The master equation corresponding to driven coherence
which is obtained by setting η = −1 in Eq. (24) reads

˙̂ρ = β∗
11(â†

1ρ̂â1 − â1â
†
1ρ̂) + β11(â†

1ρ̂â1 − ρ̂â1â
†
1)

+β∗
22(â†

2ρ̂â2 − â2â
†
2ρ̂) + β22(â†

2ρ̂â2 − ρ̂â2â
†
2)

+ [β∗
21(â†

1ρ̂â2 − â
†
1â2ρ̂) + β12(â†

1ρ̂â2 − ρ̂â
†
1â2)]e−iφ

+ [β∗
12(â†

2ρ̂â1 − â1â
†
2ρ̂) + β21(â†

2ρ̂â1 − ρ̂â1â
†
2)]eiφ

+
2∑

j=1

κj

2
(2âj ρ̂â

†
j − â

†
j âj ρ̂ − ρ̂â

†
j âj ), (31)
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where

β11 = 2g2
1ra

ϒ
[4γ2
12(
2 + i�2) + (−γ2 + 4
2 + 4i�2)�2],

(32)

β12 = 2ig1g2ra

ϒ
[�2 − 2γ2(
2 + i�2)], (33)

β21 = 2ig1g2ra

ϒ
[�2 + 2γ2(
1 + 
12 + i�1)], (34)

β22 = 2g2
2ra

ϒ
(2
1 + γ2 + 2i�1)�2, (35)

where

ϒ ≡ χ [4(
1 + i�1)(
2 + i�2) + �2].

We note that this master equation has the same form as that
of the injected coherence, but the interpretation is different.
When the driving laser field is turned off (� = 0), the cross
terms do not vanish. However, a close inspection of Eq. (35)
shows that when we turn off the driving laser field, the gain for
mode a2 vanishes. This implies that population transfer from
the initially populated level |a1〉 to level |a2〉 will not occur
and hence no buildup of coherence between these two levels.
As analytical solutions are rather nontrivial, we only present
numerical results.

We consider an initial condition for the cavity field to be
|25102〉. In Fig. 6, we plot the HZ entanglement criterion versus
dimensionless time γ2t when the cavity modes are tuned with
their respective atomic transitions and for various values of
the Rabi frequency of the laser field. This figure shows that
an initial product state evolves to an entangled state even
in the presence of cavity losses [4]. However, the time of
entanglement is limited by the strength of the applied deriving
laser. This can be understood by recalling that the coherence,
which is responsible for the creation of entanglement in this
model, strongly relies on the strength of laser field. For this
reason, the existence of entanglement crucially depends on the
field strength.

Furthermore, a natural question that follows is how this
transient entanglement behaves in the presence of dephasing.
In Fig. 7, we present the effect of dephasing on dynamical
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FIG. 6. (Color online) Temporal behavior of HZ criterion when
the cavity modes are initially in a product state |�(0)〉 = |25102〉
and when atoms are injected in their excited state |a1〉 and for �1 =
�2 = 0, 
 = γ2. The curves correspond to various values of Rabi
frequencies. All other parameters are the same as in Fig. 2(a).
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FIG. 7. (Color online) Temporal behavior of HZ criterion for laser
field of Rabi frequency � = 200γ2. The curves correspond to various
values of dephasing rates. All other parameters are the same as in
Fig. 6.

behavior of entanglement for � = 200γ2, �1 = �2 = 0, and
for various values of the dephasing rate 
. It is worth
noting that the requirement of nonzero detuning for having
a well-behaved solution is now lifted due to the presence of
a strong laser field. As illustrated in Fig. 7, in the presence
of dephasing, the initial product state gets entangled after a
short time. However, when the dephasing rate increases, the
two cavity modes remain unentangled for sometime and get
entangled for a longer window of time before they become
disentangled again. In addition, the time for which the modes
remain entangled gets shorter with increasing dephasing rate.
For the parameters given in Fig. 7, the transient entanglement
eventually vanishes when the dephasing rate becomes more
than two orders of magnitude stronger than the spontaneous
emission rate. Further, comparison of Figs. 3 and 7 shows
that the entanglement generated via driven coherence is
more robust against dephasing than that created via injected
coherence. This might be explained in terms of the nature of
the coherence induced by the two methods. It is clear that
the coherence induced by the driving laser field is strong and
controllable while the injected coherence is rather weak and
fixed once the atoms are pumped into the cavity.

IV. CONCLUSION

We have studied the effect of dephasing on the entanglement
generated in a quantum-beat laser via quantum coherence
induced either by initially injected atoms in a coherent
superposition of atomic levels or coupling the same levels
by strong laser field. It turns out that the injected coherence
give rise to transient as well as steady-state entanglement
for realistic parameters. The steady-state entanglement exists
only when the cavity detunings are different and relies
strongly on the detunings and pumping rates. Moreover, the
entanglement is more sensitive to dephasing processes. We
show that the adverse effect of dephasing on the entanglement
can be circumvented by injecting atoms into the cavity at
higher pumping rates. On the other hand, it appears that the
entanglement created through coherence induced by coupling
of atomic levels by a strong laser field is relatively robust
against dephasing. The formulation outlined in this work
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provides a way to analyze the inevitable effect of dephasing
processes on quantum features exhibited by two-photon lasers.
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APPENDIX A: COEFFICIENTS IN THE MASTER
EQUATION EQ. (24)

The coefficients that appear in the master equation (24) are

ζ11 = g2
1ra

D {
12[4γ2
12(
2 + i�2)(1 − η)

+ [γ1 − γ2 + 4
2 + 4i�2 + (γ1 + γ2)η]�2]

+�
√

1 − η2[iχ cos φ + 2γ2
12(γ1 + 2
2

+2i�2) sin φ]}, (A1)

ζ12 = 2g1g2ra

D {i
12�[−γ2(
2 + i�2)(1 − η)

+ γ1(
2 + 
12 + i�2)(1 + η) + �2]

+
√

1 − η2[(
2 + i�2)χ cos φ

+ iγ1
12(2γ2
2 + 2iγ2�2 − �2) sin φ]}, (A2)

ζ21 = 2g1g2ra

D {i
12�[−γ1(
1 + i�1)(1 + η)

+ γ2(
1 + 
12 + i�1)(1 − η) + �2]

+
√

1 − η2[(
1 + i�1)χ cos φ

− iγ2
12(2γ1
1 + 2iγ1�1 − �2) sin φ]}, (A3)

ζ22 = g2
2ra

D {
12[4γ1
12(
1 + i�1)(1 + η)

+ [γ2 − γ1 + 4
1 + 4i�1 − (γ1 + γ2)η]�2]

+�
√

1 − η2[iχ cos φ − 2γ1
12(γ2 + 2
1

+ 2i�1) sin φ]}, (A4)

where

D = 
12χ [4(
1 + i�1)(
2 + i�2) + �2], (A5)

χ = 2γ1γ2
12 + (γ1 + γ2)�2. (A6)

APPENDIX B: EQUATIONS OF EVOLUTION FOR
EXPECTATION VALUES OF CAVITY MODE VARIABLES

Using the master equation derived in Sec. II, we derive the
equations of evolution for the expectation values of the cavity
mode operators. In general, the evolution of the expectation
value of an operator can be written as d〈ô〉/dt = Tr(ô dρ̂

dt
). By

applying this together with the master equation given by (24),
we obtain

d

dt

〈
â2

1

〉 = (2ζ11 − κ1)
〈
â2

1

〉 + 2ζ12〈â1â2〉e−iφ, (B1)

d

dt

〈
â2

2

〉 = (2ζ22 − κ2)
〈
â2

2

〉 + 2ζ21〈â1â2〉eiφ, (B2)

d

dt
〈â1â2〉 = [

ζ11 + ζ22 − 1
2 (κ1 + κ2)

]〈â1â2〉 + ζ21
〈
â2

1

〉
eiφ

+ ζ12
〈
â2

2

〉
e−iφ, (B3)

d

dt
〈â†

1â1〉 = (ζ11 + ζ ∗
11 − κ1)〈â†

1â1〉 + ζ12〈â†
1â2〉e−iφ

+ ζ ∗
12〈â1â

†
2〉eiφ + ζ11 + ζ ∗

11, (B4)

d

dt
〈â†

2â2〉 = (ζ22 + ζ ∗
22 − κ2)〈â†

2â2〉 + ζ21〈â†
2â1〉eiφ

+ ζ ∗
21〈â2â

†
1〉e−iφ + ζ22 + ζ ∗

22, (B5)

d

dt
〈â†

1â2〉 = [
ζ ∗

11 + ζ22 − 1
2 (κ1 + κ2)

]〈â†
1â2〉 + ζ21〈â†

1â1〉eiφ

+ ζ ∗
12〈â†

2â2〉eiφ + (ζ21 + ζ ∗
12)eiφ, (B6)

d

dt
〈n1n2〉 = (ζ11 + ζ ∗

11 + ζ22 + ζ ∗
22 − κ1 − κ2)〈n1n2〉

+ [
ζ ∗

12

〈
â1â

†2
2 â2

〉 + ζ21
〈
â
†
1â

2
1 â

†
2

〉 + (ζ ∗
12 + ζ21)

×〈â1â
†
2〉

]
eiφ + [

ζ ∗
21

〈
â
†2
1 â1â2

〉 + ζ12
〈
â
†
2â

2
2 â

†
1

〉
+ (ζ ∗

21 + ζ12)〈â†
1â2〉

]
e−iφ + (ζ ∗

11 + ζ11)〈â†
2â2〉

+ (ζ ∗
22 + ζ22)〈â†

1â1〉, (B7)

d

dt

〈
â1â

†2
2 â2

〉 = [
ζ11 + ζ22 + 2ζ ∗

22 − 1
2 (κ1 + 3κ2)

]〈
â1â

†2
2 â2

〉
+ ζ21

〈
â2

1 â
†2
2

〉
eiφ + [

ζ12
〈
â
†2
2 â2

2

〉
+ 2(ζ12 + ζ ∗

21)〈â†
2â2〉 + 2ζ ∗

21〈n1n2〉
]
e−iφ

+ 2(ζ22 + ζ ∗
22)〈â1â

†
2〉, (B8)

d

dt

〈
â
†
1â

2
1 â

†
2

〉 = [
ζ ∗

11 + 2ζ11 + ζ ∗
22 − 1

2 (3κ1 + κ2)
]〈
â
†
1â

2
1 â

†
2

〉
+ ζ ∗

12

〈
â2

1 â
†2
2

〉
eiφ + [

ζ ∗
21

〈
â
†2
1 â2

1

〉
+ 2(ζ12 + ζ ∗

21)〈â†
1â1〉 + 2ζ12〈n1n2〉

]
e−iφ

+ 2(ζ11 + ζ ∗
11)〈â1â

†
2〉, (B9)

d

dt

〈
â2

1 â
†2
2

〉 = 2
[
ζ11 + ζ ∗

22 − 1
2 (κ1 + κ2)

]〈
â2

1 â
†2
2

〉
+ [

2ζ ∗
21

〈
â
†
1â

2
1 â

†
2

〉 + 2ζ12
〈
â
†2
2 â2â1

〉
+ 4(ζ ∗

21 + ζ12)〈â1â
†
2〉

]
e−iφ, (B10)

d

dt

〈
â
†2
1 â2

1

〉 = 2(ζ11 + ζ ∗
11 − κ1)

〈
â
†2
1 â2

1

〉 + 2ζ ∗
12〈â†

1â
2
1 â

†
2〉eiφ

+ 2ζ12
〈
â
†2
1 â1â2

〉
e−iφ + 4(ζ ∗

11 + ζ11)〈â†
1â1〉,

(B11)

d

dt

〈
â
†2
2 â2

2

〉 = 2(ζ22 + ζ ∗
22 − κ2)

〈
â
†2
2 â2

2

〉 + 2ζ21
〈
â1â

†2
2 â2

〉
eiφ

+ 2ζ ∗
21

〈
â
†
2â

2
2 â

†
1

〉
e−iφ + 4(ζ ∗

22 + ζ22)〈 ˆ̂a
†
2

ˆ̂a2〉.
(B12)
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