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Entanglement of a two-mode field in a collective three-level atomic system
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The entanglement properties of two-mode field from a laser-driven collective three-level atomic system are
investigated by taking into account the spontaneously generated coherence. Under some conditions, it is found
that the entanglement between the two cavity modes can be significantly enhanced by the collectivity of the
atoms compared to the case of independent atoms when the relative phase �φ = π . Moreover, the spontaneously
generated coherence can also greatly enhance the entanglement in comparison to the case without this coherence.
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I. INTRODUCTION

Many theoretical and experimental studies of collective
effects in the interaction of atoms with a laser field have been
carried out since the early work by Dicke [1]. Collective atomic
systems have been proved to have various advantages over
single (or independent) atomic systems. For example, due to
the collectivity, the intensity of superradiant fluorescence in a
sample of N atoms is proportional to N2 and superfluorescence
can be enhanced via decay interference [2]. The complete
dressed-state population inversion in the strongly driven
two-level atomic system can be achieved [3]. The index of
refraction and the group velocity may be modified strongly
and rapidly [4]. Studies also showed that compared to the
case of the independent atoms, the quantum squeezing and
nonclassical correlations of the radiation field of the collective
systems can be enhanced [5]. Very recently, such a system
has been exploited to cool a three-level atomic ensemble [6]
and collective spontaneous decay and superradiance can be
inhibited via the ensemble’s Stark interaction with a vacuum
electromagnetic field [7].

On the other hand, recently, the spontaneously generated
coherence (SGC) has attracted considerable interest. The
effects of SGC on electromagnetically induced transparency,
dark states, lasing without inversion, coherent population trap-
ping, resonance fluorescence, transient processes, squeezing
spectra, etc., have been extensively studied [8]. For instance,
it has been shown that this kind of coherence can change
the steady-state response of the medium, modify significantly
the absorption or spontaneous emission spectra of a near-
degenerate system [9], and enhance Kerr nonlinearity [10].
The existence of such coherence effects depends on the
nonorthogonality of the two dipole matrix elements. One of the
possibilities is to use sodium dimers, which can be modeled
as a five-level molecule in which transitions with parallel
and antiparallel dipole moments can be selected [11,12]. An
alternative solution is to engineer atomic systems with parallel
dipole moments in the bad cavity limit [13]. Experimentally,
SGC arising from radiative decay of the trion into the spin
states has been confirmed in charged GaAs quantum dots [14].

In recent years, continuous variable (CV) entangled light
has attracted much interest because of potential applications
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in quantum information science, such as CV quantum telepor-
tation [15,16], long-distance quantum communications [17],
quantum dense coding [18], and quantum computation [19].
Due to the relative simplicity and high efficiency in the
generation, manipulation, and detection, a variety of physical
systems presenting CV entanglement have been investigated
both theoretically and experimentally [20–30]. Nondegenerate
parametric oscillator [21–23] and nondegenerate four-wave
mixing [24–28] are some conventional sources of the two-
mode entangled light. However, most of the previous works to
enhance the entanglement of two cavity modes were carried out
in the independent atomic systems without SGC. It is natural to
ask whether we can take advantage of the effects of collectivity
and SGC on the generation of entanglement. In the recent past,
with the collective interactions of two-level atomic ensembles,
the generation of atomic entanglement can be achieved and the
generation of the robust two-mode entanglement has also been
proposed [31]. Therefore, taking the SGC into account, it is
thus of interest to discuss the entanglement of the radiation
field with the atomic collectivity.

In this paper, we investigate the entanglement of a cavity
field generated from a laser-driven V-type collective atomic
ensemble inside a two-mode cavity with SGC. After deriving
the master equation of the cavity field in the dressed-state
picture of the driven atoms, the influences of the atomic
collectivity and SGC on the field entanglement are discussed
in detail. We show that when SGC is present the dressed-
state populations in a collection of atoms are different
from those of independent atomic systems. Moreover, under
some conditions the entanglement of the cavity field can be
significantly enhanced compared to the case without SGC or
the atomic collectivity and can vary rapidly with the relative
phase between two driven fields in the presence of SGC when
the number of involved atoms is large.

II. MODEL AND MASTER EQUATION

We consider a collection of V-type three-level atoms inside
a two-mode cavity with one ground state |3〉 and two excited
states |1〉 and |2〉 (see Fig. 1). The two dipole-allowed
transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉 are driven independently
by two strong laser fields having the same frequency ωL with
Rabi frequencies �1 and �2 and phases φ1 and φ2, respectively.
At the same time, the transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉 are
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FIG. 1. (Color online) Schematic diagram of the atomic levels.
Two laser fields having the same frequency ωL drive the |1〉 → |3〉
transition with detuning �1 and the |2〉 → |3〉 transition with detuning
�2, respectively. Two nondegenerate cavity modes of frequencies ω1

and ω2 couple to the driven transition with detunings δ1 and δ2 from
the laser frequency.

coupled to two cavity modes denoted by annihilation operators
a1 and a2 with frequencies ω1 and ω2, respectively.

In the rotating frame with respect to the laser frequency ωL,
the Hamiltonian of the cavity-atom system is given by

H = H0 + V, (1)

where

H0 = �1S11+ �2S22+ (�1e
iφ1S13+ �2e

iφ2S23 + H.c.), (2)

V = g1a1S13e
−iδ1t + g2a2S23e

iδ2t + H.c. (3)

Here �j = ωj3 − ωL, δ1 = ω1 − ωL, and δ2 = ωL − ω2,
where ωj3 being the atomic transition frequencies from the
excited states |j 〉 to ground state |3〉 and gl are coupling
constants between the cavity fields and the atoms. The col-
lective atomic operators Sij are defined as Sij = ∑N

k=1 |i〉kk〈j |
(i,j = 1,2,3), which describe the atomic populations for i = j

and transitions for i �= j and obey the commutation relation
[Sij ,Si ′j ′] = δji ′Sij ′ − δij ′Si ′j .

By taking into account the damping of the cavity field and
the atoms, the density operator ρ of the system is governed by
the following master equation (h̄ = 1):

d

dt
ρ = −i[H,ρ] + Lf ρ + Laρ, (4)

where

Lf ρ =
∑
j=1,2

κj (2ajρa
†
j − a

†
j ajρ − ρa

†
j aj ), (5)

Laρ = γ1[S31,ρS13] + γ2[S32,ρS23]

+ η([S31,ρS23] + [S32,ρS13]) + H.c., (6)

where κj and γj are the damping rates of the cavity modes
and the atom, respectively. Here the coefficient η = p

√
γ1γ2

is a measure of the amount of coherence, the so-called SGC,
induced by dissipation between the |1〉 ↔ |3〉 and |2〉 ↔ |3〉
atomic transitions. The degree of the coherence, measured by
the coefficient η, depends explicitly on the mutual polarization
of the transition dipole moments with p = cos θ , where θ is

the angle between the two dipole moments. Thus, p = 0 when
the transition dipole moments are orthogonal to each other,
and p attains its maximal value of p = ±1 when the dipole
moments are parallel or antiparallel to each other.

Since the two dipole-allowed transitions are driven by two
strong laser fields, it is convenient to work in the dressed-state
picture [32]. We introduce collective dressed states, which are
the eigenstates of the Hamiltonian (2):

|1̃〉 = 1 + sin θ

2
|1〉 + 1 − sin θ

2
|2〉 + cos θ√

2
|3〉,

|2̃〉 = −cos θ√
2

|1〉 + cos θ√
2

|2〉 + sin θ |3〉, (7)

|3̃〉 = 1 − sin θ

2
|1〉 + 1 + sin θ

2
|2〉 − cos θ√

2
|3〉,

where we assume �1 = −�2 = �, �1 = �2 = � for sim-
plicity and sin θ ≡ s = �/�0, cos θ ≡ c = √

2�/�0 with
�0 = √

�2 + 2�2. We also apply the transformation S̃j3 =
Sj3e

iφj and drop the tilde afterward. By defining the collective
dressed operators Rαβ = |α̃〉〈β̃| (α,β = 1,2,3), taking advan-
tage of Eq. (7) in the master Eq. (4), and neglecting terms
that oscillate with frequencies �0 and larger in a secular
approximation, one arrives at the following master equation
in the dressed-state representation [33]:

d

dt
ρ̃ = −i�0[R11 − R33,ρ̃] − i[Ṽ ,ρ̃]

−{X1([R11,R11ρ̃] + [R13,R31ρ̃])

+X2([R33,R33ρ̃] + [R31,R13ρ̃])

+X3([R23,R32ρ̃] + [R21,R12ρ̃])

+X4[R22,R22ρ̃] + X5[R12,R21ρ̃]

+X6[R32,R23ρ̃] + Y1[R11,R22ρ̃]

+Y ∗
1 [R22,R11ρ̃] + Y2[R22,R33ρ̃]

+Y ∗
2 [R33,R22ρ̃] + Y3[R11,R33ρ̃]

+Y ∗
3 [R33,R11ρ̃] + H.c.} + Lf ρ̃, (8)

where

X1 = α+c2, X2 = α−c2, X3 = f c2,

X4 = 2f s2, X5 = 2α+s2, X6 = 2α−s2, (9)

Y1 = β+sc2, Y2 = β−sc2, Y3 = hc2,

and

α± = [γ1(1 ± s)2 + γ2(1 ∓ s)2 + 2c2η cos �φ]/8,

β± = [∓γ1(1 ± s) ± γ2(1 ∓ s)

+ η(1 + s)e−i�φ − η(1 − s)ei�φ]/4,

f = c2(γ1 + γ2 − 2η cos �φ)/4,

h = [−c2(γ1 + γ2)

− η(1 + s)2e−i�φ − η(1 − s)2ei�φ]/8,

(10)

with �φ = φ1 − φ2, and Ṽ is the interaction of the dressed
atom with the cavity modes, which can be easily obtained by
taking advantage of Eq. (7) in Eq. (3).

We assume an intense pumping field, that is, �0 �
{Nγ1,2,

√
Ng1,2}, and a high-quality cavity such that
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Nγ1,2 � κ1,2, the atomic subsystem achieves its steady state
on a time scale faster than the cavity field. Thus, the atomic
variables can be eliminated to arrive at a master equation for
the cavity field:

d

dt
ρ̃f =

∑
j=1,2

{−iδ12[a†
j aj ,ρ̃f ] + Aj (a†

j ρ̃f aj − ρ̃f aja
†
j )

+ (Bj + κj )(aj ρ̃f a
†
j − a

†
j aj ρ̃f )}

+
∑

j �=j ′=1,2

{Cj (a†
j a

†
j ′ ρ̃f − a

†
j ′ ρ̃f a

†
j )

+Dj (ρ̃f a
†
j ′a

†
j − a

†
j ρ̃f a

†
j ′ )} + H.c., (11)

where

A1 = g2
1

8

[
(1 + s)2

(
c2D13

F13(−δ1)
+ 2s2D12

f12(−δ1)

)
+ 2c4D21

f12(δ1)

+ (1 − s)2

(
c2D31

F13(δ1)
+ 2s2D32

f23(δ1)

)
+ 2c4D23

f23(−δ1)

]
,

A2 = g2
1

8

[
(1 + s)2

(
c2D31

F ∗
13(−δ2)

+ 2s2D32

f ∗
23(−δ2)

)
+ 2c4D23

f ∗
23(δ2)

+ (1 − s)2

(
c2D13

F ∗
13(δ2)

+ 2s2D12

f ∗
12(δ2)

)
+ 2c4D21

f ∗
12(−δ2)

]
,

C1 = g1g2

8

[
(1 − s)

(
2sc2D23

f23(δ2)
+ 2sc2D12

f12(δ2)

)

− (1 + s)

(
2sc2D32

f23(−δ2)
+ 2sc2D21

f12(−δ2)

)

+ (1 + s)2c2D31

F13(−δ2)
+ (1 − s)2c2D13

F13(δ2)

]
,

C2 = g1g2

8

[
(1 − s)

(
2sc2D32

f ∗
23(δ1)

+ 2sc2D21

f ∗
12(δ1)

)

− (1 + s)

(
2sc2D23

f ∗
23(−δ1)

+ 2sc2D12

f ∗
12(−δ1)

)

+ (1 + s)2c2D13

F ∗
13(−δ1)

+ (1 − s)2c2D31

F ∗
13(δ1)

]
,

D∗
1 = C2, D∗

2 = C1,

(12)

with

δ12 = (δ2 − δ1)/2, Dαβ = 〈RαβRβα〉
S
,

F13(±δj ) = �13 ∓ i(2�0 ± δj ),

f12(±δj ) = �12 ∓ i(�0 ± δj ),

f23(±δj ) = �23 ∓ i(�0 ± δj ),

and

�12 = 3(2X1 + X3) − (2X1 − X3)
(
RS

11 − RS
22

)
− (Y1 − Y ∗

1 )
(
RS

11 + RS
22

) − (3X2 − X3 − X1)RS
33

− (Y1 + Y ∗
1 ) − (Y ∗

2 − Y2 + Y3 − Y ∗
3 )RS

33,

�23 = (5X3 + 2X2) − (X3 − 2X2)
(
RS

22 − RS
33

)
− (Y2 − Y ∗

2 )
(
RS

22 + RS
33

) − (3X1 − X2 − X3)RS
11

− (Y2 + Y ∗
2 ) − (Y ∗

1 − Y1 + Y3 − Y ∗
3 )RS

11,

�13 = (5X1 + 3X2) − (X1 − X2)
(
RS

11 − RS
33

)
− (Y3 − Y ∗

3 )
(
RS

11 + RS
33

) − 2(X3 − X2 − X1)RS
22

− (Y3 + Y ∗
3 ) − (Y1 − Y ∗

1 + Y2 − Y ∗
2 )RS

22. (13)

Further, B1 (B2) can be obtained from A1(A2) by replacing Dαβ

with Dβα , respectively. Here RS
jj ≡ 〈Rjj 〉S(j = 1,2,3) are the

steady-state collective atomic populations in the dressed states
and we have chosen θ = π/4 for simplicity in Eq. (13).

III. STEADY-STATE COLLECTIVE ATOMIC POPULATION
IN THE DRESSED-STATE PICTURE

To determine the coefficients in Eq. (12) we should obtain
the steady-state atomic population in the dressed-state picture.
In the absence of the cavity modes, the solution for the
steady-state density operator of the system can be written in
the following form:

ρS = Z−1
N∑

n=0

N∑
m=n

P n
1 P m

2 |N,n,m〉〈m,n,N |. (14)

Here, |N,m,n〉 are eigenstates of the operators R11 + R22,
R11, and R11 + R22 + R33 with eigenvalues m, n, and N ,
respectively, and Z is a normalization constant which is
obtained by the requirement Tr{ρS} = 1 [34]. The matrix
elements of the collective operators can be obtained from the
set of relations

R11|N,n,m〉 = n|N,n,m〉,
R22|N,n,m〉 = (m − n)|N,n,m〉,
R12|N,n,m〉 = √

(n + 1)(m − n)|N,n + 1,m〉,
R13|N,n,m〉 = √

(n + 1)(N − m)|N,n + 1,m + 1〉,
R23|N,n,m〉 = √

(m − n + 1)(N − m)|N,n,m + 1〉.

(15)

It is easy to determine Z, which is given by

Z = 1 − P N+1
2

(
1 − P N+2

1

) − (P1P2)N+2 − P1
(
1 − P N+2

2

)
(1 − P1)(1 − P2)

(
1 − P1P2

) .

(16)

The dressed steady-state atomic populations then yield

RS
11 = Z−1

N∑
n=0

N∑
m=n

nP n
1 P m

2 ,

RS
22 = Z−1

N∑
n=0

N∑
m=n

(m − n)P n
1 P m

2 ,

RS
33 = N − RS

11 − RS
22.

(17)

By using detailed balance [3], the coefficients P1 and P2 are
given by

P1 = c4(γ1 + γ2 − 2η cos �φ)

s2[(1 + s)2γ1 + (1 − s)2γ2 + 2c2η cos �φ]
,

P2 = s2[(1 − s)2γ1 + (1 + s)2γ2 + 2c2η cos �φ]

c4(γ1 + γ2 − 2η cos �φ)
.

(18)

From Eq. (18), it is evident that the relative phase �φ appears
only in the terms related to the parameter η, so if SGC is absent
(p = 0) the dressed steady-state populations are independent
of the relative phase �φ. Hence, without the SGC terms,
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FIG. 2. The dressed steady-state populations (a) versus the
number N of the atoms with γ1 = 1/4 and p = 1, (b) versus the
strength p of SGC with γ1 = 1/4, and (c) versus the relative phase
�φ with N = 50 and p = 1. Here θ = π/4 in (a)–(c). All parameters
are normalized to γ2.

phase control of the system dynamics is impossible. We de-
coupled the involved multiparticle correlators approximately
as Dαβ = RS

αα(1 + RS
ββ), which is valid for a large sample,

that is, N � 1 [35,36]. For the single-atom case, the dressed
steady-state atomic population reduces to RS

11 = P1P2
1+P2+P1P2

,

RS
22 = P2

1+P2+P1P2
.

According to Eq. (17), the dressed steady-state atomic
populations are shown in Fig. 2, which are influenced by
the number N of the atoms, the strength p of SGC and
the ratio of two spontaneous emission rates γ1/γ2. We can
see from Fig. 2(a) that in a collection of atoms (N � 1),
the dressed steady-state population RS

11/N (RS
22/N , RS

33/N),
contributed averagely per atom, increases (decreases) quickly
with the increasing number N of the atoms. When N � 1
the population RS

11/N ≈ 1 (RS
22/N ≈ 0, RS

33/N ≈ 0), which
means that the population is trapped in the collective dressed
state |1̃〉. Likewise, from Fig. 2(b) it is revealed that in a
collection of atoms the dressed steady-state population RS

11/N

increases with the increase of the strength p of SGC for both
N = 1 and N = 50. On the contrary, RS

33/N is small and

decreases slowly. When p → 1, however, RS
11/N is trapped

in the collective dressed state |1̃〉 for N = 50 but reaches only
0.7 for N = 1.

On the other hand, the dressed steady-state population
depends strongly on the ratio γ1/γ2. Figure 2(c) shows that in
the case of γ1/γ2 = 1/4 the dressed steady-state population
against the relative phase �φ exhibits jumps between the
collective dressed states |1̃〉 and |2̃〉. Furthermore, the range of
trapping in |1̃〉 and |2̃〉 becomes wider on increasing the number
N of atoms. In the limit of γ1/γ2 � 1, such as γ1/γ2 = 1/50,
however, we can see the population is almost trapped in the
collective dressed state |1̃〉. Moreover, the range of trapping
in |1̃〉 becomes wider on decreasing the ratio of γ1/γ2. In the
opposite limit of γ1/γ2 � 1, the population is almost trapped
in the collective dressed state |2̃〉. In a word, the relative
phase �φ leads to interference effects that are tempered by
the relative decay rates for the two excited dressed states.
Physically, when γ1 � γ2 the decay rates γ13 and γ31 for the
dressed-state decay |1̃〉 ↔ |3̃〉 are much smaller than γ23 and
γ32 for the dressed-state decay |2̃〉 ↔ |3̃〉. As a result, the atom
is hardly populated in the dressed state |3̃〉.

IV. ENTANGLEMENT PROPERTIES
OF THE CAVITY FIELD

Now we consider the properties of the entanglement of the
cavity field generated in the system. The master equation (11)
is of a form characteristic for a system composed of two field
modes coupled to a multimode squeezed vacuum [37]. Thus,
the cavity-field state should be a two-mode Gaussian state
(TMGS) and the quantum statistical properties of a TMGS
are determined by its correlation matrix [38], which takes the
standard form:

σ =

⎛
⎜⎜⎜⎝

n1 0 c+ 0

0 n1 0 c−
c+ 0 n2 0

0 c− 0 n2

⎞
⎟⎟⎟⎠ . (19)

States whose standard form fulfills n1 = n2 are said to be
symmetric. Here, for the cavity field governed by Eq. (11), it
is not difficult to find that n1 = 〈a†

1a1〉 + 1/2, n2 = 〈a†
2a2〉 +

1/2, and c+ = −c− = c = |〈a1a2〉|.
For TMGS, to quantify entanglement between the modes,

we use Duan’s criterion [39] and logarithmic negativity
[40,41]. The Duan’s criterion states that

ϒ = 〈(�û)2〉 + 〈(�v̂)2〉 − a2 − 1

a2
< 0, (20)

where the operators û = aX̂1 − 1
a
X̂2, v̂ = aŶ1 + 1

a
Ŷ2, and

a is a state-dependent real number. Here the quadrature
operators of the two cavity modes are defined as X̂l =
(ale

−iθl + a
†
l e

iθl )/
√

2 and Ŷl = −i(ale
−iθl − a

†
l e

iθl )/
√

2, with
θl being the phase angles of the modes. On substituting the
definition of û and v̂ in Eq. (20), we obtain [25,39]

ϒ = 2n1a
2 + 2n2/a

2 − 4c − a2 − 1

a2
, (21)
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where a2 = √
(2n2 − 1)/(2n1 − 1). Plugging the expression

of a2 into Eq. (21), one can find that the entanglement condition
ϒ < 0 is reduced to

ϒ = 4[
√

(n1 − 1/2)(n2 − 1/2) − c] < 0, (22)

For a TMGS with the correlation matrix cast in the 2 × 2 block
form

σ =
(

N1 N12

NT
12 N2

)
,

the logarithmic negativity EN is given by [40,41]

EN = max[0,− ln 2d], (23)

where

d =
√

�σ −
√

(�σ )2 − 4Detσ

2
, (24)

with �σ = DetN1 + DetN2 − 2DetN12. Therefore, a TMGS
is entangled if and only if d < 1/2, which is equivalent to

[(n1−1/2)(n2−1/2) − c2][(n1 + 1/2)(n2 + 1/2) − c2] < 0.

(25)

Since (n1 + 1/2)(n2 + 1/2) − c2 > 0, it is evident the entan-
glement condition of Eq. (25) is the same as Eq. (22). As a

result, both Duan’s criterion and logarithmic negativity are
identical to determine inseparability of a TMGS.

Especially, if we choose a = 1, then the sum of the
variances 〈(�û)2〉 + 〈(�v̂)2〉 reduces to the variance

V = 〈(X̂1 − X̂2)2〉 = 〈(Ŷ1 + Ŷ2)2〉 = n1 + n2 − 2c, (26)

which characterizes the normal two-mode squeezing and
can be measured experimentally by using the technique of
balanced homodyne detection. In this case, n1 = n2 = n̄, the
entanglement parameters ϒ and EN are simplified as

ϒ = 4(n̄ − c) − 2,
(27)

EN = max[0,− ln 2(n̄ − c)].

Obviously, both of the parameters ϒ and EN are equivalent to
quantify the entanglement between the two modes for 〈a†

1a1〉 =
〈a†

2a2〉.
In order to calculate the parameters ϒ and EN , it is nec-

essary to have available the cavity-field correlation functions
n1, n2, and c. Using the master equation (11) we can derive

FIG. 3. The entanglement parameter ϒ in (a) and (c) and logarithmic negativity EN in (b) and (d) as a function of the relative phase �φ.
Here γ1 = 1/4, θ = π/4, � = 500, δ = 250, κ = 0.0325, g = 10, and (a),(b) p = 1 and (c),(d) p = 0. The dash-dotted, dashed, and solid
curves correspond to N = 1, 10, and 50, respectively. All parameters are normalized to γ2. The inset in panel (d) is the mean photon number
of the cavity modes with N = 50 and p = 1.
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equations of motion for the correlation functions

d

dt
〈a†

j aj 〉 = 1

2
(xj + x∗

j )〈a†
j aj 〉 + yj 〈a†

1a
†
2〉 + 1

2
ej + c.c.,

d

dt
〈a1a2〉 = y2〈a†

1a1〉 + y1〈a†
2a2〉 + (x1 + x2)〈a1a2〉 + e0,

(28)

where xj = Aj − Bj − κj − iδ12, yj = Cj − Dj , ej = Aj +
A∗

j , and e0 = C1 + C2. The set of the differential equations
(21) can be easily solved for arbitrary initial conditions.

Now we turn our attention to the generation of a stationary
entanglement between the cavity modes. First, we illustrate
the role of the SGC on entanglement creation. The source of
SGC has an obvious interpretation that spontaneously emitted
photons on one of the atomic transitions |1〉 ↔ |3〉 drives the
other transition |2〉 ↔ |3〉. This coherence can occur for the
case of nonorthogonal (p �= 0) dipole moments of the atomic
transitions. The degree of the coherence, measured by the
value of p, will modify the dressed steady-state populations.
By assuming g1 = g2 = g, κ1 = κ2 = κ , and δ1 ≈ δ2 = δ for
simplicity, we plot the the dependence of the entanglement
with different number of atoms, which is measured by of the
negativity ϒ and the logarithmic negativity EN , respectively,
on the relative phase �φ for both p = 1 [Figs. 3(a) and
3(b)] and p = 0 [Figs. 3(c) and 3(d)]. It is obvious the
same properties of field entanglement are demonstrated in
Figs. 3(a)–3(d), respectively. It can be seen that when SGC is
absent (p = 0) the entanglement is independent of the relative
phase �φ and is very small. However, when SGC is maximal
(p = 1) the entanglement is dependent on the relative phase
�φ so it can be conveniently controlled by the relative phase.
As seen from Figs. 3(a) and 3(b), in the case of γ1/γ2 = 1/4 the
entanglement maximizes at �φ = (2k + 1)π (k ∈ {0,1, . . .}),
which is much bigger than the corresponding value when
p = 0. That is to say, compared to the case without SGC, the
entanglement can be considerably enhanced by the coherence.
In fact, these parameters in our case satisfy the condition that
{|δl|,|�0 ± δl|} � {δ12,Nγl}, then from the inset in panel (d)
it is clear that the difference between the mean photon number
of the cavity modes 〈a†

1a1〉 and 〈a†
2a2〉 is almost invisible. Since

〈a†
1a1〉 ≈ 〈a†

2a2〉, the entanglement parameters ϒ and EN will
depict the same properties of field entanglement, which is in
agreement with Eq. (27).

In order to show the influence of the SGC on entanglement
between the cavity modes further, in Fig. 4(a) we plot the
logarithmic negativity EN as a function of the relative phase
�φ on increasing value of p for N = 50. It shows that the en-
tanglement becomes bigger with the increase of the value of p.
In Fig. 4(b) the logarithmic negativity EN versus the strength
p of SGC with different value of �φ are plotted. By choosing
appropriate relative phase �φ, it can be seen that the entan-
glement becomes larger quickly with the increase in the value
of p.

Furthermore, we can demonstrate the influence of the
number of atoms on entanglement between the cavity modes
with maximum SGC from Figs. 3(a) and 3(b). In the case
of p = 1, the entanglement can be enhanced significantly by
increasing the number N of atoms. In the limit N → ∞, the

FIG. 4. The steady-state entanglement, quantified by logarithmic
negativity EN , as a function of (a) the relative phase �φ and (b) the
strength p of SGC with N = 50. The dash-dotted, dashed, and solid
curves correspond to (a) p = 0.3, 0.7, and 1 and (b) �φ = 0, 0.58π ,
and π , respectively. The other parameters are the same as in Fig. 3.

system exhibits jumps between the maximally entangled state
and unentangled state.

Finally, the amount of the generated entanglement depends
also on the ratio of the spontaneous emission rates γ1/γ2. From
Fig. 5, in the case of N = 50, the entanglement maximizes at
�φ = (2k + 1)π and gradually is trapped in the maximally
entangled state by decreasing the value of γ1/γ2.

Now we proceed to explain the physical origin of the
process responsible for entanglement of the cavity modes. As
we shall see, the physics of the process can be quantitatively
explained by the level of the stationary population of the atomic
system. In the present collective system, under the situation

FIG. 5. The steady-state entanglement, measured by logarithmic
negativity EN , as a function of the relative phase �φ. The dash-dotted,
dashed, and solid curves correspond to γ1 = 1/4, 1/20, and 1/50,
respectively. Here N = 50 and p = 1. The other parameters are the
same as in Fig. 3.
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that {|δl|,|�0 ± δl|} � {δ12,Nγl}, the master equation (11) is
reduced to

d

dt
ρ̃f ≈ −i

{
δ12 + d1

(
RS

11 − RS
33

)}
[a†

1a1 + a
†
2a2,ρ̃f ]

+ id2
(
RS

11 − RS
33

)
[a†

1a
†
2 + a1a2,ρ̃f ] + Lf ρ̃f , (29)

where

d1 = 1

8

(
(1 + s)2c2

2�0 − δ
+ (1 − s)2c2

2�0 + δ
+ (1 + s)2s2

�0 − δ

+ (1 − s)2s2

�0 + δ
+ 2c4�0

�2
0 − δ2

)
, (30)

d2 = c2

8

(
(1 + s)2

2�0 − δ
+ (1 − s)2

2�0 + δ
+ 2s(1 − s)

�0 + δ
− 2s(1 + s)

�0 − δ

)
.

A choice of δ12 = −d1(RS
11 − RS

33) simplifies the master
equation further and leaves only the parametric amplifying
term, which is responsible for entanglement between the
modes. Then the system reduces to a nondegenerate parametric
down-conversion (NPDC) with its Hamiltonian

Veff = −d2
(
RS

11 − RS
33

)
(a†

1a
†
2 + a1a2). (31)

Physically, the entanglement of the cavity modes in the
effective NPDC process arises from the two-photon couplings
between the dressed atom and the cavity modes. It is evident
that the magnitude of entanglement attains maximal value
when the dressed steady-state population difference RS

11 − RS
33

maximizes. In order to show explicitly how the population
difference RS

11 − RS
33 affects the amount of the steady-state

entanglement, one can easily derive the the correlation func-
tions 〈a†

1a1〉, 〈a†
2a2〉, and 〈a1a2〉 from master equation (29) in

such an effective NPDC process, which takes the form

〈a†
1a1〉 = 〈a†

2a2〉 = F 2

2(κ2 − F 2)
,

(32)

〈a1a2〉 = Fκ

2(κ2 − F 2)
,

where F = d2(RS
11 − RS

33) and we assume κ > F .
It is easy to verify that the logarithmic negativity EN reads

EN = − ln
κ

κ + |F | = ln

[
1 +

∣∣d2
(
RS

11 − RS
33

)∣∣
κ

]
, (33)

from which one can easily check that EN is greatest when the
population difference RS

11 − RS
33 approaches its maximum.

From Fig. 2 we can see that in a collection of atoms (N �
1), the dressed steady-state population difference (RS

11 −
RS

33)/N ≈ 1, even at very big detuning (� = √
2�), in

contrast to the independent atoms case with (RS
11 − RS

33)/N ≈
0.6 [see Fig. 2(a)]. The reason is that, with the help of
the atomic collective interactions, the atomic collectivity
can increase (RS

11 − RS
33)/N , which leads to the significant

enhancement of the entanglement. That is to say, the growth
of the atomic number N leads to the increase of the effective
atom-cavity coupling which, in turn, results in the increase
of the two-mode entanglement. Similarly, from Fig. 2(b),
with the increase of the value of p, the dressed population
difference RS

11 − RS
33 becomes lager for both N = 50 and

N = 1. Specifically, by setting successively p = 0,0.4,0.8,
we obtain (RS

11 − RS
33)/N ≈ 0.06,0.93,0.98 in the case of

N = 50 and (RS
11 − RS

33)/N ≈ 0.28,0.39,0.53 in the case
of N = 1, respectively. Evidently, the strength of SGC can
modify RS

11 − RS
33 dramatically for N = 50. By contrast, the

increase trend of RS
11 − RS

33 is not significant for N = 1.
Therefore, the entanglement of the cavity field can be enhanced
greatly by adopting collective atomic system with strong
SGC.

On the other hand, in a collection of atoms the dressed
steady-state population against the relative phase �φ exhibits
jumps between the collective dressed states |1̃〉 and |2̃〉 in
the case of γ1/γ2 = 1/4 and the dressed population difference
(RS

11 − RS
33)/N maximizes at �φ = (2k + 1)π [see Fig. 2(c)].

In the case of γ1/γ2 = 1/50 (γ2/γ1 = 1/50), the population is
almost trapped in one of the collective dressed states |1̃〉 (|2̃〉).
Therefore, the dressed population difference (RS

11 − RS
33)/N

can remain approximately the value of +1 for γ1 � γ2 so the
entanglement maximizes at �φ = (2k + 1)π and is gradually
trapped in the maximally entangled state and the trapping
range becomes wider on decreasing the ratio of γ1/γ2, which
coincides with Fig. 5.

V. CONCLUSIONS

In conclusion, the generation of the entanglement of two-
mode field in a collective three-level atomic system is investi-
gated by taking into account the SGC. Under the condition that
the couplings between the cavity modes and the dressed atoms
are far from resonance, the system can reduce to an effective
NPDC which is responsible for the entanglement of the cavity
modes. It is found that the entanglement between the cavity
modes can be significantly enhanced by the collectivity of the
atoms compared to the case of independent atoms when the
relative phase �φ = π . On the other hand, the SGC can also
greatly enhance the entanglement in comparison to the case in
the absence of SGC.
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