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Quantum entangled ground states of two spinor Bose-Einstein condensates
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We revisit in detail the non-mean-field ground-state phase diagram for a binary mixture of spin-1 Bose-Einstein
condensates including quantum fluctuations. The noncommuting terms in the spin-dependent Hamiltonian under
the single-spatial-mode approximation make it difficult to obtain exact eigenstates. Utilizing spin-z-component
conservation and total spin angular momentum conservation, we numerically derive information on the building
blocks and evaluate the von Neumann entropy to quantify the ground states. The mean-field phase boundaries
are found to remain largely intact, yet the ground states show fragmented and entangled behaviors within large
parameter spaces of interspecies spin-exchange and singlet-pairing interactions.
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I. INTRODUCTION

Ultracold atomic quantum gases with spin degrees of
freedom provide exceptionally clean and idealized testing beds
for studying quantum magnetism [1,2]. Optical trapping from
ac Stark shifts of off-resonant laser fields is capable of equal
confinement for all atomic pseudospin components, which
facilitates research into exciting spinor physics with atomic
quantum gases. As is often done in studying a trapped Bose
gas, when treating the condensate, we first take a mean-field
(MF) approximation assuming that only one eigenvalue of the
single-particle density matrix is macroscopic, being of order
N . Second quantization is then limited to the condensate mode.
Such a simple scenario already allows for many interesting
quantum many-body phenomena [3].

Two popular atomic species often employed in experi-
mental research on spinor Bose-Einstein condensates (BECs)
[3–9] are 87Rb and 23Na atoms. Within each species, their
interactions are dominated by the density-dependent inter-
action in comparison to the much weaker spin-dependent
interactions. As a result, a single-spatial mode approximation
(SMA), whereby the spatial dependence of the condensate
wave function is determined independently of the spin degrees
of freedom, was introduced [6] and remains reasonable as long
as the number of atoms is not too large [10]. Within the MF
approximation, the ground state of a spinor BEC is found to be
ferromagnetic, polar, or cyclic phases, etc., determined by the
spin-dependent interactions and the total (hyperfine) spin F of
the atom. Further theoretical work armed with full quantum
calculations revealed interesting many-body states [6,7,9,11],
beyond the scope of those from MF approximations. For
spin-1 condensates, the exact eigenstates will contain paired
spin singlets [6,7,11], which become more complex for higher
spin condensates. For example, the spin-2 case involves spin
singlets which can be formed by either two or three atoms [7,9].
A general procedure exists for more detailed information
on the building blocks of eigenstates determined by their
associated generating functions [12]. More generally, we can
always resort to the means of numerics to diagonalize the
ground-state single-particle density matrix, which then reveals
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fragmented ground states if more than one eigenvalue is of
order N [13].

Several groups have recently studied spinor condensate
mixtures [17–24], which also display non-MF features, such as
anomalous quantum fluctuations for each spin component and
quantum entangled ground states. This was first discovered in
spinor condensates with more than one orbital, for instance,
the case of pseudo-spin-1/2 condensates [14–16], for which
Kuklov and Svistunov [14] predicted that in the ground
states all atoms will have to condense into two orthogonal
spatial orbitals or more due to the conservation of the total
spin. This could result in a condensate ground state being
a maximally entangled many-body state. Shi et al. replaced
the two orbitals with two different atomic species; a ground
state with entangled order parameter followed [16]. Under MF
approximation, we have previously elaborated the ground-state
phase diagram for a condensate mixture of two spin-1 BECs
[18]. The interesting phases are named, appropriately, the
FF, AA, PP, CC, and MM phases, distinguishing different
structures and interaction parameter spaces. Furthermore, we
provide many beyond-MF results based on a full quantum
spin-dependent Hamiltonian [19], which contains noncom-
muting terms, forbidding a simple derivation of the exact
eigenstates. For two special cases, commutations are restored
among the generally noncommuting terms. First, when the
interspecies singlet pairing interaction is ignored (γ = 0),
the Hamiltonian is then simply composed of three operators
which obey the angular momentum algebra. Making use
of the eigenstates of single spin-1 condensates, we directly
construct the eigenstates of a binary spin-1 mixture using the
angular momentum coupling representation. Second, when
the interspecies antiferromagnetic spin-exchange interaction
is strong enough, the ground state will be forced to develop
entanglement between the two species [19], a result consistent
with what is discovered in a spin-1 condensate placed inside a
double well [25]. Other interesting features are discussed for
γ = 0, revealing fragmentation and quantum entanglement
[20,21,23].

II. THE MODEL HAMILTONIAN

In this revisit we hope to understand quantum entanglement
between two spin-1 condensates when both interspecies
spin-exchange and singlet-pairing interactions are present.
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Our study is based on the same model system of a binary
mixture of spin-1 condensates confined in optical traps. The
corresponding field operators that annihilates a boson of
species 1 and species 2 at position r are described, respectively,
by �̂MF

(r) and �̂MF
(r), where MF = −1,0,1, denoting the

three Zeeman hyperfine states. The SMA is adopted for each of
the two species, employing two spatial mode functions, ψ(r)
and φ(r), respectively, and the field operators are expanded
as �̂MF

(r) = âMF
ψ(r) and �̂MF

(r) = b̂MF
φ(r), with âMF

and
b̂MF

, respectively, the annihilation operators for an atom in the
spin component MF . In the absence of an external magnetic
field, the spin-dependent Hamiltonian for a binary mixture of
spin-1 condensates then becomes

Ĥs = 1
2C1β1

(
L̂2

1 − 2N̂1
) + 1

2C2β2
(
L̂2

2 − 2N̂2
)

+ 1
2C12βL̂1 · L̂2 + 1

6C12γ �̂
†
12�̂12 (1)

under the SMA [19]. The interaction coefficients are C1 =∫
dr|ψ(r)|4, C2 = ∫

dr|φ(r)|4, and C12 = ∫
dr|ψ(r)|2|φ(r)|2.

β1 (β2) is the intraspecies spin-exchange interaction param-
eter of species 1 (2). β and γ denote inter-species spin-
exchange and singlet-pairing interaction parameters, respec-
tively. The singlet pairing operator becomes �̂

†
12 = â

†
1b̂

†
−1 −

â
†
0b̂

†
0 + â

†
−1b̂

†
1, and two angular-momentum-like operators,

L̂1 = ∑
ij â

†
i Fij âj and L̂2 = ∑

ij b̂
†
i Fij b̂j , obey the usual

angular momentum algebra [6,26]. They commute with atom
number operators N̂1 = ∑

i â
†
i âi and N̂2 = ∑

i b̂
†
i b̂i . In the

above, Fij denotes the (i,j ) component of the spin-1 matrix F.

III. GROUND-STATE PHASE DIAGRAM

As presented in Ref. [19], for the spin-dependent Hamil-
tonian, Eq. (1), the first three terms commute with each
other, but they do not commute with the fourth term. This
shows that the ground state determined will depend on the
interaction parameters. As a result, we resorted to the special
cases of no interspecies singlet-pairing interaction (γ = 0)
and C1β1 = C2β2 = C12β/2 [19]. The first case, γ = 0, has
already attracted much attention due to the appearance of
fragmented ground states and the associated entanglement
between two species and exotic atomic number fluctuations
[19–21].

In this study, we discuss the general case of the full spin-
dependent Hamiltonian, Eq. (1). Whenever the ground state
depends on the interaction parameters, we have to perform a
full quantum calculation numerically; usually this amounts to
a full exact numerical diagonalization for both atom numbers,
N1 and N2. Before discussing the numerical results, we want
to point out that there still exist two conserved quantities—the
total spin angular momentum and its z component—as L̂2 =
(L̂1 + L̂2)2 commutes with the spin-dependent Hamiltonian.
As a result, we can elaborate spin structures from building
blocks derived by generating the function of the maximum spin
states |l,lz = l〉, where we have used quantum numbers l and
lz to denote the common eigenstates of the angular momentum
operators L̂2 and L̂z.

We recall the suitable generating function Gg(x,y,z) for a
binary mixture of two spin-1 condensates derived in Ref. [19].
From this generating function, we have figured out all six

building blocks for constructing the eigenstate |l,l〉, which is
given by

|l,l〉 =
∑

C({ui},{vi},{wi})
(
Â

(1)†
1

)u1
(
Â

(2)†
0

)u2
(
B̂

(1)†
1

)v1

× (
B̂

(2)†
0

)v2
(
	̂

(1,1)†
0

)w1
(
	̂

(1,1)†
1

)w2 |vac〉, (2)

where the six building blocks are

Â
(1)†
1 = â

†
1, Â

(2)†
0 = â

†2
0 − 2â

†
1â

†
−1,

B̂
(1)†
1 = b̂

†
1, B̂

(2)†
0 = b̂

†2
0 − 2b̂

†
1b̂

†
−1, (3)

	̂
(1,1)†
0 = �̂

†
12, 	̂

(1,1)†
1 = 1√

2
(â†

1b̂
†
0 − â

†
0b̂

†
1),

and ui , vi , and wi satisfy the constraints

u1 + 2u2 + w1 + w2 = N1,

v1 + 2v2 + w1 + w2 = N2, (4)

u1 + v1 + w2 = l,

and additionally, w2 = 0,1. Spin states |l,lz �= l〉 of other
magnetizations can be constructed by simply applying L̂

l−lz
−

on state |l,l〉 as L̂
l−lz
− |l,l〉 ∝ |l,lz �= l〉 (non-normalized).

In most numerical studies, we assume that each species
contains 100 atoms (N1 = N2 = N = 100). Due to the SO(3)
symmetry of our model, we restrict the Hilbert space to the
subspace of zero magnetization with lz = 0 [27]. In Fig. 1, we
summarize the extensive numerical results. Since the total spin
angular momentum is conserved, we can use the eigenvalue
of the operator L̂2 to distinguish different phase; this is then
accompanied by the information on the building blocks. A total
of three constraints exists for the allowed values of ui , vi , and
wi (i = 1,2). Only three are needed for a solution; we choose
the three as u2, v2, and w1, which are determined numerically
by evaluating the associated expectation values of Â

(2)†
0 Â

(2)
0 ,

B̂
(2)†
0 B̂

(2)
0 , and 	̂

(1,1)†
0 	̂

(1,1)
0 , respectively.

From the extensive numerical results we construct the
ground-state phase diagram as shown in Fig. 1. Perhaps not
surprisingly, it is almost the same as the MF approximation
studied in Ref. [18]. Each phase is then labeled the same as
before [18], albeit that the meanings can be different due to the
noncommuting operators in the spin-dependent Hamiltonian,
Eq. (1). In Table I, we summarize the properties for the four
special phases: FF, AA, PP, and CC. The remaining MM phase
still denotes the phase whose parameters evolve continuously
across the phase boundaries.

IV. ENTANGLED GROUND STATES

To quantify entanglement between the two species, we
numerically computed the von Neumann entropy S(ρ̂1) =
−Tr(ρ̂1 log2N+1 ρ̂1), where ρ̂1 = Tr2ρ̂ is the reduced density
matrix resulting from partial tracing of the ground-state
density matrix ρ̂ over the basis of species 2. The amount of
entanglement is then shown as density plots over the phase
diagram in Fig. 1, with the legend shown at the right; the black
(white) color refers to low (high) entanglement.

In the absence of interspecies singlet-pairing interaction
(γ = 0), the spin-dependent Hamiltonian, Eq. (1), contains
only three operators commuting with each other. As a result,
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FIG. 1. (Color online) Ground-state phase diagram and cor-
responding von Neumann entropy distribution at fixed values of
C1β1 and C2β2. Solid blue lines denote continuous phase transition
boundaries between the MM phase and the FF, PP, AA, CC1, and CC2
phases. Solid red lines denote discontinuous phase transition between
phases (AA and FF, PP and CC2, FF and CC3) with fully determined
total spin angular momentum l. The solid green line denotes the
discontinuous phase transition boundary between the CC3 phase and
the MM phase. Vertical dash-dotted lines correspond to C12γ = 0 and
serve as guides for the eye. The von Neumann entropies of the ground
states are illustrated as grayscale density plots, where black (white)
refers to low (high) entanglement, respectively. The three subplots
denote fixed intraspecies spin exchange interaction parameters of
(C1β1,C2β2)/|C1β1| equal to (a) (−1,−2), (b) (1,2), and (c) (−1,2).
Dashed (red) rectangle in (a) shows four lines connecting the points
OAA(−32,6), OCC(32,6), OFF(32, − 6), and OPP(−32,−6) in the
parameter space of (C12γ,C12β)/|C1β1|.

we can use quantum numbers l1, l2, l, and lz to quantify its
eigenstate |l1,l2,l,lz〉, with 〈L̂2

1〉 = l1(l1 + 1), 〈L̂2
2〉 = l2(l2 +

1), 〈L̂2〉 = l(l + 1), and 〈L̂z〉 = lz. In the ground states, we
have l = l1 + l2 for ferromagnetic interspecies spin-exchange
interaction (β < 0) and l = |l1 − l2| for antiferromagnetic
interspecies spin-exchange interaction (β > 0), while the
values of l1 and l2 are determined by the three interaction
parameters.

In Fig. 2, we display the expected values of the intra- and in-
terspecies single-pairing number operators in the ground state,
divided by their corresponding maximum values shown in
Table I. In addition, we show the total spin angular momentum
and the von Neumann entropy. First, when β1 < 0, β2 < 0,
irrespective of the interspecies spin-exchange interaction,
atoms in the same species will not pair into a singlet, but atoms
in different species will pair into singlets, with 〈	(1,1)†

0 	
(1,1)
0 〉

TABLE I. Expectation values for the special operators in the
ground state within different phases.

〈L̂2〉 〈Â(2)†
0 Â

(2)
0 〉 〈B̂ (2)†

0 B̂
(2)
0 〉 〈	̂(1,1)†

0 	̂
(1,1)
0 〉

FF 2N (2N + 1) 0 0 0
AA 0 ∼0 ∼0 ∼N (N + 2)
PP 0 ∼N (N + 1) ∼N (N + 1) ∼0
CC1 N (N + 1) ∼N (N + 1) ∼0 ∼N (N + 2)
CC2 0 ∼N (N + 1) ∼N (N + 1) ∼N (N + 2)
CC3 N (N + 1) ∼0 ∼N (N + 1) ∼N (N + 2)

close to reaching its maximum values N (N + 2) when the
interspecies spin-exchange interaction is antiferromagnetic.
The corresponding total spin angular momentum L̂2 is equal
to its maximum value 2N (2N + 1) with a relatively low
von Neumann entropy when the interspecies spin-exchange
interaction is ferromagnetic. The total spin angular momentum
L̂2 is equal to 0 with the von Neumann entropy S(ρ̂1) = 1
for antiferromagnetic interspecies spin-exchange interaction.
Second, when β1 > 0, β2 > 0, in the two limits of large fer-
romagnetic or antiferromagnetic interspecies spin-exchange
interaction, the ground state is the same as above in the
previous case. In the other limit, with low interspecies spin-
exchange interaction, atoms in the same species tend to pair
into singlets, giving rise to no entanglement between the two
species. This implies that the ground state can be written

FIG. 2. (Color online) Left: Ground-state normalized expectation
values of intra- and interspecies singlet-pairing number operators
Â

(2)†
0 Â

(2)
0 /N (N + 1), B̂

(2)†
0 B̂

(2)
0 /N (N + 1), and 	̂

(1,1)†
0 	̂

(1,1)
0 /N (N +

2), denoted by solid (blue), dash-dotted (red), and dash-dot-dotted
(black) lines, respectively. Right: Normalized total spin angular
momentum L̂2/2N (2N + 1) and von Neumann entropy of the ground
state, denoted by solid (blue) and dash-dotted (red) lines, respectively.
The three subplots denote zero interspecies singlet-pairing interaction
(γ = 0) and fixed intraspecies spin-exchange interaction parameters
(C1β1,C2β2)/|C1β1| equal to (a) (−1,−2), (b) (1,2), and (c) (−1,2).
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FIG. 3. (Color online) Top: Ground-state normalized expectation values of intra- and interspecies singlet-pairing number operators
Â

(2)†
0 Â

(2)
0 /N (N + 1), B̂

(2)†
0 B̂

(2)
0 /N (N + 1), and 	̂

(1,1)†
0 	̂

(1,1)
0 /N (N + 2), denoted by solid (blue), dash-dotted (red), and dash-dot-dotted (black)

lines, respectively. Bottom: Normalized total spin angular momentum L̂2/2N (2N + 1) and von Neumann entropy of the ground state, denoted
by solid (blue) and dash-dotted (red) lines, respectively. From left to right, we illustrate the corresponding expectation values and von Neumann
entropy along four direct lines connecting four points—OAA(−32,6), OCC(32,6), OFF(32,−6), and OPP(−32,−6)—in the parameter space of
(C12β,C12γ )/|C1β1|. Intraspecies spin-exchange interactions are fixed at (C1β1,C2β2)/|C1β1| = (−1,−2). The four lines are marked as dashed
(red) lines in Fig. 1(a).

as a product state: Z−1/2(Â(2)†
0 )N/2(B̂(2)†

0 )N/2|vac〉. We call
the remaining phase the MM phase, which can show higher
(lower) entanglement compared to the FF phase between the
two species when β > 0 (β < 0). For the final case, when
β1 < 0, β2 > 0, the ground state shows similar properties to
that in the second case.

The most attractive phase when γ = 0 is the entangled
ground state, denoted ψ00

AA [19],

ψ00
AA = 1√

2N + 1

N∑

m=−N

(−)N−m|N,m〉1 ⊗ |N,−m〉2, (5)

which shows high entanglement with S(ρ̂1) = 1 between
the two species. As demonstrated in Fig. 1 by numerical
calculations, however, there remain other phases which show
greater entanglement between the two species. This shows
that state ψ00

AA is not a maximally entangled state, in con-
trast to the previously studied case of two pseudo-spin-1/2
condensates [16]. This is not a surprise [28]. Due to the
redundant degrees of freedom in the spin-1 case, the total spin
angular momentum of each species can take values besides
the largest value of N . To demonstrate the entanglement
between the two species, we show their corresponding ex-
pectation values and von Neumann entropy along four lines
connecting points OAA(−32,6), OCC(32,6), OFF(32,−6), and
OPP(−32,−6) in the parameter space of (C12γ,C12β)/|C1β1|.
The four lines are shown as the dashed (red) rectangle in
Fig. 1(a).

In Fig. 3, we illustrate the ground-state properties of two
ferromagnetic condensates with intraspecies spin-exchange
interactions at (C1β1,C2β2)/|C1β1| = (−1,−2). First, we
consider the AA phase. When γ = 0, the spin-dependent
Hamiltonian contains three operators commuting with each
other, and the ground state can be expressed as ψ00

AA for

large enough antiferromagnetic interspecies spin-exchange
interactions and shows high entanglement between the two
species. When γ �= 0, although the fourth term of the spin-
dependent Hamiltonian does not commute with the other three,
we find that the ground state not only shows similar expectation
values of the operators, but also contains similar entanglement
between the two species, over a large area in the phase diagram
demonstrated in Fig. 1(a). For γ < 0, irrespective of its value,
the ground state falls into the AA phase. For γ > 0, the ground
state is still classified as the AA phase, as long as C12γ does
not exceed a critical value, which increases in proportion to
the interspecies spin-exchange interaction parameter C12β. In
the first column in Fig. 3, we evaluate the properties of the AA
phase, where the ground-state expectation value of intra- and
interspecies singlet-pairing number operators are close to 0, 0,
and N (N + 2), respectively. The total spin angular momentum
is exactly equal to 0, and the von Neumann entropy is close to 1.

When the interspecies singlet-pairing interaction exceeds a
critical value, the ground state changes to the MM phase. As
long as C12γ > 0, it tries to decrease the interspecies singlet-
pairing interaction. In the first column in Fig. 3, we follow
the line of OAAOCC and illustrate the phase transition from
the AA phase to the MM phase. In the MM phase, as long as
we increase C12γ accordingly, atoms in different species will
continuously avoid pairing into singlets, while atoms in species
1 will try to pair into singlets. Atoms in species 2 first try to
pair into singlets and then avoid pairing. Meanwhile, the total
spin angular momentum first increases and then decreases. For
a relatively large area of the MM phase, we find that the two
species show high entanglement compared to the AA phase.

As the interspecies singlet-pairing interaction is increased,
the ground state will fall into the CC1 phase, where its total
spin angular momentum L̂2 will be equal to N (N + 1), and
atoms in species 1 (2) will pair (not pair) into singlets. At the
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FIG. 4. (Color online) The same as that in Fig. 3, but with different intraspecies spin-exchange interactions fixed at (C1β1,C2β2)/|C1β1| =
(1,2).

same time, the expectation value of 	
(1,1)†
0 	

(1,1)
0 will be near its

maximum N (N + 2). The ground-state von Neumann entropy
in the CC1 phase remains at a low value.

Going along the line OCCOFF, with decreasing interspecies
spin-exchange interaction, the ground state changes from the
CC1 phase to the MM phase and, finally, to the FF phase.
Atoms of species 1 will become unpaired continuously, while
the total spin angular momentum increases from N (N + 1) in
the CC1 phase to its maximum 2N (2N + 1) in the FF phase.
The ground-state entanglement between the two species in the
CC1 and the FF phase are almost at the same level. While in
the MM phase, the entropy first increases to near 1 and then
decreases.

We then follow the line OFFOPP. With decreasing inter-
species singlet-pairing interaction, the ground state covers the
FF, MM, and PP phases successively. In the PP phase, atoms
in the same or in different species will all try to pair into
singlets. The ground-state expectation values for intra- and
interspecies singlet-pairing number operators will reach close

to their corresponding maxima; meanwhile, the two species
show higher entanglement. In the MM phase, the expectation
values for operators or the von Neumann entropy change
continuously to connect the FF phase and the PP phase.

Finally, we consider the line OPPOAA. As long as the
interspecies spin-exchange interaction increases, the ground
state will be changed continuously from the PP to the MM
and to the AA phase. From the fourth column in Fig. 3,
we find that over the whole line of OPPOAA, the two
species show a relatively high entanglement, with the von
Neumann entropy S(ρ̂1) remaining higher than 1. This is
especially so in the MM phase, where the highest entropy
reaches 1.4568, which is close to the maximum entropy of
log2N+1[(N + 1)(N + 2)/2] 	 1.6116.

In Figs. 4 and 5, we illustrate the two other cases, with
intraspecies spin-exchange interactions (C1β1,C2β2)/|C1β1|
fixed at (1,2) and (−1,2), respectively. We find that the ground
state shows similar properties to that in the two ferromagnetic
condensates shown in Fig. 3. The only difference is for the CC2

FIG. 5. (Color online) The same as that in Fig. 3, but with different intraspecies spin-exchange interactions, which are fixed at
(C1β1,C2β2)/|C1β1| = (−1,2).
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or CC3 phase. In the CC2 phase, the ground-state expectation
values for both intra- and interspecies singlet-pairing number
operators are close to their corresponding maxima, N (N + 1),
N (N + 1), and N (N + 2). While in the CC3 phase, they are
close to 0, N (N + 1), and N (N + 2), respectively. The total
spin angular momentum of the ground state is equal to 0 in the
CC2 phase and to N (N + 1) in the CC3 phase. Meanwhile,
in the CC2 phase the von Neumann entropy is less than 1 but
higher than that in the FF phase, while in the CC3 phase, it is
close to the value in the FF phase.

Before concluding, we wish to stress that the maximal
entangled state in this system is given by

ψME = Z−1/2
(
	̂

(1,1)†
0

)N |vac〉. (6)

It is the eigenstate or the ground state (if γ < 0) of the γ term
in the Hamiltonian, Eq. (1), which means that the maximally
entangled state ψME is the eigenstate of two spin-1 condensates
with only interspecies spin-singlet pairing interaction (β1 =
β2 = β = 0 and γ �= 0), with the corresponding eigenvalue
C12γN (N + 2)/6 [29].

V. CONCLUSION

In conclusion, we have studied the ground-state phase
diagram for a binary mixture of two spin-1 condensates more
carefully, going beyond the MF approximation. When no inter-
species singlet-pairing interaction exists, the spin-dependent

Hamiltonian contains three operators commuting with each
other. In this special case, the most interesting phase is the
AA phase, where two species show high entanglement. When
interspecies singlet-pairing interaction is turned on, the added
operators do not commute with the previous three operators,
which forbids us from obtaining exact eigenstates analytically
for the model spin system. In this study, we have performed full
quantum diagonalization to find the ground states numerically.
To quantify the ground states, we worked out the building
blocks to construct the maximum spin states, which were used
rightfully to discuss entanglement scales between the two
species. We have evaluated the associated ground-state von
Neumann entropy. After detailed calculations, we find that the
AA phase can persist for large areas of the parameter space
for interspecies spin-exchange and singlet-pairing interactions.
In addition, there is another interesting phase, the PP phase,
which shows a similar level of entanglement between the two
species. What is more, we find that the AA phase is not the
maximally entangled state. The ground state with the highest
entanglement, we found, lies in the MM phase.
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