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Superfluidity of Bose-Einstein condensates in toroidal traps with nonlinear lattices
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Superfluid properties of Bose-Einstein condensates (BEC) in toroidal quasi-one-dimensional traps are
investigated in the presence of periodic scattering length modulations along the ring. The existence of several
types of stable periodic waves, ranging from almost uniform to very fragmented chains of weakly interacting and
equally spaced solitons, is demonstrated. We show that these waves may support persistent atomic currents and
sound waves with spectra of Bogoliubov type. Fragmented condensates can be viewed as arrays of Josephson
junctions and the current as a BEC manifestation of the dc-Josephson effect. The influence of linear defects
on BEC superfluidity has been also investigated. We found that for subcritical velocities, linear defects that are
static with respect to the lattice (while the condensate moves in respect to both the optical lattice and the defect)
preserve the BEC superfluidity.

DOI: 10.1103/PhysRevA.84.063638 PACS number(s): 03.75.Lm, 05.45.Yv

I. INTRODUCTION

The possibility of particles flows in multiply connected
superfluid and superconducting systems which can last for
extraordinary long (in principle, infinitely long) times is
certainly one of the most striking manifestations of quantum
mechanics at the macroscopic level [1]. This fact, well known
for conventional superconductors and superfluids, has been
recently observed also in atomic Bose-Einstein condensates
(BEC) confined in toroidal traps [2,3], with persisting cir-
culating currents. In addition to the fundamental interest of
this result as a direct manifestation of the BEC superfluidity
[4], matter waves in multiply connected geometries also
represent ideal systems for exploring nonlinear properties in
the presence of nonzero density backgrounds. In this context,
solitary matter waves in one-dimensional (1D) and 2D toroidal
traps have been investigated and the existence of a bandgap
structure and of gap solitons have been reported in Ref. [5].
Possibility of management of solitons, including acceleration
and localization of matter waves, was explored in Ref. [6].
The density distributions in a ring as a function of the relation
between the healing length and the trap length was investigated
in Ref. [7]. Solitary waves have also been studied for quasi-1D
circular troughs of radially periodic 2D potentials [8].

All these studies refer to the case of uniform or periodic
linear potentials present along the circumference of the trap.
Moreover, several experimental studies of BEC in linear
optical lattices (OL) have shown the occurrence of interesting
phenomena related to phase relationships between BEC wave
functions in different sites, these including the existence of
Josephson currents [9], the proliferation of vortices in the
Berezinskii-Kosterlitz-Thouless regime of BECs in 2D OLs
[10], vortex nucleation in rotating lattices of BECs [11], and
so on.

On the other hand, it is known that interesting phenomena
also arise when a linear optical lattice is combined with a
periodic spatial modulation of the nonlinearity, also known as
a nonlinear OL. This is particularly true for 1D settings for

which it has been shown that periodic spatial modulations of
the scattering length, achieved with the help of the Feshbach
resonance technique [12], can induce long-lived Bloch oscil-
lations [13], Rabi oscillations [14], and dynamical localization
[15] of gap solitons in the presence of accelerated linear
periodic potentials. Periodic modulations of the nonlinearity
have also been shown to be effective to generate solitons
in 1D OLs [16] and in random potentials [17] to stabilize
multidimensional solitons [18] and to generate vortex rings in
a highly controllable manner [19] (for fresh review of this very
active field of investigation see Ref. [20]).

We remark that toroidal traps are routinely created in
laboratories with the aid of magnetic fields [21] and nonlinear
OLs have also been recently experimentally realized for BEC
in linear settings [22]. Methods to create trapping potentials for
BECs by means of rapidly moving laser beams for a variety of
geometries, including toroids, ring lattices, and square lattices,
have also been recently developed [23].

To our knowledge, nonlinear OLs with a multiply con-
nected geometry have not yet been realized. Considering
the experimental rapid progresses in the field, however, it is
reasonable to expect them to be soon available. A nonlinear
toroidal lattice could indeed be created by optically induced
Feshbach resonances [24] using an all-optical trap with an
horizontal sheet beam and a ring shaped vertical higher order
Gauss-Laguerre beam [25] whose intensity is periodically
modulated along the ring due to phase interference (see, e.g.,
Ref. [26]). This setting would be especially effective in a 1D
limit (for details of respective reduction see, e.g., Ref. [6]) and
would permit to study the combined effects of nonlinearity
and periodicity on the BEC superfluidity, a problem scarcely
investigated in the literature.

The aim of this paper is to study superfluid properties
of BECs in toroidal traps with strong radial confinement
and periodic modulations of the scattering length (nonlin-
earity) in the azimuthal direction in the framework of the
mean field Gross-Pitaevskii equation (GPE). In particular, we
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demonstrate the existence of several types of stable periodic
waves, ranging from almost uniform to very fragmented chains
of weakly interacting and equally spaced solitons, which
can support persistent currents and permit sound waves with
interesting physical properties. The backgrounds that may
exist in such traps can be classified in terms of bifurcation
diagrams in the parameter space (μ,ρ), where μ is the
chemical potential and ρ is the density of the condensate. We
analyze the bifurcations patterns and the stability properties of
periodic matter waves both with zero (stationary states) and
nonzero particle currents. The spectral properties of the linear
excitations (sound waves) propagating in periodic condensates
are also investigated and the Bogoliubov type features of
the spectrum demonstrated. In the presence of a pronounced
fragmentation of the condensate (i.e., in the soliton chain limit)
we find that persistent currents of particles are expressed in
the form ρmin sin θ , where ρmin is the minimum density of the
condensate and θ is the phase difference of the order parameter
of neighboring solitons. Quite interestingly, this expression
is similar to the supercurrent expression of a Josephson
junction in the zero voltage state (dc-Josephson effect), this
suggesting the interpretation of fragmented condensates as
arrays of Josephson junctions and the persistent current as
a BEC analog of the dc-Josephson effect [27]. Superfluidity
properties are also investigated in the presence of localized
linear defects perturbing the nonlinear OL and acting on the
condensate as obstacle. Direct numerical simulations show
that, in conformity with the Landau criterion and in agreement
with our sound wave analysis, the BEC superfluidity is
preserved in presence of linear defects which are static with
respect to the nonlinear OL and that move in respect to the
condensate with subcritical velocities.

The paper is organized as follows. In Sec. II we formulate
the mathematical model describing the condensate and analyze
the ground states properties. Families of periodic solitons in
parameter space and their stability properties both for zero
(stationary) and nonzero carrying current states are discussed
in Secs. II A and II B, respectively. The spectra of sound waves
in the condensate and its Bogoliubov structure are numerically
calculated and discussed in Sec. III. In Sec. IV the superfluid
stability properties of BEC are investigated by direct numerical
integrations of the GPE in the presence of a linear defect.
Finally, in Sec. V, the main results of the paper are summarized.

II. MODEL EQUATION

We consider the following dimensionless GP equation

iψt = −ψxx + U (x)|ψ |2ψ + V (x)ψ, (1)

where U (x) is a periodical nonlinear potential that accounts
for interatomic interactions and V (x) is a localized linear
potential modeling an obstacle perturbing the flow of the
ground state. Without loss of generality, the period of the
nonlinear lattice is chosen to be π , i.e., U (x + π ) = U (x)
and the circumference of the trap is fixed to L = Mπ , with
M being a positive integer. The annular geometry obviously
implies cyclic boundary conditions,

ψ(x,t) = ψ(x + L,t), (2)

and permits the existence of current carrying states, with the
current, J , defined as

J = 1

2i
(ψ∗ψx − ψψ∗

x ) (3)

(here the asterisk denotes complex conjugation). The prop-
erties of these states are investigated in the following two
subsections.

A. Ground states with zero current

We start from the the analysis of the stationary states
having zero current, J = 0, assuming that no linear defect
is added to the system, V (x) ≡ 0. In this case the order
parameter has a constant phase and can be searched in the
form ψ = �(x)e−iμt , where μ is the chemical potential and
� is real and solves the stationary GP equation

μ� = −�xx + U (x)�3. (4)

We are particularly interested in nonlinear potentials changing
the sign of the interaction, i.e., in the situations in which the
repulsive and attractive interactions alternate along the length
L of the trap. We remark that for a priori fixed particular
solutions �(x) it is possible to construct exact potentials U (x)
for Eq. (4) using the “inverse engineering” technique explained
in Ref. [28]. An example of such a potential is given by

U (x) = κq2

4

sn(qx,κ)[3κ sn(qx,κ) − 2]

1 + κsn(qx,κ)
, q = 4K(κ)

π
, (5)

with sn denoting the standard Jacobi elliptic function and K(κ)
the elliptic integral. Notice that U (x) is parametrized by the
elliptic modulus κ ∈ [0,1] and depending on the value of κ ,
it represents either a sequence of nonlinear single wells (for
0 < κ <

√
5/3 − 1) or a series of nonlinear double wells (for√

5/3 − 1 < κ < 1). In this paper we shall restrict our study
to the case of single-well potentials only. We also remark
that in spite of the apparent complexity of the potential (5),
it can be approximated very well by a Fourier series with
only few harmonics. Indeed, even for the limiting value
κ = √

5/3 − 1 we obtain for the coefficients of the Fourier se-
ries U (x) = 〈U 〉 + ∑

k �=0 cke
2ikx , where 〈U 〉 ≈ 0.239, |c±1| ≈

0.36, |c±2| ≈ 0.12, |c±3| ≈ 0.016, |c±4| ≈ 0.001, and so on.
This implies that the suggested periodic modulation of the
nonlinearity can be simulated with accuracy of about 5% by
employing only two laser beams with the wavelengths π and
π/2 in dimensionless units.

An exact analytic solution of Eq. (4) with V = 0 and with
the potential U (x) taken as in Eq. (5), can be written as

�a =
√

1 + κsn(qx,κ), (6)

with the corresponding chemical potential given by μa =
κ2q2/4. This solution is just a member of a family of periodic
solutions which are parameterized by the chemical potential
μ and identified by the period L0. Note that although L0

does not need to coincide with the period of the nonlinear
potential U (x), a relation L = mL0 with m integer, must be
obviously satisfied. Since we have fixed L = Mπ the set of
possible periods of the solutions is given by all m, which are
integer divisors of M , i.e., M/m is an integer and, respectively,
L0 = (M/m)π = pπ . In Fig. 1 we illustrate the bifurcation
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FIG. 1. (Color online) [(a) and (b)]Families of static solutions
for the potential (5) centered at x = π/2 with κ = 0.25 [solid black
lines in panels (c)–(f)] bifurcating from linear modes for the cases:
L0 = π [red line (1)], L0 = 2π [black (2) and cyan (3) lines], and
L0 = 4π [purple (4) and green (5) lines]. (c) The order parameter of
the solutions is shown in panels (a) and (b) by red line (1). The solid
red curve corresponds to the solution with μ = −8 and the solution at
the folding point μ = 0.08 is shown by the dashed blue line. (d) The
order parameter of the solutions is shown in (a) and (b) by the black
line (2) for μ = −8 (solid red line) and for μ = 0.5 (dashed blue
line). (e) The same as in panel (c) but for the solutions corresponding
to μ = 2.5 (dashed blue line) and μ = −8 (solid red line) of the
family shown by cyan line (3). (f) The same as in panel (c) but for the
solution corresponding to μ = −8 (dashed blue line) of the family
shown by the purple line (4) and for the solution corresponding to
μ = −8 (solid red line) of the family shown by the green line (5).

diagrams of these family solutions obtained numerically in the
parameter space (μ,ρ), where ρ = 〈|�|2〉 is the linear density
of the condensate1 denoting the average of any L0-periodic
function f (x) as 〈f 〉 = 1

L0

∫ L0

0 f (x)dx, we have found that the
potential (5) satisfies 〈U 〉 > 0, i.e., the potential is repulsive
in average.

In the present paper we restrict mainly to branches bifur-
cating from linear solutions for which the limiting transition
ρ → 0 is possible. In this limit the ground state bifurcates
from the uniform solution �c = √

μ/
√〈U 〉 + O(μ3/2) and

the respective branch has the period π . The bifurcation points
of the other solutions having linear limit can be designated by

1Solution corresponding to quasiperiodical or nonperiodical chains
of solitons are also possible but they are out of the scope of this paper.

μm = 4m2/M2. In each of such points, however, there are two
emergent modes: cos- and sin-like modes:

�c ≈
√

μ − μm

2
π

∫ π

0 U
(

Mx
m

)
cos4(2x)dx

cos

(
2m

M
x

)
, (7)

�s ≈
√

μ − μm

2
π

∫ π

0 U
(

Mx
m

)
sin4(2x)dx

sin

(
2m

M
x

)
. (8)

Note that, formally, the ground state can be obtained from
Eq. (7) by putting m = 0.

From Figs. 1(a) and 1(b) we observe that an increase of
the ground state density leads to the growth of the chemical
potential, as is expected for a BEC with repulsive interatomic
interactions. However, when the number of particles increases
the nonlinear interactions become important and the conden-
sate becomes denser in the areas of attractive interactions. At
the point where the bifurcation diagram turns back, referred
below as folding point, the chemical potential decreases [see
the red line (1) in Figs. 1(a) and 1(b)], and, for some average
density, the chemical potential becomes negative. This happens
because for larger densities most of the particles concentrate in
the areas with attractive interactions and, therefore, the whole
condensate behaves as having a negative scattering length.
Mathematically, this is clear from the relation

μρ = H = 〈
�2

x

〉 + 〈U�4〉, (9)

from which we see that a negative μ implies 〈U�4〉 < 0 (note
that in the folding point μ∗, where dμ/dρ = 0, we have the
relations μ∗ = H

ρ
= dH

dρ
). Thus, a condensate with sufficiently

large density can be considered as an array of in-phase bright
matter solitons located at the areas with negative scattering
length; see Fig. 1(c). Obviously, the interaction between the
solitons decays exponentially as the density of the condensate
increases, transforming in an array of in-phase matter solitons.

On the other hand, from the diagram bifurcating from the
point μ = 1 [black (2) and blue (3) lines in Figs. 1(a) and 1(b)]
we observe that the solution bifurcating from the sin mode
[Eq. (7)] at large negative μ can be seen as a chain of out-of-
phase (. . . 0 − π − 0 − π . . .) bright solitons. The solutions
belonging to the second branch bifurcating from Eq. (8) in the
strongly nonlinear limit also transform into a chain of pairs
of bright solitons; in this case there are two matter solitons in
each domain of attractive interactions.

It is worth pointing out that the solution families shown in
Fig. 1 reveal a peculiar feature, namely the kinetic energy of the
condensate at the folding point is much larger than the potential
energy 〈�2

x 〉 � 〈U�4〉. We also note that not all periodical
solutions bifurcate from linear modes: There are branches
having no zero nonlinearity limit which is, however, expectable
in view of the analogous behavior of the localized modes [29].
Their bifurcation diagrams have folding points or they merge
with other solutions. In Fig. 2 the bifurcation diagrams are
shown for all possible solutions which in the strongly nonlinear
limit have no more than one soliton per period of the nonlinear
potential and the period of these solutions is smaller than four
periods of the nonlinear potential.
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FIG. 2. (Color online) (a) Solid lines show the dependencies of
the linear density on the chemical potential for the solutions with
L0 � 4π and having no more than one bright soliton in each area of
attractive interaction. The thick black and red lines correspond to the
modes bifurcating from the linear solutions with the periods π and
2π and, at large negative μ, having one soliton in each area of the
attractive interactions. The other two modes originating from linear
ones are shown by the green and purple lines. Thin blue lines show
the dependencies for the solutions that do not have a linear limit. The
dashed thick cyan line shows a bifurcation curve which corresponds
to the solutions originating from a linear one and having two solitons
in each area of the attractive interactions. (b) The field distributions
for the solution corresponding to the points of the bifurcation curve
denoted by b1 and b2 in panel (a) (μ = −0.07) (black solid line).
The red dashed lines show the solution with μ = −2.5 and belonging
to the same bifurcation branches. (c) The same as in (b) but for the
points denoted in panel (a) by the circles c1 and c2; the chemical
potentials in this case are μ = 0.125.

B. Periodic matter waves with nonzero current

We now consider periodic states carrying nonzero currents
J �= 0. Such states can be represented in the form

�(x) =
√

ρ(x)eiθ(x), θ (x) =
∫

v(x)dx, (10)

where v(x) is the superfluid velocity and ρ(x) the condensate
density. It is straightforward to show that such solutions exist
only if J = v(x)ρ(x) = const [see the definition, Eq. (3)], i.e.,
if dJ/dx = 0, with the density ρ satisfying the equation

1

2

d2ρ

dx2
− 1

4n

(
dρ

dx

)2

+ μρ − J 2

ρ
− U (x)ρ2 = 0 (11)

(note that zero-current states are characterized by densities
which are strictly positive so the above equation is non-
singular). In the following we consider L0-periodic density
distributions

ρ(x + L0) = ρ(x) (12)

of the form ρ(x) = ρ + ρ1(x), with ρ = 〈ρ(x)〉 the mean
density and ρ1(x) a periodic variation of the density of
period L0. The condition J = const then implies that also
the hydrodynamic velocity is of the form v(x) = v0 + v1(x)
with v0 = 〈v〉 the average superfluid velocity and v1 a periodic
function of period L0. The order parameter �(x) has the form
of a nonlinear Bloch state

�v0 (x) = eiv0xfv0 (x) (13)

with the mean velocity v0 playing the role of quasimomentum
and with fv0 (x) being a complex periodic function of period
L0. For the single valuedness or the wave function �(x), the
average superfluid velocity must be quantized with respect to
the length L of the ring according to

v0 = 2πp

L
= 2p

M
,

where p is an integer. We should remark that the analogy
exploited above between superfluids in a ring and Bloch
electrons in crystals was first discussed by Bloch [30] and
further developed in Ref. [5] for BEC in rotating traps.
Obviously, in the linear limit fv0 (x) is simply reduced to

√
ρ,

and, taking into account that, in this limit ρ → 0, one can
neglect the spatial variations of the density and conclude that
the bifurcation curves start at μ = v2

0.
It is of interest to investigate how the condensate with

a nonzero current behaves when its average velocity v0 is
changed. This is done in Fig. 3 where the current and the
average density versus the average velocity are depicted for
two fixed values of the chemical potential. Note that the current
depends on the average superfluid velocity periodically,
acquiring maxima at semi-integer values v0 = p/2, while at
integer values of v0 the current vanishes. This is a direct
consequence of the Bloch form (13) of the wave function,
implying that nondegenerate states with given μ and v0 are
equivalent to the state with the same chemical potential μ but
with the velocity v0 + p, where p is an integer. Also note that
at v0 = 0 the solution in Fig. 3 is carrying zero current [as
the symmetric state belonging to the bifurcation branch (1)
in Fig. 1] while at v0 = 1 the obtained periodic state is the
asymmetric mode belonging to the branch (2) shown in Fig. 1
which is also a zero-current state.

Another interesting property to remark is the quasi sinuiso-
dal dependence of the current J on v0 for BEC wave
functions fragmented as chains of solitons on a nonzero
background. The particle density of such condensates is
depleted (enhanced) in correspondence with the regions of
repulsive (attractive) interaction. Direct numerical simulations
show that the stronger is the depletion of the condensate in the
repulsive regions, the better the current is approximated by a
sinusoidal law. In the limit of very strong depletion (i.e., for a
chain of strongly localized and weakly overlapping solitons),
it becomes

J ≈ 1
2

√−μρmin sin θ, (14)

where ρmin = −8μ/ max(U )sech2(
√−μπ/2) denotes the

minimum density of the condensate and θ is the phase dif-
ference of the order parameter between neighboring solitons.
We also note that in the case of strong localization the
maximum condensate density corresponding to the soliton
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FIG. 3. (Color online) (a) The current vs. the average velocity
for μ = −2 (blue curve) and μ = −8 (red curve). (b) The average
density vs. the average velocity for μ = −2.

peaks, located at x = π/2 + πp, where p is an integer, is
given by ρmax = 2μ/min(U ).

Since the phase difference θ is constant for adjacent soli-
tons, the above expression of J is similar to the supercurrent
flowing at the zero voltage in a conventional superconductive
Josephson junction (e.g., to the dc-Josephson effect) [27]. This
suggests the interpretation of the fragmented condensates as
an array of Josephson junctions and the persistent current as
a BEC manifestation of the dc-Josephson effect [27]. The
depleted areas between solitons (i.e., where the interaction is
repulsive) play the role of insulating barriers of conventional
Josephson junctions. Following this analogy we can say that
for stable symmetric ground states the depleted areas are the
analogous of 0-junctions, while for the stable asymmetric
states the depleted areas correspond to π -junctions. Also
note that the role of the electric potential across the junction
is played by the difference of chemical potentials between
neighboring solitons. Since the fragmented state is a stationary
state, it has a fixed chemical potential and, therefore, the
flow of particles across the depleted regions (supercurrent)
also occurs, in the above analogy, in the presence of zero
voltage. Following this analogy, one can also expect that
the nonzero-current stationary solutions become unstable and
disappear when the current approaches a critical value (critical
current). This is shown in Fig. 4 where the temporal evolution
density of the BEC is depicted for a current very close to its
critical value. We see that in this case the condensate becomes
very sensitive to perturbations and develops instabilities that
eventually lead to its destruction (see the next section). We also
observe that the critical current decays exponentially with the
height and width of the effective nonlinear barrier, although it
never vanishes completely.

III. SOUND WAVES OF PERIODIC SOLITON

The time evolution of sound waves against nonlinear
periodic backgrounds of the form (13) is governed by the
linear equation

iϕt = −ϕxx − 2iv0ϕx + [
2U (x)|fv0 |2 + v2

0 − μ
]
ϕ

+U (x)f 2
v0

ϕ∗. (15)

Looking for a monochromatic excitation, ϕ =
A(x)e−i(ω+iγ )t + B∗(x)ei(ω−iγ )t , where ω(k) and γ (k)
are real, and splitting exponents of the respective ODEs

FIG. 4. (Color online) Temporal evolution of the BEC density
for a current close to the critical value. Red color corresponds to
the maximum density and blue color corresponds to the minimum
density. The width of the window adjusted to show four periods of
the initial field distribution. The parameters are μ = −2, v0 = 8

17 ,
and L = 64π .

one obtains the system of coupled equations with periodic
coefficients:

(ω + iγ )A = −Axx − 2iv0Ax + [
2U (x)|fv0 |2 + v2

0 − μ
]
A

+U (x)f 2
v0

B, (16)

(ω + iγ )B = −Bxx − 2iv0Bx + [
2U (x)|fv0 |2 + v2

0 − μ
]
B

+U (x)f ∗
v0

2
A. (17)

These equations allow (due to the Floquet theorem) for
solutions of the form ∼ϕk(x)eikx with ϕk(x) a periodic solution
of Eq. (15) [it is worth noting that the period of the function fv0

is not necessarily equal to the period of the nonlinear potential
U (x)] because the coefficients in Eqs. (15) are 2U (x)|ψ0|2
and U (x)ψ2

0 , with the background state ψ0 a periodic function
of x. [In this paper we restrict our consideration to periodic
backgrounds only].

The eigenvalues and the corresponding eigenfunctions can
be found numerically: ω(k) yields the phase and the group
velocities of the sound waves, while γ (k) defines the stability
of the ground state, the instability corresponding to positive
γ (k) (note that since the problem is Hamiltonian the real part
γ can appear only in pairs ±γ ).

Now let us turn to the stability of the backgrounds with
zero current whose spectrum is symmetric with respect to
the transformation k → −k. First, we consider the symmetric
modes corresponding to the curve 1 in Fig. 1(b). In this case
the period of the solution coincides with the period of the
nonlinear potential and the width of the Brillouin zone of the
linearized problem is equal to 2. The solutions belonging to
the lower branch of the bifurcation diagram are stable. The
typical spectrum of the linear excitation is shown in Fig. 5(a).
The spectrum is pure real and is of Bogoliubov type so
vg = ∂kω �= 0 at k = 0. At the folding point the background
becomes unstable, a fact that is confirmed by our spectral
analysis. In particular, we find that the instability is generated
by the merging of the lowest branches of the dispersion curve
[i.e., the ones corresponding to lower values of |ω(k)|)], as
illustrated in Fig. 5(b) for the case μ = −2 for which branches
are completely merged.
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FIG. 5. (Color online) Sound wave spectra for the symmetric
mode corresponding to curve 1 in Fig. 1(b) at μ = 0.04 (a) and
at μ = −2 (b) on the lower and upper branches of the bifurcation
curve, respectively. Panels (c) and (d) refer to sound wave spectra
for backgrounds modes taken on curve 2 of Fig. 1(b) at chemical
potentials μ = 0 and μ = −2, correspondingly. The black and blue
curves correspond to ω(k) (left vertical axis) and the red curves
correspond to γ (k) (the right vertical axis).

Next we consider the antisymmetric backgrounds corre-
sponding to curve 2 in Fig. 1(b). In this case the coefficients in
the linearized Eq. (15) have the period π equal to the period of
the potential only if the state is described by a pure real function
�, i.e., if the background has zero current. In the general
case the period is equal to 2π and the width of the Brillouin
zone is equal to 1. The spectra of the linear excitations on
antisymmetric backgrounds are shown in Figs. 5(c) and 5(d).

The spectra shown in Fig. 5 reveal Bogoliubov structure;
however, they behave differently as far as the stability
concerns. Specifically, the states with relatively low particle
density are unstable; see Fig. 5(c). It is seen that there are two
pairs of merging modes, and the instability appears exactly at
the wave vectors where two modes merge. On the other hand, at
some threshold density ρ ≈ 3.4 (the corresponding chemical
potential μ ≈ −0.2) of the particles the antisymmetric state
becomes stable; see the spectrum of the stable state shown
in Fig. 5(d). The peculiarity of this state stems from the
fact that the ground state is strongly depleted in the areas
with repulsive nonlinear interatomic interaction. Therefore,
for large negative chemical potentials some excitations can
be considered as motion of weakly interacting drops of the
condensate and this interaction becomes exponentially weak
for large negative μ. It means that the eigenvalues appear in
the spectrum with very small absolute values and the chain
of the droplets becomes very flat so even relatively weak
external action results in the significant motion of the mutual
phases of the droplets. Therefore, in this case even relatively
weak external perturbation can result in the strongly nonlinear
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FIG. 6. (Color online) Sound wave spectra for the state with μ =
−2 and the quasivelocities v0 = 0 (a), v0 = 0.33 (b), v0 = 0.66 (c),
and v0 = 1 (d). The antisymmetric state (a) and the symmetric one (d)
modes correspond curves 2 and 1 in Fig. 1, respectively. Blue curves
correspond to imaginary part ω of the eigenvalue (left vertical axis)
and the red curves to the real part γ of the eigenvalues (right vertical
axis).

dynamics and in the decay of the condensate. As a result,
even relatively weak perturbations can destroy stability due to
nonlinear effects, while the state remains linearly stable.

We now consider how the stability of the antisymmetric
state changes when v0 deviates from zero and the ground state
has nonzero current. In general, the period of the coefficients
is equal to 2π ; therefore, the width of the zone is equal to
1. However, as mentioned above, at v0 = 0 the period of the
coefficients in the linearized equation is actually equal to π ; -
see Fig. 6(a). For nonzero v0 the period becomes equal to 2π

and gaps appear in the spectrum, as one can see from Figs. 6(b)
and 6(c). One can also see that the symmetry k → −k becomes
broken for nonzero current. For relatively small values of v0 the
background remains stable and thus one can claim existence
of stable ground states with nonzero current.

At some intermediate value of v0 the modes start to merge,
generating instability. The onset of the instability goes to the
Josephson critical current with the depletion, but for finite
depletion the instability appears at the current lower the
critical one. The development of the instability is illustrated
in Fig. 4. We took the initial condition in the form of the
numerically found stationary solution perturbed by weak
noise and performed the modeling. One can see that the noise
destroys the state during relatively short time. At v0 = 1 the
states transform into the symmetric mode considered above.
As noted, this state is unstable. The gaps at the boundary of
the zone become closed because the period of the coefficients
becomes equal to π .

Finally, we remark that the fact that the obtained spectra
are of Bogoliubov type means that a perturbation moving
(with subcritical velocity) with respect to the condensate does
produce scattering (a certain amount of scattering may be seen,
however, shortly after the introduction of the perturbation).
This applies to the case of a perturbation that is resting with
respect to the nonlinear potential, a problem to be addressed
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in the next section. The more general case of perturbations
moving with respect to both the nonlinear lattice and the
condensate will be considered elsewhere.

IV. SUPERFLUIDITY OF BOSE-EINSTEIN CONDENSATE

It is well known that the scattering of the particles can be
interpreted as Cherenkov synchronism between an obstacle
and the propagating eigenmodes of the electron gas. When
the system is described by the Schrödinger equation, then
a localized obstacle can be represented as localized linear
potential in the equation. For the linear Schrödinger equation,
with the dispersion of the elementary excitations parabolic, the
synchronism with a moving obstacle is inevitable unless the
obstacle is resting with respect to the condensate. However, in
the case of nonlinear Schrödinger equation with an uniform
repulsive (defocusing) nonlinearity the dispersion becomes
linear at low k, implying the existence of a critical velocity.
The scattering occurs only if the velocity of the obstacle is
larger than the critical velocity.

In the previous section we have shown that there exist the
spectra of linear excitations in Bose-Einstein condensates with
spatially inhomogeneous nonlinear interaction of Bogoliubov
kind with nonzero vg at k = 0. Therefore, one can expect that
at least an obstacle resting relatively to the nonlinear periodical
potential will not lead the scattering of the Bose-Einstein
condensate flowing in the system (the condensate is flowing
relatively to both the periodical potential and the obstacle). To
confirm this hypothesis we performed numerical simulations
of the condensate flowing in the large annular system with
periodic nonlinear potential. The results are summarized
Fig. 7.

One can see that for the stationary state the current is evenly
distributed in space. If an obstacle leads to scattering, then the
distribution of the current becomes inhomogeneous and, after
some time, the averaged current tends to zero. We always
calculated the distributions of currents assuming the initial
condition the antisymmetric ground state discussed above and
perturbing the equation by localized linear potential resting in
respect to the periodical nonlinear potential. We carried out the
simulations for very long time and no continuous scattering
has been observed; the dependence of the current averaged
over space is shown in Fig. 7(c).

The results of the numerical simulations indicate that
introduction of the obstacle leads to very small perturbation
of the current and the perturbation does not grow in time.
This phenomenon is not sensitive to the relative position of
the obstacle in respect to the nonlinear periodical potential;
see Fig. 7. We also verified that the perturbation of the current
does not grow at arbitrary point of the system. For comparison,
we show in the bottom part of Fig. 7(c) the dependence of the
averaged current in the system with the same average particle
density and the same initial current but without nonlinear
interatom interaction. It is evident that the current oscillates
and that the calculation time is considerably longer than the
characteristic scattering time. The oscillation of the current
in the linear system is, of course, periodic. Therefore, we
can conclude that superfluidity of the BEC is observed in the
system with periodic nonlinear potential.
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FIG. 7. (Color online) The dynamics of BEC in the presence of an

obstacle described by the potential V = a0 exp[− (x−x0)2

w2
0

]. Panels (a)

and (b) show the relative positions of the nonlinear periodical potential
and the linear potential modeling an obstacle, x0 = 0 for panel (a)
and x0 = π/2 for panel (b). The dynamics of the averaged current
〈J 〉 is shown in the upper part of panel (c) for the relative position
of the potentials shown in panels (a) (black line) and (b) (red line).
The dynamics of the averaged current for the case without nonlinear
interatom interaction is shown in the bottom part of panel (c).
The averaged density and the initial velocity of the particles are the
same as for the case with nonlinear interactions. Parameters used are
μ = −2, v0 = 1

8 , a = 0.15, w0 = 0.8, and L = 64π . Within the time
scale shown in the figure the condensate makes about three rounds
in the trap with a duration of each round of 512π in dimensionless
time units.

V. CONCLUSION

We have explored the combined effect of nonlinearity and
periodicity of nonlinear interatomic interaction in the toroidal
traps where the scattering length is periodically modulated
along the ring. First, we systematically studied periodic
matter waves for both stationary states and states carrying
nonzero current. The solutions found numerically have been
parametrized by a chemical potential. We have shown for
stationary states that when the nonlinear interaction changes
its sign the condensate exists in the form of interacting drops
localized in the areas with attractive interaction which rather
counterintuitively implies the existence of the condensate with
negative chemical potential despite of the dominating potential
being repulsive. We also studied numerically the states with
nonzero current and their relation to the stationary states.
We have shown that the current depends periodically on the
phase gradient and displays a strong fragmentation for large
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negative values of the chemical potential when the condensate
is significantly depleted in the areas with repulsive interatomic
interaction. We interpreted the fragmented condensates as
Josephson π -junctions and the presence of the persistent
current as a BEC analog of dc-Josephson effect which in
contrast to a standard Josephson junction occurs in the system
with and attractive effective interatomic potential.

Simultaneously, we studied sound waves propagating
against the background. By inspecting the spectra of linear
excitations on the ground states we investigated the stability
of the condensate and we have shown that the spectrum
are of Bogoliubov type. We found that the ground states
consisting of interacting drops can be stable, which provides
the strong evidence that these states and dc-Josephson effect
can be experimentally observed. On the basis of numerical
simulations we have demonstrated that superfluidity of Bose-
Einstein condensate may take place in the system with
inhomogeneous nonlinear interatom interaction. In particular,
we have shown that a localized defect does not lead to the
scattering of the condensate when the defect is at rest with

respect to the nonlinear potential while the condensate is
moving in respect to both the periodic potential and the defect.
We have observed this behavior in the systems with both an
effective repulsive and attractive interatom interaction. The
case when the defect is moving in respect to both the lattice
and the condensate will be considered in a separate paper.
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