
PHYSICAL REVIEW A 84, 063807 (2011)

Phase-dependent coherent population trapping and optical switching
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We propose a scheme for achieving phase-dependent coherent population trapping, showing that both the dark
state of the atoms and light propagation dynamics depend on the relative phase of the fields. The atomic coherence
prepared via adiabatic process plays a key role in the interaction of light with matter. And an optical switching
based on the phase-controlled quantum interference is implemented, which may have potential application in
high-speed optical communications and quantum information systems.
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I. INTRODUCTION

Coherent population trapping (CPT) [1,2] refers to the phe-
nomenon that the atom population is trapped in a superposition
of lower states (so-called dark state) and the optical fields
propagate through the medium without absorption via quantum
interference. The significance of CPT is well illustrated by its
numerous applications such as laser cooling [3], trapping of
atoms in optical lattices [4], magnetometers [5], and atomic
clocks [6].

In this paper, we propose and experimentally demonstrate a
scheme to attain phase-dependent CPT in a three-level �-type
atomic system, where the dark state is sensitive to the relative
phase of the optical fields, so the light propagation dynamics
exhibit a critical dependence on the input conditions. And
one of the applications of this phenomenon is to implement an
all-optical switching, which has been studied in many schemes
[7–14] based on quantum interference in recent years.

The optical property in our scheme is similar to that pre-
sented in the system with closed-loop configuration, showing
that both dynamics and the steady state of the atoms depend on
the relative phase of the fields. However, our work is different
from the former reports [15–20]; the phase-dependent CPT
is observed in the closed-loop interaction schemes, which is
formed by optical pulses separated in time, and the atomic
coherence prepared via adiabatic process before the CPT step
plays an important role in the interaction between optical fields
and atoms. Furthermore, our experiment can be viewed as
demonstrating the potential of this technique for achieving
optical switching.

II. THEORY AND ANALYSIS

Figure 1(a) shows the energy-level structures of the 87Rb D1

transitions and the relevant laser coupling schemes used in the
experiments. The temporal shapes of the coupling (2% of the
real value) and switch (probe) pulses at the entrance of the Rb
cell are shown in Fig. 1(b). The pulse widths (FWHM) of the
coupling pulse (red curve) and the probe pulse (blue curve) are
450 and 15 ns, respectively, and the time interval T between
the end edge of the coupling pulses and the peaks of the switch
(probe) pulses is 65 ns. The coupling pulse with Rabi frequency
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�1(t) and the switch pulse with Rabi frequency �s(t) are
right circularly polarized; the second coupling pulse with Rabi
frequency �2(t) and the probe pulse with Rabi frequency ωp(t)
are left circularly polarized. All four lasers are resonant with
the transition |5S1/2,F = 2〉 → |5P1/2,F

′ = 1〉 [as shown in
Fig. 1(a)]. The Rabi frequencies of the end edge of the coupling
pulses are assumed Gaussian with the amplitude envelopes
of the form �1(t) = �10 exp[−(t − 545)2/132], t � 545 and
�2(t) = �20 exp[−(t − 545)2/132],t � 545, where �10 and
�20 denote the peak amplitudes of two coupling fields at the
entrance of the vapor cell, respectively. Two strong coupling
lasers establish a coherent superposition (dark state) of two
lower states, given by

|ψD〉 = �20

�
|1〉 − �10

�
eiϕ|2〉, (1)

where � = √
�2

10 + �2
20, and ϕ = ϕ2 − ϕ1 is the relative

phase difference of the two coupling pulses. When the coupling
lasers are turned off simultaneously, the amplitude and phase
information is stored in the atomic coherence. The populations
of the levels and atomic coherence right after the coupling
fields being turned off are given as [the derivations of Eqs. (2)
are reported in Appendix A]

ρ11 = �2
2

�2
1 + �2

2

,

ρ22 = �2
1

�2
1 + �2

2

, (2)

ρ12 = − �1�2

�2
1 + �2

2

ei(ϕ2−ϕ1).

Then the switch and probe pulses are turned on; they
are Gaussian pulses, with Rabi frequencies �s(t) = �s0

exp[−(t − 610)2/102] and �p(t) = �p0 exp[−(t − 610)2/

102], respectively.
The optical fields and atomic superposition form a

quasiloop configuration, where the quantum interference is
dependent on the relative phase �ϕ = ϕ1 − ϕ2 − ϕS + ϕp and
the amplitudes of applied optical fields [15–17], and we keep
the condition in our experiment,

�10

�20
= �s0

�p0
= 1, (3)
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FIG. 1. (Color online) (a) Relevant energy level of 87Rb atoms
and laser excitation in the experiment. (b) The pulse sequence at the
entrance of the Rb cell.

where the dynamics of probe pulse propagation can be
effectively controlled by the relative phase, which can be
modulated by each one of the four pulses in such a system.

We now turn to a theoretical discussion of this work,
consider a three-level system [shown as Fig. 1(a)] in the ro-
tating wave approximation, and assume an undepleted atomic
coherence ρ12 = −�10�20/(�2

10 + �2
20)ei(ϕ2−ϕ1) prepared by

two coupling pulses via adiabatic process before the probe
(switch) pulses enter the sample. When the switch and probe
pulses are turned on, the elements of the density matrix are
given by the Liouville equation

dρ31

dt
= i�s(t)ρ11e

iϕS + i�p(t)ρ21e
iϕp − γ31ρ31,

(4)
dρ32

dt
= i�p(t)ρ22e

iϕp + i�s(t)ρ12e
iϕS − γ32ρ32.

Here γ ij (i,j = 1,2,3) is the decoherence rate of the
corresponding transition. The Maxwell equations for the fields
are

(
∂

∂z
+ 1

c

∂

∂t

)
�s(t)e

iϕs = iκ13ρ31,

(5)(
∂

∂z
+ 1

c

∂

∂t

)
�p(t)eiϕp = iκ23ρ32,

where κij = Nd2
ijwij /ε0h̄c, N is the atomic density, and c is

the speed of light in vacuum.
Equations (4) and (5) can be solved easily using the method

in Ref. [21]; assuming that γ31 = γ32 = γ , κ31 = κ32 = κ , and

all four lasers are resonant with the corresponding transitions,
the general solution ofdifferential equations (4) and (5) is

�p(z,t) = −�s(0,t)|ρ12|ei�ϕ

[
1 − exp

(
κz

−γ

)]

+�p(0,t)

[
ρ11 + ρ22 exp

(
κz

−γ

)]
. (6)

The detailed theoretical calculations are given in
Appendix B. By substituting Eq. (2) into Eq. (6), the expression
of transmitted probe pulse reduces to

�p(z,t) = �2
2�p(0,t) + �1�2�s(0,t)ei�ϕ

�2
1 + �2

2

+ �2
1�p(0,t) − �1�2�s(0,t)ei�ϕ

�2
1 + �2

2

exp

(
−κz

γ

)
.

(7)

The physical origin of this optical switching can be
understood by discussing how the relative phase affects
the population and atomic coherence dynamics during the
switching process.

The numerical solutions of Eqs. (4) and (5) are plotted
in Fig. 2. The curves in Fig. 2(a) show the pulse shape in
the time domain. The curves in Figs. 2(b) and 2(c) present
the population of each level and the amplitude of coherence
|ρ12|. The initial population is equally distributed between
state |1〉 and |2〉, and Rabi oscillation is clearly seen in the
population of levels |1〉 (|2〉) and |3〉 when the two coupling
lasers are applied. The coherence term |ρ12|, as illustrated
in Fig. 2, reaches its maximum value when states |1〉 and

FIG. 2. (Color online) (a) The pulse shape in time domain.
[(b) and (c)] Population transfer of levels |1〉, |2〉, and |3〉, and the
amplitude of coherence |ρ12| between states |1〉 and |2〉 for the case
of relative phase ϕ = 0 and ϕ = π , respectively.
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|2〉 are half/half populated, with the dark state expressed in
Eq. (1). Because the atoms in level |3〉 have a half chance
of decaying to |5S1/2,F = 1〉, a repumping beam from an
external-cavity diode laser is tuned on resonant with the
transition |5S1/2,F = 1〉 → |5P1/2,F

′ = 2〉 to pump the atoms
back to |5S1/2,F = 2〉 (not plotted in Fig. 1). The coupling
lasers are adiabatically turned off after the system evolves
into steady state, and the amplitude and phase information of
coupling fields are stored in the form of atomic coherence; this
process is similar to the fractional stimulated Raman adiabatic
passage [22–25], which is a technique used to prepare coherent
superposition states.

Then we turned on the switch and probe pulse simulta-
neously. Figure 2(b) shows that at �ϕ = 0 the coherently
prepared atoms are decoupled from the optical fields because
of the destructive interference, so the light gets through the
vapor cell without loss; this situation can be considered as
coherent population trapping (CPT). To the contrary, for
�ϕ = π [as shown in Fig. 2(c)], the phase condition for CPT
is not satisfied and the instructive interference is dominant, the
optical fields excite the atoms to the upper state, and the atoms
absorb photons simultaneously. If κz � γ , both of the switch
and probe pulses are absorbed severely. The atoms decayed
from the upper states are not localized in the dark state, so
obviously the value of coherence |ρ12| decreases.

III. EXPERIMENT

The experimental apparatus is shown schematically in
Fig. 3. The experiment is done in a 50-mm-long Rb vapor
cell, which is magnetically shielded by μ metal and kept at
80 ◦C. Under normal conditions, the residual magnetic field
is small, and the Zeeman effect on CPT in Rb atoms should
not be appreciable. The laser from a CW single-frequency
Ti:sapphire laser (Coherent 899) is split into two beams, which
are turned on or off by an acousto-optic modulator according
to the time sequence described below, respectively. One of the
two beams is split again to generate two pulses as the coupling
pulses �1(t) and �2(t), with linear orthogonal polarizations,
and then are combined with a polarizing beam splitter. The
other beam is also split into two beams: one as the probe
pulse �p(t) and the other as the switch pulse �s(t); the switch
pulse passes through an electro-optic modulator (EOM) and
its phase is modulated by a voltage applied to the EOM. The
two coupling pulses with approximately equal peak powers of
20 mW, and the peak power of the probe and switch pulses of
0.3 mW, propagate through a λ/4 wave plate, which results in
an opposite circular polarization of the �1(t) [�p(t)] and �2(t)

FIG. 3. (Color online) Schematic of the experimental setup.

FIG. 4. (Color online) (a) Transmission of the control and the
probe fields vs the variation of the relative phase. [(b) and (c)]
The probe transmission in the condition of �ϕ = 2nπ and �ϕ =
(2n + 1)π , respectively. The dashed curve in (b) is the input probe
pulse as a reference.

[�s(t)] pulses; then the four beams are focused by a lens (focus
length 30 cm) into the atomic Rb vapor cell. After passing
through the Rb cell, the pulses are directed to photodiodes, and
are recorded by a digital oscilloscope (Tektronix TDS5104B).

Figure 4(a) displays the propagation dynamics along the
medium for different values of the relative phase �ϕ of
the system; �ϕ is adjusted by a sinusoidal voltage applied
to the EOM. When the phase �ϕ varies from 0 to π , the
light transmission also shows a sinusoidal variation. The solid
line serves to guide the eye. In the case of the relative
phase �ϕ = 2nπ (n is integer), one sees that the probe pulse
propagates through the medium as it was transparent; the
theoretical analysis indicates that the atoms are decoupled
from the optical fields because of destructive interference,
so the output probe pulse (solid curve) almost persists in the
Gaussian shape except for a little absorption at the raising edge
compared with the input probe pulse (dashed curve), as shown
in Fig. 4(b). In the �ϕ = (2n + 1)π situation, the coherent
population trapping (CPT) condition is not satisfied, thus the
probe pulse is absorbed severely by the atoms which jump to
the upper state; the fluctuation shown in Fig. 4(c) is mainly
electric noise from the environment. The experimental results
coincide with Eq. (7), and also demonstrate the numerical
simulation of population distribution in the previous section.

The particular situation shown in Figs. 4(b) and 4(c) can
be applied for optical switching. The efficiency of the optical
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FIG. 5. The probe transmission observed in separate experiments
that differ in the interval between coupling and probe/switch pulses.

switching can be defined as η = (Iopen−Iclose) /Iin. Here Iin is
the input probe field intensity, Iclose is the transmitted intensity
when the switch is closed, and Iopen is the transmitted intensity
when the switch is open. In our experiments, when the switch
is open (the destructive interference), the light transmission is
≈95%, which is limited by the absorption loss due to Zeeman
broadening from the residual magnetic field and the decay rate
of the ground state coherence; when the switch is closed (the
instructive interference), the light transmission is ≈5%, which
is limited by the optical depth of the atomic vapor. From the
measurement, we derive that the observed switching efficiency
is η ≈ 90%.

Since the atomic coherence is the key of optical switching,
the effect induced by the dephasing of ground states should
be considered. We turn on the probe pulse with different
delay time T while keeping �ϕ = 0. Figure 5 shows that
destructive interference can occur even after a temporal delay
between the coupling pulses and the probe (switch) pulses, but
transmission of the probe pulse through the cell decreases with
the increment in delay time. The probe intensity can be fit by
a single exponential function (dashed curve in Fig. 5), and the
decay time is 720 ns. The measured ground-state relaxation
time, using the “phase control of EIT” method [26], is about
850 ns, which is close to the decay time estimated from the
experimental data shown in Fig. 5. It should be mentioned that
the proposed optical switching can also be carried out with two
cw coupling fields, and the physical mechanism is the same as
the experiment discussed above.

IV. CONCLUSION

In conclusion, phase-dependent coherent population trap-
ping is observed in a three-level �-type atomic system. Such
a scheme can be used to implement optical switching in which
transmission and absorption of the probe pulse is controlled
by the relative phase of optical fields. The switching speed
depends on the durations and the intensities of the switch
and probe pulses, and is not restricted by the relaxation
rates. Numerical simulations have good agreement with the
experimental observation.
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APPENDIX A

The purpose of this Appendix is to show the derivation of
Eq. (2). The atomic wave function can be written in the form

|ψ(t)〉 = c1(t)e−iw1t |1〉 + c2(t)e−iw2t |2〉 + c3(t)e−iw3t |3〉.
(A1)

The probability amplitudes ck(t) of the three states |k〉
(k = 1,2,3) satisfy the Schrödinger equations

ċ1 = i�1(t)eiϕ1c3,

ċ2 = i�2(t)eiϕ2c3, (A2)

ċ3 = i[�1(t)e−iϕ1c1 + �2(t)e−iϕ2c2].

In our experiment, all of the optical fields are resonant with
the corresponding transition. In the steady-state condition, a
solution of Eq. (A2) is given by

c1 = �20e
−iφ2√

�2
10 + �2

20

, c2 = −�10e
−iφ1√

�2
10 + �2

20

, c3 = 0, (A3)

where �10 and �20 denote the peak amplitudes of two
coupling fields, respectively, and ϕ1and ϕ2 are the phases of the
two fields. The population distribution and atomic coherence
between ground levels are given as

ρ11 = C∗
1C1 = �2

20

�2
10 + �2

20

,

ρ22 = C∗
2C2 = �2

10

�2
10 + �2

20

, (A4)

ρ12 = C∗
1C2 = − �10�20

�2
10 + �2

20

ei(ϕ2−ϕ1).

When the coupling fields attenuate simultaneously, keeping
the value of �1(t)/�2(t) constant, the trapping state does not
change with time. Thus, the population distribution and atomic
coherence between ground levels stay the same.

APPENDIX B

When the switch and probe pulses enter the sample, the
elements of the density matrix are given by the Liouville
equation

dρ31

dt
= i�s(t)ρ11e

iϕS + i�p(t)ρ21e
iϕp − γ31ρ31,

(B1)
dρ32

dt
= i�p(t)ρ22e

iϕp + i�s(t)ρ12e
iϕS − γ32ρ32.

Here γ ij (i,j = 1,2,3) is the decoherence rate of transition
|i〉 ↔ |j 〉.
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The Maxwell equations for the optical fields are(
∂

∂z
+ 1

c

∂

∂t

)
�s(t)e

iϕs = iκ13ρ31,

(B2)(
∂

∂z
+ 1

c

∂

∂t

)
�p(t)eiϕp = iκ23ρ32,

where κij = Nd2
ijwij /ε0h̄c, N is the atomic density, and c is

the speed of light in vacuum.
We take Fourier transforms of Eqs. (B1) and (B2), and

obtain

∂

∂z
Ms =

(
iκ13ρ11

−ω − iγ31
+ iω

c

)
Ms + iκ13ρ21

−ω − iγ31
Mp,

(B3)
∂

∂z
Mp =

(
iκ23ρ22

−ω − iγ32
+ iω

c

)
Mp + iκ23ρ

∗
21

−ω − iγ32
Ms,

where Ms(p) = (1/2π )
∫ +∞
−∞ �s(p)(t)eiωt dt is the Fourier

transform of �p(0,t)[�s(0,t)]. Assuming that γ31 = γ32 = γ

and κ31 = κ32 = κ , the differential equation (B3) can be
solved, yielding

Mp(z,ω) = −Ms(0,ω) |ρ12| ei�ϕeiωz/c

[
1− exp

(
iκz

−ω − iγ

)]

+Mp(0,ω)eiwz/c

[
ρ11 + ρ22 exp

(
iκz

−ω − iγ

)]
.

(B4)

Here �ϕ = ϕ1 − ϕ2 − ϕS + ϕp is the relative phase of optical
fields. Inverting the Fourier transformation in Eq. (B4) leads to

�p(z,t) = −�s(0,t) |ρ12| ei�ϕ

[
1 − exp

(
κz

−γ

)]

+�p(0,t)

[
ρ11 + ρ22 exp

(
κz

−γ

)]
. (B5)

By substituting Eq. (A4) into Eqs. (B5) and (6) reduces to

�p(z,t) = �2
2�p(0,t) + �1�2�s(0,t)ei�ϕ

�2
1 + �2

2

+ �2
1�p(0,t) − �1�2�s(0,t)ei�ϕ

�2
1 + �2

2

exp

(
−κz

γ

)
.

(B6)

This expression can be viewed as the general solu-
tion, and is also given as the result in our original
manuscript. Although Eq. (B6) contains �1 and �2, it
still can be simplified in particular conditions. In our ex-
periment, the amplitude condition �1/�2 = �s/�p = 1 is
satisfied.

In the case of the relative phase �ϕ = 2nπ (n is integer),
Eq. (B6) reduces to

�p(z,t) = �2
2�p(0,t) + �1�2�s(0,t)

�2
1 + �2

2

= �p(0,t), (B7)

which shows that the probe pulse propagates through the
medium without absorption.

While for�ϕ = (2n + 1)π , Eq. (B6) reduces to

�p(z,t) = �2
1�p(0,t) + �1�2�s(0,t)

�2
1 + �2

2

exp

(
−κz

γ

)

= �p(0,t) exp

(
−κz

γ

)
, (B8)

the amplitude of the probe pulse is attenuated exponen-
tially, the decay rate of the probe field amplitude is de-
pendent on the atomic vapor density and the cell length,
when κz � γ , and the probe pulse would be absorbed
severely.
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