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Equivalence between free-electron-laser oscillators and actively-mode-locked lasers:
Detailed studies of temporal, spatiotemporal, and spectrotemporal dynamics
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We show experimentally and numerically that free-electron-laser (FEL) oscillators behave in a very similar
way to conventional actively-mode-locked lasers. This stems from the similar structures of their underlying Haus
equations. A comparative study of the temporal evolutions of the pulse train shapes and spatiotemporal regimes
is performed on a Nd:YVO4 laser and a storage-ring free-electron laser. Furthermore, since direct observations of
time-resolved pulse shapes and spectra are more accessible on free-electron lasers, the analogy also potentially
enables one to investigate mode-locked laser dynamics using existing FEL facilities.
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I. INTRODUCTION

At first glance, free-electron lasers [1,2] and actively-
mode-locked lasers appear to be different types of systems
because of their very different underlying physics. Indeed, in
the free-electron-laser (FEL) case, the amplification is based
on the energy exchange between an electromagnetic field
and relativistic electrons circulating in a periodic, permanent
magnetic field. This greatly contrasts with the amplification
processes in classical lasers, based on transitions between
quantum levels.

In spite of these apparent differences, common points exist
between FEL oscillators (i.e., possessing an optical cavity)
[2–8] and actively-mode-locked lasers [9], as suggested by
the analogy between their typical cavity designs (Fig. 1).
In this paper we show that the similarities have significant
consequences on their dynamical behaviors, in particular on
their instabilities. Careful consideration of FEL theory indeed
reveals that the dynamical equation for the field in a FEL
oscillator [6,8,10] has a structure that is equivalent to the Haus
master equation for mode locking [9,11–13], the differences
being located essentially in the gain description. To check
whether the differences are relevant or not from the dynamical
point of view, we perform detailed numerical and experimental
studies of the two systems.

The motivation of this comparison is to find whether
knowledge of FEL oscillators and mode-locked lasers may
be fruitfully exchanged. Indeed, studies of the two systems
meet different types of technical limitations.

(i) Although actively-mode-locked lasers are relatively low-
cost tabletop lasers, dynamical studies are difficult given the
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very fast time scales involved. Hence few direct studies of
pulse dynamics have been reported.

(ii) Free-electron lasers are large-scale facilities with
limited time access. However, the time scale involved in
the dynamics is slower by several orders of magnitude.
This provides information on mode locking, through direct
experimental recording of the pulse evolution dynamics, and
on the spectrum versus time.

Hence a dynamical equivalence between the two types of
lasers may open the way to studies of mode-locking issues, in
a direct manner, for FEL oscillators. Conversely, FEL issues
may also be studied using conventional laser systems as FEL
models.

In Sec. II we make explicit the links between the structures
of the two model equations. Then, in Sec. III, we compare
the dynamical behaviors (in particular, self-pulsing) of free-
electron lasers and actively-mode-locked lasers, focusing on
the temporal aspect (the evolution of the pulse energy versus
time). Finally, in Sec. IV, the spectrotemporal and spatiotem-
poral dynamics of both lasers are confronted numerically.

II. ANALOGY BETWEEN MODELS

A. Haus equations for the pulse amplitude

In the case of free-electron lasers as well as actively-
mode-locked lasers, the starting point of the modeling is
usually a map describing the pulse-shape evolution at each
cavity round-trip time. In both lasers, a usual simplification
is the so-called one-dimensional (1D) approach, where the
transverse distribution of light is assumed to be fixed. The
validity of this approach is tricky to demonstrate. However,
it appears to be valid in practice for lasers with a single
transverse-mode operation. This explains the wide success of
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FIG. 1. (Color online) Paradigm of (a) free-electron-laser oscil-
lators, (b) classical mode-locked lasers with a synchronous pump,
and (c) classical mode-locked lasers with loss modulation. A main
comparison point concerns the modulation of gain or losses at
(or near) the round-trip frequency (or a multiple). HR denotes the
high-reflection mirror and OC denotes the output coupler.

the 1D approaches of the Haus [9] and Dattoli-Elleaume [14]
modeling. Thus, this 1D assumption will be also made here.

The well-known Haus master-equation approach leads to a
simplification of the problem by taking the continuous limit
of the map (see, e.g., Refs. [9,11,15] for classical lasers and
Refs. [6,8,10,14,16] for FEL oscillators). As a consequence,
the equation can be written with two independent times: a
continuous slow time T , which corresponds to the number of
round-trips in the cavity, and a fast time θ (at the picosecond
or femtosecond scale), which resolves the pulses shape.

In FEL oscillators and actively-mode-locked lasers, the
equations describing the evolution of the complex electric field
e(θ,T ) are very similar when written in dimensionless units.
The evolution of the optical field in a FEL oscillator may be
described by

eT + veθ =−e + g(T )f (θ )[e − αeθ + eθθ ] + iDeθθ + √
ηξ.

(1)

For loss-modulation active mode locking, the typical equation
structure presents only slight differences from this FEL
equation [see Eq. (1)] [9,11]:

eT + veθ = −e − μθ2e + g(T )[e − αeθ + eθθ ]

+ iDeθθ + √
ηξ. (2)

In these models, T is expressed in units of the cavity field
decay time τc and θ is expressed in units of a reference time
scale tU . In mode-locked lasers, assuming a Lorentzian gain
shape, tU = ω−1

C , with ωC the full width at half maximum gain
bandwidth. For the optical klystron [17] of an free-electron
laser, tU = ω−1

OKπ/
√

2, with ωOK being half the period of
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FIG. 2. Illustration of the temporal evolution of laser losses, gain,
and intensity for (a) and (b) FEL oscillators (and, more generally,
synchronously pumped lasers) and (c) and (d) loss-modulated mode-
locked lasers.

the spectrum oscillation of the spontaneous emission. In
mode-locked lasers, the values of tU are from the picosecond
range to a few femtoseconds, depending on the gain medium.
In storage-ring free-electron lasers such as UVSOR [18] or
ELETTRA [19], tU is in the 100-fs range, e(θ,T ) has periodic
boundary conditions in θ , the period L is the cavity round-trip
time in units of tU , f (θ ) is the temporal shape of the gain in
FEL cases, and μ is a dimensionless parameter proportional
to the loss modulation amplitude [9]:

μ = 1

2

M

l0

(
2πtU

Tm

)2

. (3)

The definitions of l0, M , and Tm are illustrated in Fig. 2: l0 is the
minimal round-trip intensity loss (i.e., the remaining loss in the
absence of modulation), M is the amplitude of the round-trip
intensity loss introduced by the modulator, and Tm is the
modulation period, which is approximately equal to the cavity
round-trip time in the case of our experiment. In addition,
v characterizes the mismatch between the gain- (or loss-)
modulation frequency νRF and the cavity round-trip frequency
νR: v = νRF −νR

νRF

τc

tU
. The term αeθ accounts for the index of

refraction induced by the amplifying medium. Typically α

is O(1), but it is usually neglected in free-electron lasers
when the electron bunch is long with respect to tU and
in mode-locked lasers for which μ � 1. This simplification
(α = 0) is also made here. Spontaneous emission is taken into
account by the term

√
ηξ , with ξ a white-noise source of unit

variance and η characterizing the level of noise. The term D

characterizes the dispersion of the cavity, which is typically
important for femtosecond lasers. In the long-pulse laser
case considered here, dispersion is neglected. The equation
terms have the same physical signification in the case of FEL
oscillators and mode-locked lasers, though their derivations
and naming occur in different ways. The diffusion term eθθ

accounts for the finite bandwidth. In the case of classical lasers,
the derivation is performed phenomenologically, working in
Fourier space [9]. For free-electron lasers, this is performed by
taking into account the details of the interaction [14,20] and
reflects the consequence of the so-called slippage effect [21].
The term eθ on the right-hand sides of Eqs. (1) and (2)
accounts for the decrease in light speed induced by the
presence of gain. This corresponds to the change in refractive
index due to the gain and is called lethargy in the case of
free-electron lasers [22]. This term is typically neglected in
the case where the laser pulse and/or the duration of f (θ )
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is much larger than tU , as is the case here. Concerning the
field equation, it initially seems natural to make a comparative
study between free-electron lasers and synchronously pumped
lasers because the equations for the field have very similar
structures Eq. (1). However loss-modulated lasers, though
having slightly different pulse field equations [Eq. (2)], are
of interest in the present comparative study, where we will
consider recirculation of the electron bunches in a storage
ring. Indeed, in storage-ring free-electron lasers, the gain
relaxation occurs at a very slow time scale with respect to
the cavity lifetime and these free-electron lasers are thus
class-B lasers [23] [linear accelerator (LINAC) free-electron
lasers are synchronously pumped class-A lasers]. Since the
relaxation time is a crucial point of laser dynamics and it is
easier to achieve active mode locking of class-B lasers through
loss modulation, we thus prefer to compare storage-ring FEL
oscillators to loss-modulated class-B lasers. The differences
in detail of the modulation origin will require the parameter
domain to be carefully chosen.

B. Equations for the gain

The gain dynamics is more dependent on the laser speci-
ficities. In the simplest models for four-level class-B lasers,
the gain evolution g(T ) obeys the following equation [6,24]:

dg

dT
(T ) = γ

(
R − g(T ) − g(T )

∫ L

0
|e(T ,θ )|2dθ

)
, (4)

where R is the pump parameter (pump power in units of its
value at threshold) and γ is the relaxation rate of the population
inversion in units of the field cavity lifetime (γ is typically
small in solid-state lasers). Typical values for rare-earth-doped
crystal lasers are in the 10−2–10−4 range.

In storage-ring FEL oscillators, the gain saturation process
occurs via a heating, i.e., an increase in the energy spread
of the electron bunch [1]. In one of the simplest forms, the
longitudinal dependence of the gain is constant,

f (θ ) = exp −
(

θ2

2σ 2
b

)
, (5)

with σb the rms duration of the electron bunch, and the gain
depends on time through its dependence on the bunch energy
spread: [6,24]),

g(T ) = A

σ (T )
exp

(−[σ 2(T ) − 1]

2

)
, (6)

where σ is the rms width of the energy distribution of the
electrons, in units of tU , and A is a dimensionless parameter
equivalent to the pump parameter in classical lasers and
represents approximately the round-trip gain at the bunch
center, in units of the round-trip losses. The energy spread
evolution is given by [24]

dσ 2

dT
(T ) = 1

Ts

(
1 − σ 2(T ) +

∫ L

0
|e(T ,θ )|2dθ

)
, (7)

with Ts the synchrotron damping time in units of the cavity
field decay time. The relaxation time for the gain Ts is much
longer that the field cavity lifetime (Ts � 1). This confirms that
storage-ring free-electron lasers can be considered as class-B
lasers.

In the following we compare dynamical studies of FEL
oscillators and mode-locked lasers. Numerical studies are
performed using Eqs. (1), (6), and (7) for the free-electron
laser and using Eqs. (2) and (4) for mode-locked lasers, with
the parameters corresponding to a Nd:YVO4 laser. Experimen-
tally, an expected necessary condition for analogous behaviors
to occur concerns the pumping rate. In the case of free-electron
lasers, the net gain is obtained only during a small time
window [Fig. 2(a)]. In loss-modulated mode-locked lasers,
such a situation is achieved only close to threshold [Fig. 2(b)].

III. ANALOGY BETWEEN TEMPORAL DYNAMICS:
SELF-PULSING INDUCED BY DETUNING

In this section we consider temporal dynamics in both
lasers at a slow time scale, i.e., without consideration of the
internal structure of the pulse. An essential ingredient is the
slow time scale of the gain relaxation dynamics, i.e., the fact
that we are considering class-B lasers. The main consequence
is the occurrence of self-pulsing in both types of lasers, with
signal shapes resembling Q-switched mode locking (though
the mechanism is more subtle, as it involves hypersensitivity
to noise [11]).

A. Numerical results

The Haus-type equations for actively-mode-locked lasers
[see Eqs. (2) and (4)] are integrated with the Runge-Kutta
method of order 2 with an additive noise term [25]. The partial
derivative along the longitudinal coordinate θ is calculated
with a pseudospectral method using the FFTW library [26] and
the field module is integrated with a trapezoid method. In free-
electron lasers, when the detuning is very close to zero (v ≈ 0),
the output is a regular train of pulses with almost constant
energy [Fig. 3(b)]. When the detuning is increased beyond
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FIG. 3. (a) FEL detuning curve calculated from Eqs. (1), (6), and
(7). For each value of v, the maxima and minima of the pulse energy
I = ∫ L

0 |e(T ,θ )|2dθ are represented. Also shown is the intensity of
the pulse train envelope for (b) v = 0 and (c) v = 4.7. The parameters
are A = 2, σb = 846, and η = 10−12.
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FIG. 4. Numerical results for the case of an actively-mode-locked
laser. (a) Representation of the laser intensity as a function of the
detuning parameter. Also shown is the laser intensity of the pulse
train shape for (b) v = 0 and (c) v = 1.15. The normalized parameters
used for the simulations are R = 1.2, γ = 5 × 10−4, μ = 5 × 10−8,
D = 0, and η = 10−14.

a threshold, self-pulsing appears [Fig. 3(c)]. The bifurcation
diagram representing the FEL output energy versus detuning
v is well known and has a characteristic shape [4,5,27,28].
Figure 3(a) illustrates the typical detuning curve obtained from
the integration of Eqs. (1) and (7).

Concerning this temporal dynamics, the similarity to
actively-mode-locked lasers dynamics is particularly striking.
Self-pulsing with a similar shape is also known to occur when
the detuning parameter v is detuned from zero [see Fig. 4(c)].
Figure 4(a) depicts the bifurcation diagram versus detuning,
obtained by integrating Eqs. (2) and (4).

B. Experimental results

To check this similarity in a more practical way, we
realize and study experimentally an actively-mode-locked
laser (see Fig. 5) emitting at 1.06 μm. The active medium
is a Nd:YVO4 crystal pumped by a fiber-coupled diode laser
(10 W at 808 nm). Loss modulation is achieved using an
acousto-optic mode locker driven at 50 MHz (i.e., with a
100-MHz modulation frequency). We place the output mirror
on a motorized translation stage to study the dynamical
behavior versus cavity length (and thus versus the detuning
parameter v). The cavity round-trip time could be adjusted
around 100 MHz. The output pulse dynamics is monitored
using a fast photodiode resolving the individual mode-locked
pulses (with a 1-ns response time) and a slower detector (with a
1-MHz response time) for monitoring the information related
to the envelope of the mode-locked pulses.

Typical experimental results for the mode-locked laser near
threshold are presented in Fig. 6. The observed dynamical
behavior is very similar to the FEL case (see Fig. 3) and
is consistent with numerical simulations presented in Fig. 4.
Around perfect tuning [see Fig. 6(b)], we retrieve the stationary
pulse-shape behavior observed in storage-ring free-electron
lasers [see Fig. 3(b)]. At higher detuning values, the laser

M2

M3
ML

OC

output

DL L

M1

Nd:YVO4

FIG. 5. (Color online) Experimental setup for the actively-mode-
locked laser. A Nd:YVO4 laser crystal (5 mm long) that is high-
reflection coated at 1.06 μm on the pump side (M1) and Brewster
cut on the other side is shown. DL denotes the diode laser (Thales
TH-C1610-F2), 10 W at 808 nm, fiber coupled (with a diameter of
200 μm and a numerical aperture of 0.22); L denotes the aspheric
lens; M2 and M3 denote high-reflection mirrors at 1.06 μm (with a
radius of curvature of 50 and 20 cm, respectively); ML denotes the
acousto-optic mode locker (IntraAction ML-503D1) with a Brewster-
cut crystal; OC denotes the output coupler with a transmission of 5%
and an antireflection face with a 3◦ wedge, mounted on a motorized
translation stage.

pulse envelope presents strong oscillations [compare Figs. 6(c)
and 3(c)].

To make a further comparison, we realize a detuning curve
[see Fig. 6(a)] in conditions similar to the FEL case [see
Fig. 3(a)]. For this purpose, the output mirror position (and thus
the cavity length) is slowly swept using a motorized transla-
tion stage. Near threshold, the bifurcation diagram presents
the characteristic shape of FEL detuning curves [29–33].
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FIG. 6. (a) Experimental detuning curve versus cavity length in
the actively-mode-locked laser. The laser power is measured with
photodiode resolving the envelope variation, but not the individual
pulses. (b) and (c) Time traces recorded with a detector resolving
the individual pulses (the repetition rate is 100 MHz): (b) mode
locking with a stationary envelope observed near perfect tuning
(v ≈ 0) and (c) mode locking with a pulsed envelope behavior
observed at finite detuning [the mirror has moved approximately
0.05 mm from the (b) situation]. The experiment is performed near
laser threshold (R = 1.2).
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FIG. 7. Departure from the analogy between the free-electron
laser and the mode-locked laser when the pump power is far above
threshold. Detuning curves are recorded as in Fig. 6, versus pump
power. The normalized pump power is (a) 1, (b) 1.1, (c) 1.3, (d) 1.7,
and (e) 3.5.

Discrepancies appear at higher pump powers (see Fig. 7),
confirming that FEL simulations using loss-modulated mode-
locked lasers should be performed near the laser threshold.

Though the dynamics appears to be very similar, the
time scales involved are drastically different. Typical self-
pulsing frequencies are hundreds of hertz for FEL storage-
ring oscillators and in the 140-kHz range for the present
mode-locked laser. This is due to the differences in cavity
lengths, cavity losses, and gain relaxation characteristic times.
Indeed, compared to actively-mode-locked lasers, the cavity
round-trip of free-electron lasers τR is typically one order of
magnitude longer and cavity losses l are usually smaller. This
leads to a much longer cavity damping time τc = τR/l. For
a storage-ring free-electron laser, l = 0.1%–1% and a cavity
length larger than 10 m are typical. This leads to values for
τc in the range of 10–100 μs, to be compared with the 100-ns
range for the typical mode-locked laser used here (τR = 10 ns
and l = 10% round-trip losses). The characteristic time scale
for the gain is also much longer for storage-ring free-electron
lasers since Ts is typically in the range of tens of milliseconds.

Only the ratios between time scales are relevant for the
dynamical behavior of the laser, as can be seen in the reduced
equations [Eqs. (1), (2), (4), (6), and (7)]. However, it is
important to note that practically, as we will see, the difference
in time scales allows more detailed studies of the pulses
dynamics to be performed in free-electron lasers.

C. Discussion

The similarity between the behavior of the FEL equations
and that of the mode-locked laser equations suggests that the
model differences are relatively unimportant. As conjectured,

FIG. 8. Numerical results in the case of an actively-mode-locked
laser. (a)–(c) Representation of the pulse intensity distribution
(vertical scale) as a function of time (horizontal scale). (d)–(f)
Representation of the pulse spectral distribution (vertical scale) as
a function of time (horizontal scale). The normalized parameters
used for the simulations are R = 1.2, γ = 5 × 10−4, μ = 5 × 10−8,
D = 0, and η = 10−14 for different detuning values: (a) and (d) v = 0,
(b) and (e) v = 0.15, and (c) and (f) v = 8.8.

differences in field equations (i.e., loss versus gain modulation)
have minor consequences in the case in which the net gain is
periodically positive and negative (i.e., when the mode-locked
laser is close to threshold).

The differences in the gain dynamics initially seems more
important. The similarities observed in the behavior can be at-
tributed to the fact that the main ingredients are the same in
both lasers: (i) Saturation of the gain depends on the pulse
energy (global saturation coupling) and (ii) the time scale of
the gain relaxation time is much longer that the field cavity
lifetime (both are class-B lasers). For these reasons we may
expect the qualitative behavior to be largely independent of the
details of gain saturation while these two conditions are met.

IV. ANALOGY BETWEEN SPATIOTEMPORAL
AND SPECTROTEMPORAL DYNAMICS

The model given by Eqs. (2) and (4) has been integrated
and the spatiotemporal and spectrotemporal results are rep-
resented in Fig. 8. The behavior is similar to the FEL one.
Above a certain detuning threshold, advection instabilities
appear, leading to so-called optical turbulence [12,13]. These
instabilities in the spatiotemporal space are associated with
intensity holes in the spectrotemporal space [6]. The length
of the spectrotemporal defects are on the order of 1 ms in the
FEL case versus 1 μs in the actively-mode-locked laser one.
This length depends on the characteristics times of the system
being the relaxation time of the media and the photon lifetime
in the cavity and the losses.

To explore the formation of pattern, lasers are particularly
adapted. However, the very fast dynamics constitutes a major
drawback. As a consequence, free-electron laser appears to
be a better natural candidate to investigate the spatiotemporal
dynamics from the point of view of a slower dynamics.

V. COMPARISON OF ULTIMATE PULSE DURATION
AND TIME-BANDWIDTH PRODUCT

Both types of lasers appear to present a similar limitation in
terms of pulse duration. In the case of classical mode-locked
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lasers [9,11], it is well known that the stationary solution
is typically a Gaussian pulse. Assuming D = 0, α = 0, and
η = 0, the fundamental stationary solution of Eq. (2) is (see
Appendix B for details), for both lasers,

eS(θ ) = a exp

(
− θ2

4σ 2
L

)
(8)

or in terms of the physical time t (in seconds),

eS(t) = a exp

(
− t2

4t2
L

)
, (9)

where a is the pulse amplitude. These expressions are valid
when σb � 1. The dimensionless rms pulse duration σL and
its associated physical rms pulse duration (in seconds) tL are,
respectively,

σL = 2−1/4√σb, (10)

tL = 2−1/4√tbtU (11)

for the free-electron laser, where tb is the bunch duration in
physical units (in seconds) and

σL =
(

1

4μ

)1/4

, (12)

tL = 1√
2π

(
l0

2M

)1/4√
TmtU (13)

for the actively-mode-locked laser. In both cases, the field has a
Gaussian shape. As a consequence, at perfect tuning, the min-
imum time-bandwidth product can be obtained (also known
as the Fourier limit). This is well known for mode-locked
lasers [9]. In the case of free-electron lasers, experiments
have also revealed that the time-bandwidth products can be
relatively near the minimum [19,34,35].

Another remarkable similarity of both lasers lies in the
scaling of the pulse duration versus parameters Eqs. (11) and
(13). Indeed, the minimum pulse duration tL scales as the
geometric average between the gain medium characteristic
time tU and the mode-locker characteristic time: the bunch
duration tb for free-electron lasers or the the modulator period
Tm for the active mode locking. This geometric average scaling
was noted from the beginning in the classical laser community
[9], as well as in the FEL community [20,36].

As a consequence, typical visible-UV storage-ring free-
electron lasers (for which tb � tU ) emit pulses in the range
of tens of picoseconds, although the gain medium has the
capability to amplify much shorter pulses (e.g., in the range of
1 fs or hundreds of femtoseconds for super-ACO, UVSOR, and
ELETTRA). This is exactly the same limitation that affected
classical actively-mode-locked lasers.

In the case of FEL oscillators, the limit tU could be attained
in situations where the bunch duration was of the order of tU
(this corresponds to a situation where the bunch length is of
the order of the slippage length). Up to now this was realized
essentially in LINAC-based free-electron lasers [37].

VI. CONCLUSION

A complete analogy between of the temporal, spectrotem-
poral, and spatiotemporal dynamics of a storage-ring free-

electron laser and an actively-mode-locked laser has been
done. A full comparison of the models shows that the systems
have similar Haus-like equations.

One common feature is the possibility of self-pulsing when
the laser is detuned. This effect is strongly linked to the
slow damping of the gain variable. It is the reason why this
is observed in class-B lasers and storage-ring free-electron
lasers.

Another common feature is the occurrence of a complex
spatiotemporal evolution at very small detunings. In both
free-electron lasers and classical lasers, this leads to an
increase of spectrum width and pulse duration and prevents
the actual observation of the calculated deterministic solution
(supermodes [14,20] in the context of free-electron lasers).
It is important to note that the use of a storage ring or a
class-B operation in general is not necessary for this problem
to occur. The main condition is that the characteristic time
tU (which is associated with gain and loss filtering over one
cavity round-trip) be much smaller than the bunch duration.
Once this condition is satisfied, small detunings are expected
to induce the hypersensitivity to noise, which is widely studied
in classical lasers [11–13].

A more efficient analogy of lasers and seeded FEL
dynamics would certainly be helpful in the study of nonlinear
optics and free-electron lasers. The time scales of storage-ring
free-electron lasers allow observations of the mode-locking
processes in a more direct way than in traditional mode-
locked lasers. Conversely, dynamical issues in FEL oscillators
may be anticipated from the knowledge of classical mode-
locked lasers and generalization of the use of the Haus-type
equations. For instance, knowledge from lasers motivates
similar dynamical studies in the context of x-ray FEL oscillator
projects [8].
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APPENDIX A: ASYMPTOTIC EXPANSIONS OF
FREE-ELECTRON-LASER AND MODE-LOCKED-LASER

EQUATIONS FOR THE FIELD

By making some assumptions, we demonstrate in the
following that Eqs. (1) and (2) are similar except that a
synchronous pump is not used. First, we suppose that in the
vicinity of the laser pulse, the gain form can be approximated
by an appropriate slow parabolic form: f (θ ) = 1 − ε4θ2 +
O(ε5). In addition, the pulse evolves on a lower time scale
than θ because the typical width of the electron bunches is
around 200 ps and that of the FEL pulse is around 10 ps. As
a consequence, one has the change scale Z = εθ . Under these
approximations and using the Taylor approximation of order
ε2, Eq. (1) becomes

eT (Z,T ) = −[1 + g(T )ε2Z2]e(Z,T ) + g(T )e(Z,T )

− εveZ(Z,T ) + g(T )ε2eZZ(Z,T ) + √
ηξ. (A1)
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In this equation, in analogy to actively-mode-locked lasers,
the losses are modulated in Z2. The amplification comes
only from the time-dependent gain. In contrast, the diffusion
term now depends on the factor form, which, however, is
not so relevant concerning the temporal and spectrotemporal
dynamics. Another difference comes from the noise term. It is
naturally present in Eq. (1) because the free-electron laser
originates from the spontaneous emission of the electrons
traveling through a periodic magnetic structure. Including a
similar term in Eq. (2) is justified.

APPENDIX B: DERIVATION OF PULSE SHAPE
AT ZERO DETUNING

In actively-loss-modulated lasers as well as storage-ring
free-electron lasers, an usual situation is

σb � 1, (B1)

μ−1 � 1 (B2)

for free-electron lasers and mode-locked lasers, respectively.
In the FEL case, this corresponds to an electron bunch that
is much longer that tU (where tU measures the duration of
the shortest pulse that may amplify the medium and is of
the order of the slippage duration). This is typically the case
is storage-ring free-electron lasers (but not in LINAC-based
FEL oscillators), where tU is of the order of hundreds of
femtoseconds. In mode-locked lasers, this is also frequent
as the modulation period is usually long (in the nanosecond
range) compared to tU (in the picosecond or femtosecond
range).

In this case, it is relatively easy to calculate an approxi-
mation of the pulse shape near zero detuning, where a stable
solution is expected. Such calculations can be found in the
literature for mode-locked lasers [9,11]. For free-electron
lasers, attention has been focused on the pulse buildup (see,
e.g., Ref. [36] for a study of the pulse shape and the spectrum
versus time).

We present here the stationary states for Eqs. (1) and (7)
for the case in which α = 0, v = 0 (where shortest pulses
are expected), and η = 0 because noise has little effect near
zero detuning. In the case σb � 1, as seen in Appendix A,
we can perform a Taylor expansion of f (θ ) near its maximum.
Moreover, when the stationary state is reached, i.e., eT (θ,T ) =
0, the gain g is close to 1 and the stationary solution eS(θ )
is a slowly varying function. This motivates the following

expansion:

Z = εθ, (B3)

ε4 = 1/2σ 2
b , (B4)

f (θ ) = 1 − ε2Z2 + O(ε4), (B5)

g = g0 + ε2g2 + O(ε4), (B6)

eS(θ ) = E0(Z) + ε2E2(Z) + O(ε4). (B7)

Substituting in Eq. (1), we obtain

−E0(Z) − ε2E2(Z) + g0[E0(Z) + ε2E0ZZ(Z) + ε2E2(Z)]

− ε2g0Z
2E0(Z) + ε2g2E0(Z) + O(ε4) = 0. (B8)

Up to order ε2, we have

−E0(Z) + g0E0(Z) = 0, (B9)

E2(Z) − g0E2(Z) = g0E0ZZ(Z) − g0Z
2E0(Z) + g2E0(Z).

(B10)

This leads to

g0 = 1, (B11)

E0ZZ(Z) − Z2E0(Z) + g2E0(Z) = 0. (B12)

The solutions for E0(Z) are Hermite-Gauss functions. Only
the fundamental one is expected to be stable at v = 0 [11]. It
is easy to show that this solution can be written

g2 = 1, (B13)

E0(Z) = ae−Z2/2, (B14)

with a a parameter that will not be determined here. Hence,
using the original variables, the stationary solution can be
written

eS(θ ) ≈ ae−θ2/4σ 2
L, (B15)

with the rms laser pulse width σL being defined by

σL = 2−1/4√σb. (B16)

At this step, it is worth expressing the laser pulse shape as a
function of physical time t (in seconds):

eS(t) = ae−t2/4t2
L, (B17)

with tL = 2−1/4√tbtU and tb representing the rms bunch
duration (in seconds). It is also remarkable that the Gaussian
shape is similar for the FEL startup as well (called supermodes
in FEL theory), as was shown in several studies [20,36].

[1] J. M. J. Madey, J. Appl. Phys. 42, 1906 (1971).
[2] D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. Ramian,

H. A. Schwettman, and T. I. Smith, Phys. Rev. Lett. 38, 892
(1977).

[3] M. Billardon, P. Elleaume, J. M. Ortega, C. Bazin, M. Bergher,
M. Velghe, Y. Petroff, D. A. G. Deacon, K. E. Robinson, and
J. M. J. Madey, Phys. Rev. Lett. 51, 1652 (1983).

[4] S. Koda, M. Hosaka, J. Yamazaki, M. Katoh, and
H. Hama, Nucl. Instrum. Methods Phys. Res. A 475, 211 (2001).

[5] G. De Ninno, A. Antoniazzi, B. Diviacco, D. Fanelli,
L. Giannessi, R. Meucci, and M. Trovó, Phys. Rev. E 71, 066504
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