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We examine collective modes, stability, and BCS pairing in a quasi-two-dimensional gas of dipolar fermions
aligned by an external field. By using the (conserving) Hartree-Fock approximation, which treats direct and
exchange interactions on an equal footing, we obtain the spectrum of single-particle excitations and long-
wavelength collective modes (zero sound) in the normal phase. It appears that exchange interactions result in
strong damping of zero sound when the tilting angle between the dipoles and the normal to the plane of confinement
is below some critical value. In particular, zero sound cannot propagate if the dipoles are perpendicular to the
plane of confinement. At intermediate coupling, we find unstable modes that can lead either to collapse of the
system or to the formation of a density wave. The BCS transition to a superfluid phase, on the other hand, occurs
at arbitrarily weak strengths of the dipole-dipole interaction, provided the tilting angle exceeds a critical value.
We determine the critical temperature of the transition, taking into account many-body effects as well as virtual
transitions to higher excited states in the confining potential, and discuss prospects of experimental observations.
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I. INTRODUCTION

In recent years, experimentalists have achieved major
breakthroughs in preparing samples of diatomic molecules
in the rovibrational ground state and cooling them toward
quantum degeneracy [1-3]. With heteronuclear molecules, in
particular, rotational degrees of freedom can be excited in a
controlled way by applying external electric fields and are
associated with large electric dipole moments [4-7]. This
possibility of inducing strong and anisotropic dipole-dipole
interactions between molecules opens fascinating prospects
for the observation of various many-body effects and novel
quantum phases [4,6—19].

The above-mentioned experimental studies of heteronu-
clear polar molecules [1,2] suffer from losses due to chem-
ical reactions such as KRb + KRb — K, + Rb, [20,21],
which place severe limitations on the achievable densities in
three-dimensional samples. These reactions are significantly
suppressed if one confines the molecules to a quasi-two-
dimensional (quasi-2D) geometry and orients their dipole
moments perpendicular to the plane of the 2D translational
motion [22-24], as has been verified experimentally by de
Miranda et al. [25]. Moreover, in some of the polar molecules
that consist of alkali-metal atoms, atom-exchanging reactions
are endothermic and, therefore, do not occur [26]. Thus, it
seems most promising for future investigations of dipolar
molecules to either focus on species that do not undergo
chemical reactions or consider samples that are strongly
confined to a quasi-2D regime.

In this paper, we consider a quasi-2D gas of fermionic
dipoles, aligned by an external field (see Fig. 1). The simplest
case corresponds to the dipoles being oriented perpendicular
to the plane of confinement, so that the pairwise dipole-dipole
interaction is isotropic and repulsive. At nonzero values of
the tilting angle 6, it becomes anisotropic and, for 6p >
arcsin(1/+/3), it becomes partially attractive. A discussion of
this physical setup within the framework of Fermi liquid theory
was given in Ref. [27] where, for example, single-particle
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properties such as the anisotropic self-energy and the resulting
deformation of the Fermi surface from the spherical shape cor-
responding to the noninteracting case were calculated to first
order in perturbation theory. While this perturbative approach
provides reliable answers in the weak-coupling regime, mod-
erate interaction strengths require more sophisticated methods
such as the Hartree-Fock approximation (HFA), which was
used in Ref. [28] to obtain the spectrum of single-particle
excitations at zero and finite temperature. At zero temperature,
the results were found to agree very well with the outcome of
a variational approach that was initially used to study Fermi
surface deformations in the three-dimensional (3D) case [29]
and adapted to the 2D case by the authors of Ref. [12].
Collective modes in single-, bi- and multilayered structures
of dipolar Fermi gases were studied in Ref. [30] using the
random phase approximation (RPA), which neglects exchange
interactions. As a result and in particular for the single-layer
setup, these studies predict the spectrum of long-wavelength
collective excitations to be sensitive to microscopic details
of the two-body interaction potential in the form of a short-
distance cutoff, which is needed to handle the singular behavior
of a dipole-dipole interaction. In a quasi-2D setting, the
characteristic length of the harmonic confinement plays the
role of the cutoff, resulting in a confinement-dependent value
of the RPA speed of zero sound [31,32]. The authors of
Ref. [33], however, correctly remark that a cutoff-dependent
constant term in the momentum space representation of the
interparticle potential corresponds to a short-range contact
interaction in real space and, therefore, must not have an
effect in a single-component Fermi gas. Thus, the existence
of the RPA zero-sound mode is questionable. In this paper, we
study zero-sound collective modes on the basis of the so-called
conserving HFA developed in Refs. [34,35]. The advantage of
this method is that it provides a way to fully include exchange
contributions in a given order of perturbation theory, such that
the results are consistent with conservation of particle number,
energy, and momentum, as well as with fermionic statistics of
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FIG. 1. (Color online) Fermionic dipoles confined to the xy plane.
The dipoles are aligned in the xz plane and form an angle 6, with the
Z axis.

particles. We show that the existence of a zero-sound collective
mode in a quasi-2D dipolar Fermi gas for small values of the
tilting angle 6 and the dependence of the sound velocity on a
short-distance cutoff are artifacts of the RPA. In particular, we
find that the propagation of zero sound is not possible if the
dipoles are aligned perpendicular to the plane of confinement
or if they are tilted only slightly—which is consistent with
the homogeneous 3D setting [27,36] in which there is no
propagating zero sound in the directions perpendicular (or
close to perpendicular) to the direction of dipole polarization.

The issue of stability of the normal phase of the system
against collapse was addressed by Chan et al. [27] following
Pomeranchuk’s approach [37]: The normal phase is thermody-
namically stable if an arbitrary distortion of the Fermi surface
results in an increase of the ground-state energy. In Ref. [27],
however, distortions do not refer to the deformed Fermi
surface, but rather to the circular one of the noninteracting
system; that is, the authors of this reference are performing
the stability analysis around a configuration that does not
extremize the ground-state energy. Hence their expression for
the change in the ground-state energy contains a term that is
linear in the distortion [Eq. (81) in Ref. [27] ], which is absent
if one takes the deformed Fermi surface as reference center
[see Eq. (46) below]. An alternative approach by Bruun and
Taylor [12] uses a variational ansatz for the shape of the Fermi
surface, on the basis of which the compressibility is calculated.
The collapse instability is then identified with a negative value
of this quantity.

The stability of the normal phase against density fluctua-
tions with a finite momentum (density wave instability) was
investigated in the RPA in Refs. [28,33], with the former
extending the discussion to finite temperatures and taking into
account the deformation of the Fermi surface. It was found
that a density wave transition takes place in a broad region in
the parameter space (the coupling strength and the tilting angle
6y) where the system is stable against collapse. Correlations
beyond the RPA can be treated approximately by including a
local field factor in the density-density response function. This
method was first used in Ref. [38] with an ad hoc choice of the
local field factor that served to gain qualitative insight into the
effects of exchange interactions. In Ref. [39], the local field
factor was calculated by using a self-consistent scheme. As a
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result, the density wave instability is expected at higher values
of the interaction strength than predicted by the RPA.

We address the issue of stability on the basis of the
conserving HFA that provides a consistent (and, within
this approximation scheme, exact) treatment of exchange
contributions. For the case 6y = 0, the same approach was
used in Ref. [40] to study the density wave instability in dipolar
mono- and multilayer systems. Our result (see Sec. VII B) for
the critical value of the coupling strength for 6, = 0 agrees
very well with that from Ref. [40]. As concerns the collapse
instability, our findings are in good agreement with the results
of the above-mentioned variational approach [12,28].

The critical temperature T of the transition to the superfluid
phase for the quasi-2D dipolar Fermi gas was obtained
by Bruun and Taylor [12] in the BCS approach with the
dipole-dipole interaction restricted to the dominant p-wave
channel. We extend this work by taking into account the full
angular dependence of the dipole-dipole interaction, as well
as by calculating the preexponential factor in the expression
for the critical temperature. The latter requires taking into
account both the many-body contributions to the interparticle
interaction [the so-called Gor’kov—Melik-Barkhudarov (GM)
corrections [41] ] and virtual transitions to excited states in the
trapping potential, which ultimately result in a nontrivial de-
pendence of the critical temperature on the trapping frequency,
the gas density, and the tilting angle.

This paper is organized as follows: In Sec. II we present
the microscopic model for the quasi-2D dipolar Fermi gas
and identify the relevant parameters and parameter regimes.
We review key quantities in the many-body problem and
the equations that relate them and discuss our strategy to
solve these equations in the intermediate-coupling regime
in Secs. III and IV. An investigation of the single-particle
excitation spectrum in the normal phase is given in Sec. V
and is a prerequisite for the study of collective modes in
Sec. VI. We address the issue of instability toward collapse
and the formation of a density wave in Secs. VIIA and
VIIB, respectively. Results for the critical temperature of
the transition to the superfluid phase are given in Sec. VIIL.
Finally, Sec. IX is devoted to a summary of our findings
and a discussion of the prospects of observing the described
phenomena in experiments. Details of our numerical methods
and analytical expressions for the matrix elements of the
dipole-dipole interaction are given in the Appendices.

II. SYSTEM

We consider a gas of dipolar fermions of mass m with dipole
moments d = dd, which are polarized along the direction
d= (sinBy,0, cos y); that is, 6y is the angle between the
orientation of dipoles and the z axis (see Fig. 1). The gas
is strongly confined to the xy plane by a harmonic trapping
potential V(z) = ma)éz2 /2. Here, strong confinement means
that the transverse extension of the gas cloud, which is on the
order of [y = /h/(mwy), is small compared with the mean
interparticle separation in the xy plane. The latter quantity is
proportional to the inverse Fermi momentum pﬁé” , which, in
turn, is determined by the area density 15, pf) = h/4rnyp.
Thus, the small parameter characterizing the tight-confinement
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or quasi-2D limit is n = pg))lo/h « 1. This condition implies

that the Fermi energy 853) is much smaller than the trapping

potential level spacing: 8(,9) Jhaog < 1.

We also assume ultracold temperatures, 7 < 852), such that
the average kinetic energy of particles is given by the Fermi
energy 853) .

The Hamiltonian of this system reads

2
H= / drrf(r) [—;—mA + %mwézz - u/] ¥(r)

1 ~ ~ -~
+§/drdr'lﬁf(r)lﬂf(r/)Vd(r—l")lﬂ(l")lﬁ(r), 6]

where 1’/7(1‘) is the fermionic field operator, i’ denotes the
chemical potential, and V,(r) = (d?/r?)[1 — 3(& - d)?] is the
dipole-dipole interaction. Here we omit the contribution of
the short-range part of the interparticle interaction: In the
considered case of a single-component Fermi gas, it results
only in p-wave scattering, which is small assuming that
pf)ro/h « 1, where r¢ is the radius of the short-range part
of the interparticle interaction.

A characteristic length of the dipole-dipole interaction is
given by ry = md?/h? > ry. This is the length scale below
which the dipole-dipole interaction substantially influences
the relative wave function of two particles. We assume
rq < lp, such that interparticle collisions are essentially
three-dimensional. This gives us another small parameter
g=pPra/h < 1.

Under the above conditions, the motion of particles in the
z direction is limited to the ground state of the confining
potential ¢o(z)—the lowest harmonic oscillator (HO) level,
and a single-particle wave function is ¥ (r) = ¢(0)do(2),
where ¢(p) describes the in-plane motion [p = (x,y)].

As a result, first-order interaction effects (see Secs. V, VI,
and VII) can be described by an effective interaction

Vo(p) = / dzdz' ¢o(2)* Va(p,z — 2)¢o(2'), 2)

with the Fourier transform [p = (p., p,)] [31]:

2
Vo(p) = fzn‘f—ow (%) [u(p) sin” 6y — 2 P>(cos 6y)],
3)

where u(p) = (p; — p3)/p* and w(x) = xeXerfe(x).! When
p = pgg),the argument ofw(}—é‘%)is assmallas ply/h =~ n < 1
and we have

d2p
Vo(p) ~ 7 —=[u(p) sin® By — 2 P(cos 6p)]. 4

We note that, in this limit, the effective interaction is indepen-
dent of the confinement length /.

I'This expression is unique up to a momentum-independent additive
constant, which depends on the regularization of the Fourier integral
at the origin. Such a constant, however, corresponds to a short-range
interaction and has no physical effect in a single-component Fermi
gas because its contributions vanish upon proper antisymmetrization.
Therefore, we set this constant to zero.
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Processes of second order in the interaction (see Sec. VIII),
on the other hand, involve virtual transitions to excited states
¢, (z) with n > 0 of the harmonic confining potential. The
matrix elements of the interaction for these transitions, in
momentum representation for the in-plane motion, are

an,nz,n;.m(p) = /ddedZ,Vd(p,Z — Z/)
xe PP (D), (2 Vs (2P, (). (5)

For ny = n, = n3 = ny =0 we obtain the effective 2D in-
teraction (3). Note that, although the relative magnitude
of a single virtual excitation is as small as gn> < 1 (see
Appendix C), the totality of these processes is essential for the
correct description of the contribution of short distances < [y
(or virtual energies 2 fiwg) to the interparticle scattering. We
mention also that, within second order the p-wave contribution
due to the short-range part of the interparticle interaction can
still be neglected (see Ref. [18] for discussion).

III. APPROACHING INTERMEDIATE
COUPLING REGIME

The problem considered is characterized by two param-
eters: g = pg)rd /h and n = p(;))lo /h. The first parameter
describes the strength of the interparticle interaction with
respect to the mean kinetic energy: g < 1 characterizes the
weakly interacting regime, while we have g 2 1 in the regime
of intermediate and strong interactions. The second parameter
n describes the strength of the confinement: n <« 1 corresponds
to strong confinement. When g and 7 are small (g,n < 1),
one can use perturbation theory to calculate various quanti-
ties. Many physical effects, however, occur at intermediate
values of g (we will always assume strong confinement with
n < 1)—see Fig. 9—for which one cannot limit oneself to
lowest-order diagrams or to a specific sequence of diagrams
(ladder diagrams in a dilute system). To obtain analytic
expressions in this case, one can use analyticity arguments to
extrapolate expressions obtained in the weak-coupling regime
to intermediate coupling strength. Of course, the accuracy of
such expressions cannot be estimated. However, (provided the
relevant physics is present in the weak-coupling regime) they
can be used to make qualitative statements on the behavior of
the system and often obtain reasonable quantitative estimates.
Following this strategy, one has to select a “reasonable”
set of Feynman diagrams, which allows one to write down
a closed set of integral equations for relevant physical
quantities. This sequence should, of course, catch the relevant
physics and be consistent with general physical principles
such as conservation laws and particle statistics. For the
purposes of this paper we will use the (conserving) HFA (see
Refs. [34,35] and discussion below), which describes the mo-
tion of particles in an average potential with exchange effects
taken into account and, therefore, can be used to describe
phenomena for which interparticle collisions are not important
(zero sound in our case). Note that taking exchange contribu-
tions into account is crucial: They guarantee the cancellation of
all interaction contributions in the case of a short-range inter-
particle interaction [when Vy(p) is momentum-independent,
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Vo(p) = const.], as it should be in a single-component
Fermi gas.

IV. QUASI-2D DIPOLAR FERMI LIQUID

Properties of a normal (nonsuperfluid) Fermi systemat 7 =
0 are conveniently described in terms of Green’s functions. The
single-particle Green’s function (see, for example, Ref. [42])
for a two-dimensional system (in the following we shall be
using units in which 2 = 1),

G(p) = —i / didpe PTG 0T 0,00,  (©)

where T stands for the time-ordering operator (T product) and
p = (w,p), carries information on single-particle excitations,
while collective behavior resulting from two-particle correla-
tions is described by the two-particle Green’s function

Go(p1,p2; p3.D4)

4
B / [ Tdtjdpse 2o (TG (1. p1)U (12.p2)

j=1
<! (ta.pa) ¥ (13.03)})

= G(p1)G(p)IS(p1 — p3)d(p2 — p4a)
—8(p1 — p)d(p2 — p3)]
+ G(p1)G(p)I'(p1,p2;5 P3,pa)G(p3)G(ps), (1)

or the closely related vertex function I'(py, p2; p3, p4). Single-
particle excitations correspond to poles of G(p), collective
modes and instabilities of the many-body system are en-
coded in poles of the vertex function I'(py, p2; p3,p4). In a
homogeneous system, this quantity depends only on three
independent momenta, and it is convenient to introduce
L(p1.p259) = T(p1.p2;s p1 +q,p2 — q) such that g is the
transferred momentum which satisfies the Bethe-Salpeter
equation in the particle-hole channel [42]:

L(p1,p2sq) = fph(pl,pz;q)—i/f"ph(pl,p”rq;q)

/

/ i i . dp
xG(p"+q)G(p)HT(p ,pz,q)m, ()

where f‘ph denotes the particle-hole irreducible vertex; that is,
the sum of connected vertex diagrams with two incoming and
two outgoing fermionic lines which cannot be divided into two
parts by cutting two fermion lines of opposite direction.

The single-particle Green’s functions can be expressed in
terms of the self-energy function ¥ (p) through the Dyson
equation [42]

G(p~' =GP = (), ©)
where the noninteracting Green’s function is

1
o — E(p) + isgn[E(p)]’

with £(p) = p?>/(2m) — u and the shifted chemical po-
tential u = u' — wp/2. ¥, in turn, is connected with the

GY(p) =

(10)
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vertex function by the equation of motion (Schwinger-Dyson
equation) [42]:

d
X(p) = i/ [Vo(p — p1) — Vo(0)] G(m)%

+ / L'(p1 + p2 — p.p; p1,p2)G(p1)G(p2)

d[?] dpz
2m)3 (2m)3

The solution of the coupled system of equations (8), (9), and
(11) is specified by the irreducible vertex f‘ph, which is the sum
of an infinite set of Feynman diagrams. As a result, one cannot
write the irreducible vertex fph in a closed form in terms of the
Green’s function G and the vertex I', and some approximation
procedure of choosing a subset of contributions is needed.
This procedure should be consistent with conservation laws
and statistics of the system. A prescription for generating
such a conserving approximation is to replace the right-hand
side (RHS) of Eq. (11) for ¥ by a functional of G and V,
[34,35] . The one-particle propagator is then to be obtained
self-consistently from the approximate equation for ¥ and (9),
and the approximate irreducible vertex f“ph, which determines
I" via (8), can be found by suitable functional differentiation.
In other words, by fixing an appropriate expression for the
self-energy ¥, one uniquely determines the expression for [y,
in order to make the approximation conserving.

As discussed in Refs. [34,35], the simplest example of
a conserving approximation taking exchange effects into
account is the HFA, which we will use in this paper. In this
approximation, the self-energy is given diagrammatically as

xG(p1+ p2 — p)Vo(p — p2) (11)

@:_Q_+S

or analytically by

(12)

/

dp
Q)3
and it is frequency independent. The corresponding particle-
hole irreducible vertex is

p1 P2 — ¢ P1 p2—q
-
Ton(p1.p2s9) = Vo(@) — Vo(p1 — p2 + @

pr+q P2 pr+q P2
= Fon(P1 — P2 + 4. Q) (15)
which is also frequency independent. Equation (8) then shows

that T'(p1, p2; g¢) does not depend on the frequencies w; and
wy [i.e., T'(p1, p2sq) = T'(p1,p2; ¢)], and we have

X(p) = i/[Vo(p —p) = Vo(®IG(p) (13)

or

I'(p1,p2:q) = Fon(p1 — P2 +4,9)
i / Fon(pr — 0.QG( + )G ()

/

b Adp
XT®p2 ) s (16)
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V. SINGLE-PARTICLE EXCITATIONS IN HFA

From Egs. (9), (10), and (13) we obtain the single-particle
Green’s function in momentum space representation:
Glw.p) 1 (a7
w,p) = - )
o — &(p) + i0sgn[e(p)]

where the quasiparticle dispersion relation is

e(p) = §(p) + X(p), (18)

and the self-energy X, after performing the integration over o’
in Eq. (13), can be written as [note that the direct term does not
contribute, because V((0) = O for the effective dipole-dipole
interaction (3)]

/

@2n )2

Z@)= - [ Voo - pne) (19)
In this expression n(p) = 0[—e&(p)] is the Fermi-Dirac distri-
bution at zero temperature. Equation (19) has to be solved

self-consistently together with the particle number equation

_dp_
(2n)?

The problem of finding the solution to Egs. (19) and (20)
is simplified considerably by noting that the evaluation of the
RHS of both equations does not require full knowledge of the
quasiparticle dispersion relation e(p) but only of the Fermi
momentum pr, which is determined by the requirement that
the quasiparticle energy (18) is equal to zero for p = pr =

prp:

n(p). (20)

nyp =

= p%/@m) — p+ Z(pr) = 0. 1)

The solution pr to this equation actually depends on the
direction p = (cos ¢, sin ¢). However, to shorten the notation,
in the following we will often write pr and pr instead of
pr(¢) and pr(¢), respectively.

We proceed by specializing (19) to the Fermi surface p =
pr and inserting the resulting expression for X (pr) in Eq. (21),

e(pr)

2 ’ Pr
5—F =pn+ L / di’/ dp' pvVopr — ),  (22)
m m 2 Jo
where pf, = pp(¢’) and v = m/(2m) is the density of states.
An expression for the chemical potential & can be obtained
by taking the integral of this formula over the angle ¢ and
making use of the fact that the particle number equation (20)
is equivalent to the condition

d¢ 0)2
3 PE=re (23)

if we express the density as nyp = p;)z/(4n). We find

d¢ d¢’
(0) ’ /
= - — vV —-p). (24
n=¢ep /an p'pvVo(pr —p). (24)
Equations (22) and (24) form a closed system for the deformed
Fermi surface pr and we obtain the joint solution to these
equations numerically by means of an iterative scheme
which is described in detail in Appendix A. The resulting
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FIG. 2. (Color online) Quasiparticle dispersion relation for g =
1,6y = /4 (top) and g = 2, 6y = 7/2 (bottom) in HFA (solid lines)
and first-order perturbation theory (dashed lines) for some values of
¢p [P = p(cos ¢p, sin ¢p)]. The lowermost blue curves are for ¢, = 0,
the middle green curves are for ¢, = /4, and the topmost red curves
are for ¢, = /2. The linear approximation (25) at the Fermi surface
is shown as dotted lines. Note that the results obtained in the HFA
and perturbation theory agree very well for g = 1, 6y = 7 /4, whereas
deviations are clearly visible for g = 2, 6y = /2.

quasiparticle dispersion relation (18) is shown in Fig. 2, along
with the linear approximation at the Fermi surface:

e(p) ® vr(@)p — pr(P)]. (25)

Here, vr(¢) is the radial component of the Fermi velocity:

Vi(p) = Velpr(@)] = por(d) + &vi(¢).  (26)

For future reference we summarize the corresponding
results obtained in perturbation theory [27]. To first order
in the dipole-dipole interaction, on the RHS of Eq. (19)
we insert the distribution function of a noninteracting Fermi
gas, n(p) = 6( p(o) — p). The self-energy function can then be
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expressed in terms of complete elliptic integrals. We omit the
cumbersome analytical expression and content ourselves with

stating the result for p = p(FO) = pfg)f):

16 3
2(1)(1)(18)) = _g_ggﬁé” [§ sin® 6y cos(2¢) — 2 P>(cos 00):| .
b4
(27)
We write the chemical potential as yu = 853) + 8. The first-
order correction 8y is given by Eq. (24) [with p’, on the RHS

replaced by pg))]

32
S = — g&'¥ Py(cos ). (28)
4

Combining these results with Eq. (21) we find the equilibrium

deformation of the Fermi surface dpr(¢) = pr(¢) — p?):
m ©
Spr(@®) = —g; [6n — =V (pP)]
Pr
8
=T gpY sin? 6y cos(2¢)). (29)

From its definition in Eq. (26), the radial component of the
Fermi velocity is then

4 2
ve(@) = v’ | 14+ ——g Py(cos By) — — g sin® 6y cos(2¢) | »
37 Sm
(30)

Finally, the (radial) effective mass is defined as m*(¢) =
Pr(®)/vr(¢). Then, for the deviation §m(¢p) = m*(¢) — m of
the effective mass from the bare mass we have

sm(@)  m 92V (py)

4 14
= ——gPy(cosfy) + ——gsin® Oy cos(2¢).  (31)
3 157

VI. COLLECTIVE EXCITATIONS IN HFA: ZERO SOUND

Collective modes w = w(q) of the system correspond to
poles of I'(p;,p2;q) with respect to the variable w, which
is the frequency component of g. In the vicinity of a pole
we have I" > fph and, therefore, we may neglect the first
term on the RHS of Eq. (16). In the resulting homogeneous
equation the second argument p, of I" acts as a parameter.
Hence, near its pole, the function I can be represented as a
product x(p1;q)x’(p2;q) of two functions. After canceling
x'(p2; q) on both sides of Eq. (16) and integrating over «’, we
obtain

dp’ - ,
x(p;q)=f(27)2th(p—p,q)

8 n(p’) —n(p' +q) 00
w+e(p) —e(P +q) +i0sgn(w)” " "
(32)

The quantity e(p’ + q) — e(p’) on the RHS of the last
equation is just the energy cost of creating a particle-hole pair
by exciting a particle from a state p’ within the Fermi surface
to a state p’ + q outside the Fermi surface. Therefore, a stable
collective mode is possible only when the energy (frequency)
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w of the mode lies outside the particle-hole continuum (PHC)
(so we can omit the imaginary term in the denominator).
Otherwise, the integrand has a pole at = e(p’ + q) — &(p’),
which ultimately leads to strong Landau damping of the
collective mode [42].

In the long-wavelength limit |q| — 0, the main contribution
to the integral (32) comes from states in the vicinity of the
Fermi surface, and we can rewrite this equation as

/ /
{9,1:/"/1 Y ),
pvew—q-vg

d¢' .
x(p)=/£vl“ph(p—p},0
(33)

where x(p) = x(p:0), pp = pr(¢), and Vi = vr(¢"). The
function y (p) is thus completely determined by its values on
the Fermi surface and by setting p = pr we can obtain an
equation for the restriction of x (p) to the Fermi surface,

pr/m q-V,
Ly (). (34
P -Viwo—q- Vg

de’ ,
X(pF)=/2—F(¢,¢)
b4

where we define the dimensionless quasiparticle interaction
function (f function) as

F(¢,¢) = vIpm(pr — pr.0) = v [Vo(0) — Vo(pr — P ]

_ |PF —PH

)
Pr

1
X |:P2(cos By) — Supr — p)) sin 90] . (35

Note that only the exchange interaction contributes to the f
function. For 6y = 0, that is, when the dipoles are perpendicu-
lar to the xy plane and the system is symmetric with respect to
rotations around the z axis, the Fermi momentum is isotropic
and equal to p;(?) [see Eq. (23)], and (35) simplifies to

F(¢.¢') = 2gsin(lp — ¢'l/2), 6 =0. (36)

Equation (34) shows that w depends linearly on g = |q|:
o= vg)sq. (37)

Due to the anisotropy of the dipole-dipole interaction, s will
in general be a function of the propagation direction ¢4 [q =
q(cos ¢gq, sin ¢¢)]. The symmetry of the problem, however,
requires the dependence of s on ¢4 to be 7 periodic and even;
hence, it is sufficient to restrict ourselves to the range 0 <
¢q < /2.

As has already been pointed out, the excitation energy w
of the collective mode has to be separated from the PHC.
Equation (34) shows that, in the long-wavelength limitg — 0,
this requirement reduces to

Vs > v, (38)
where the quantity vy is the slope of the upper boundary of
the PHC in the direction q at ¢ = 0 and can be computed by
taking the maximum over all values of the angle ¢":

Uph = ng}x{c] Vil (39)
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FIG. 3. Condition (38) for the propagation of zero sound is met in
regions [ and I1, where the gray levels encode the difference v(FO)s — Uph

for the largest eigenvalue s of Eq. (41).

For the purpose of solving Eq. (34) numerically, it is
convenient to replace x by another function
q-vr

1
V() = 2
P-vrols—q-v

X(Pr)- (40)
F

Equation (34) then becomes

(s -

1§- d¢/
q-ve)u(@) = ~ LV / 9 )l @).
mp-vp 2
(41)

One should note that Eq. (41)—in contrast to Eq. (34)—allows
for nontrivial solutions even for g = 0 [or F(¢,¢") = 0]. These
solutions with s € [—1,1] take the form of a § function in ¢
and correspond to single particle-hole pairs from the PHC.
We solve Eq. (41) numerically by discretizing it in the
variable ¢. Our results for g = 1 are shown in Figs. 3, 4, and
5. We see that the existence of zero sound and the value of the
sound velocity strongly depend on the propagation direction,
on the tilting angle, and on the strength of the interaction.
There is no dissipationless zero-sound mode if the tilting angle
is smaller than some critical value (see Fig. 3), because then all
numerically calculated eigenvalues s are below or equal to the
limiting velocity vy, of the PHC, thus violating the propagation
criterion (38). This is to some extent similar to the propagation
of zero sound in the homogeneous three-dimensional case,
which was studied in Refs. [27,36]: The authors of these works
found that there is no undamped propagation of zero sound
for a wide range of angles perpendicular to the direction of
the polarization of dipoles. The reason for this at-first-glance
counterintuitive statement is that the contribution of the direct
interaction (which is repulsive in coordinate space) to fph [or
to F(¢,¢")] vanishes [see Egs. (4) and (15)], such that the long-
wavelength collective behavior of the dipolar gas is governed
by the exchange interaction (the f function contains only the
exchange contribution). [The collective modes without the
exchange contribution were considered in Ref. [32] and, as
a consequence, their result is determined by the momentum-
independent term in the Fourier transform Vj(q) of the dipole-
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FIG. 4. (Color online) Speed of zero sound as a function of tilting
angle 6y for g =1 and ¢4 = 0,77/2 (top, bottom). Note that, for
¢q = /2 and 6, close to /2, we have two zero-sound modes. The
region that is forbidden by condition (38) is shaded.

dipole interaction which is omitted in our paper because it is
canceled by the corresponding exchange contribution. ]

Within our approach, we first find a zero-sound mode that
satisfies the propagation criterion (38) (see Figs. 3 and 4, top)
for 6y ~ 0.5 and ¢pq = 0 (i.e., in the direction of the projection
of the dipoles d on the xy plane). Itis a longitudinal mode that is
concentrated symmetrically around its propagation direction.
As 6y increases, this mode can propagate in a broader range
of angles up to ¢q ~ /4 (region I in Fig. 3; see also Fig. 5,
top). However, the corresponding sound velocity drops below
the propagation boundary vy, at 6p ~ 0.9.

A different mode emerges from the continuum at 6y ~
w/4 and ¢q =m/2 (region II in Fig. 3). This mode is
antisymmetrically peaked around the direction of propagation.
At even higher values of 6y we find more than one mode that
satisfies (38) (see Figs. 4, bottom, and 5, bottom).

This behavior of collective modes remains the same when
we increase the interaction strength to g &~ 2. In particular,
the angles 6y ~ 0.5 and 6y ~ 7 /4 at which the symmetric
and antisymmetric modes appear, respectively, are practically
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FIG. 5. (Color online) Speed of zero sound as a function of
propagation direction ¢4 for g = 1 and 6y = 7 /4,7 /2 (top, bottom).
Note that, for 6y = /2 and ¢q 2 7/4, we have two zero-sound
modes. As in Fig. 4, the region that is forbidden by condition (38) is
shaded.

left unchanged. However, we find that the zero-sound modes
become more “distinct,” (i.e., the curves in Figs. 4 and 5 are
separated further from the PHC).

For g < 1 the above-mentioned peaking of modes around
the forward direction is even more pronounced, and a high
number of grid points is required to properly resolve these
modes, making it impossible to go to very small values
g < 1 with our numerical method. At0.1 < g < 1 itbecomes
increasingly difficult to make quantitative statements with
regard to the region where the condition (38) met, since
the quantity of interest v(fg)s — vph is of the same order of
magnitude as its estimated error. Qualitatively, however, we
find the same behavior as described above for 1 < g.

We also solve Eq. (32) with finite values of q. Some results
are shown in Fig. 6 and demonstrate that the dispersion w =
w(q) of the collective mode obtained in this manner agrees
well with the linear approximation from Eq. (37). For details
of the numerical procedure see Appendix B.
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FIG. 6. (Color online) Collective mode dispersion relation for
¢q=m/2, g =2, and 6y = /2 (solid lines). For comparison we
also plot the linear approximation (37) as dashed lines. The inset
shows that, at long wavelengths, we have two zero-sound modes.

VII. INSTABILITY OF SPATIALLY HOMOGENEOUS
SYSTEM

Apart from poles on the real axis corresponding to excita-
tion frequencies of collective modes, Eq. (32) can also have
purely imaginary eigenvalues that indicate the existence of
unstable modes growing exponentially with time. At the onset
of an instability we have an eigenvalue w = 0 and, depending
on the corresponding value of the wave vector ¢ = |q|, one
has a long-wavelength instability (¢ = 0) resulting in local
collapse of the system, or finite wavelength instability (g # 0)
leading to breaking of translational invariance and formation
of a periodic spatial structure (density waves).

A. Long-wavelength instability

Equation (41) shows that, if the instability occurs atg — 0,
the boundary of the instability region is determined by

A
)= s / L F G P @@, @)

and, hence, the instabilities could occur only in the regime of
intermediate coupling, g &~ 1.2

Equation (42) is equivalent to the Pomeranchuk criterion
[37] on the Landau f function to ensure stability of a three-
dimensional isotropic Fermi liquid [42]. We briefly review
this method and its generalization to the two-dimensional
anisotropic case.

’In Eq. (41), on the other hand, the prefactor on the LHS can become
arbitrarily small when vg))s gets close to the limiting velocity of the
PHC vy, and there is no generic restriction on the size of g for this
equation to have a solution (i.e., for zero sound to occur).
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In the framework of Fermi liquid theory [43], the change of
the quasiparticle momentum distribution function én(p) results
in the change in the energy density

5 = / Ssle(®) — hon(p)

1 dp dp
2m)? (2m)?

where f(p,p’) is the quasiparticle interaction function
(f function). A slight distortion Spr(¢) [note that in this
section, dpr is used another way than in Secs. V and VIII]
of the anisotropic Fermi surface pr(¢) corresponds to a
distribution function of the form

én(p) = O0lpr(®) + pr(@) — pl = 0lpr(P) — pl. (44)

Following Pomeranchuk [37], we expand 8€ in dpg: The
first-order term vanishes due to the fact that the energy of the
Fermi liquid, considered as a functional of §pp, is stationary
at §pr = 0. To second order we have

f(p.p)n(p)dn(p’), (43)

d
8 = 7 2[ / 20 @ mur(@)6pr (@)

dp d¢’
+ 2—2—PF(¢)19F(¢ VF(¢9,0")8pr(9)8pr(¢) |,

(45)

where F(¢,¢") = vf(pr,p’) is the dimensionless quasiparti-
cle interaction function already introduced in Eq. (35).

Thermodynamic stability requires that the variation of
the energy density be positive for any choice of dpg. This
condition can conveniently be formulated by expanding the
¢-dependent functions in Fourier (double) series f(¢) =
> fme™?, where f(¢) is one of pr(¢), 8pr(¢), and vr(¢),
and F($,¢") = Y, pw Fnm€ ™% where the coefficients
F,, . take the role of generalized Landau parameters.

Replacing the functions in the expression for §&€ by their
respective Fourier series expansions, we obtain

1
8 =—— 8 *Mm m’8 m’» 46
T 2 0 Mo dp (46)

m,m’

where the entries of the (self-adjoint) matrix M are

M mzpm kvm k+zpm kalpm - (47)
k.l

A 2D anisotropic Fermi liquid, therefore, is thermody-
namically stable if and only if all eigenvalues of M are
positive. In the case of isotropic interactions, we have M, ,, =
Sm.m' M, and the requirement of stability reduces to the usual
Pomeranchuk criterion (i.e., M, > 0 for all m € 7).

At the onset of an instability there exists an eigenvalue that
is equal to zero; that is, there is a nontrivial solution to the
equation

> M wSpw = 0. (48)

m’

In terms of the original Fermi surface deformation Spp this
equation reads

Spr(@) + —

—F 1) =0, 49
(¢)/ 6.6 pr(@)5pr(@) 49)
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and if we identify §pr with v we are led back to Eq. (42). The
line in the g6y plane on which this equation has a nontrivial
solution determines the boundary to the red-shaded region
that is labeled LWI in Fig. 9. In the interior of this region,
which agrees very well with the “collapse” regions in the
phase diagrams of Refs. [12,28], there exists an unstable long-
wavelength mode.

B. Finite wavelength (density wave) instability

An instability at finite momentum g = |q| drives the system
toward a state with stationary fluctuations in the density. We
address this problem numerically (see details in Appendix B).
After solving Eq. (B4) [which is equivalent to Eq. (32)]
numerically for g # 0, we find such an instability with ¢q =
/2 (i.e., q is perpendicular to the x axis—the projection of the
dipoles d on the xy plane) and g ~ 2 pr(¢gq) in the blue-shaded
region in Fig 9. As can be seen from Eq. (B4), the eigenvectors
Ve(p) ( Ay q/29p—q/2) Which correspond to an instability,
signal the formation of a density modulation with momentum

q (density wave). On the other hand, the dependence of vq(p)
on p excludes a description of the transition in terms of a
simple local order parameter (w (p)l//(p)) = p(q)cos(q - p).
In the isotropic case with 6y = 0, where there is no preferred
direction and the system is invariant with respect to rotations
around the z axis, the instability occurs at g &~ 1.45 and
is independent of the angle ¢q. This result is in agreement
with the value g ~ 1.42 which was found by the authors of
Ref. [40]. Previous studies within the RPA [28,33] predicted
a considerably smaller value of g = 0.5, which is due to the
fact that the RPA overestimates the effects of the interparticle
interaction because it neglects the exchange contribution.

Note that, for fph(p —p’,q) = Vo(q) (i.e., when only the
direct interaction is taken into account and the exchange one
is neglected), x (p; q) is p independent and Eq. (32) reduces to

1 — Vo(@%w,q) =0, (50)
where
P +4q
N%w,q) = >
p/

_ / dp np) —n@ +q
(2m)? w + e(p') — e(p’ + q) + i0sgn(w)
(51)

is the 2D polarization operator. Equation (50) is used to study
long-wavelength (¢ — 0) plasmon oscillations in electrically
charged systems (see, for example, [44]). Although keeping
only the direct interaction in the long-wavelength limit is
legitimate for Coulomb systems (because of the divergence
of the Coulomb interaction for a small transferred momentum
g — 0, while the exchange one is finite due to a nonzero
momentum transfer, |p — p’| ~ pr), this approximation gives
physically incorrect results in a Fermi system with a finite
Fourier transform of the interparticle interaction for small
momentum transfer (like in the considered case of a dipolar
monolayer). In this case, the direct and the exchange contribu-
tions are of the same order and keeping only the former yields
unphysical results. For a short range interparticle interaction
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(with a momentum-independent Fourier transform), the two
contributions have to cancel each other, resulting in no
interaction effects in a single-component Fermi gas with a
short-range interaction. Similar considerations also apply to
the analysis of instabilities in a dipolar system on the basis of
Eq. (32): Keeping the exchange contribution in this equation
is essential in order to obtain correct results consistent with
fermionic statistics of particles.

In order to take the exchange contribution into account
in Eq. (50), one can modify the polarization propagator by
including an entire interaction ladder in the polarization bubble
(this is equivalent to including the exchange interaction in f‘ph);
see also Ref. [40]:

1900+ T+ <>+

(Another possibility is to include a local field correction
[38,39], similar to the consideration of the density-density
response in Coulomb systems.) With the modified polarization
operator I[1(w,q), the density-density correlation function (in
frequency-momentum space) reads

O E— . [ (53)

— Vo(@I(w,q)

and Eq. (50) with [T (w, q) replaced with I1(w,q) corresponds
to the instability in the density-density correlation function.
Note that, when V;(q) is replaced by a momentum-independent
constant V{ (that corresponds to a short-range interaction),
the modified polarization operatoris IT(w,q) = I (w,q)[1 +
VolIO(w,q)]7!, and the density-density correlation function
reduces to the polarization operator of a noninteracting gas,
x(w,q) = M9w,q), as it should be in a single-component
Fermi gas.

M(w,q) =
(52)

VIII. SUPERFLUID TRANSITION

We now discuss the superfluid instability in a dipolar
monolayer at finite temperature 7 > 0. As we will show, this
instability is sensitive to the details of two-particle scattering
and, as was already pointed out at the end of Sec. II, this
requires us to take into account contributions of short distances
<lp and high energies 2 wy. Therefore, in the following we will
not limit ourselves a priori to configurations with all particles
residing in the ground state of the trapping potential but rather
allow for virtual transitions to arbitrarily highly excited states.

A. Gap equation

The superfluid transition is characterized by the order
parameter (gap)

An,n’(p) = /dpdzdz/e_ip-p(pn(Z)¢t1’(z/)
X Va(0,2)(¥ (0,2)¥(0,2))), (54)

which attains nonzero values for temperatures below the
critical temperature 7. Note that in two dimensions at finite
temperatures long-range order is actually destroyed by phase
fluctuations and the mean-field order parameter is zero. The
superfluid density, however, remains finite and the transition
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to the superfluid phase follows the Berezinskii-Kosterlitz-
Thouless scenario [45-47] and occurs at a temperature
TC(BKT). Nevertheless, we may consider the mean-field critical
temperature 7, as a reliable estimate of the value of 7.BKD,
as the difference between the two of them is small in the
weak-coupling regime [48].

For 0 < T, — T < T,, the order parameter is a solution
to the homogeneous Bethe-Salpeter equation in the Cooper
channel or linearized gap equation [42],

-

where Iy, is the particle-particle irreducible vertex, which
is the sum of connected diagrams with two incoming and
two outgoing lines which cannot be divided into two parts by
cutting two fermion lines of the same direction. In the above
diagrams, thick lines correspond to interacting Matsubara
Green’s functions in the presence of the transverse trapping
potential (see, for example, Ref. [42]),

G (w5,p) = _/dfdpdzdz/e“"”_""’)

X (@) T T (1.0.2)7(0.0.2)}),
(56)

where I/p\(r,p,z) and v/ (z,p,z) are Matsubara field operators,
T, orders these operators chronologically according to their
time argument t € [0,1/T], and fermionic Matsubara fre-
quencies are w; = (25 + 1)n T for integer s. Denoting the
matrix elements of the particle-particle irreducible vertex by
lﬂ"n,,nzm,n4 [cf. Eq. (5)], the analytical expression correspond-
ing to (55) reads®

Z l;"lgnzsnsm(P’p,)

n3,ng,ns,ne

XT " Guons (@3 0)Gngng (— 05 =) Mg g (P)-
s

Anl,nz(P) = _E

(57)

Following Gor’kov and Melik-Barkhudarov [41] we expand
the RHS of Eq. (55) to second order in the dipole-dipole
interaction V,

- Ts 0 E0».

(58)

3 Actually, the quantity f‘pp depends on the Matsubara frequencies
of incoming and outgoing particles, w, and wy, respectively. This
dependence, however, appears first in the second-order correction
8V, to the bare dipole-dipole interaction, where we need only take
into account the logarithmic contribution (see discussion below and
Ref. [41]), which is obtained for w, = wy = 0. Therefore, for our
purposes it is sufficient to consider fpp with frequency components
set to zero.
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Here, with each thin line is associated a noninteracting
Matsubara Green’s function, which is diagonal in the HO
quantum numbers and can be written in the form [43]

1

0) - , 59
D) = e ) — won o9

where £(p) = p?/(2m) — n. The chemical potential is u =
859) + 8, where the first-order correction u is given by
Eq. (28) [due to the exponential smallness of 7, (see discussion
below) we may use the zero temperature value of w]. Thus,
strictly speaking (58) contains terms of infinite order. It is,
however, convenient to perform the expansion in du at a later
stage.

Of the diagrams on the RHS of Eq. (58) the first one gives
the leading (first-order) contribution, the others correspond to
(second-order) corrections: The second diagram is obtained
from the first one by inserting an exchange self-energy part
(note that the direct term is absent for the dipole-dipole
interaction, see Sec. V). This diagram comes with a factor
of 2, as we could have equally well inserted the self-energy
part in the upper particle line. The quantity §V, represents
second-order corrections to the bare dipole-dipole interaction
and is given by the set of diagrams

8V, =8V +sV" sV 45V (60)
(a) § (b) %
(61)
(C) K :E:

These diagrams describe processes in which one of the
incoming particles polarizes the medium by exciting a virtual
particle-hole pair. In diagram (a) the particle and hole
annihilate each other while interacting with the other incoming
particle, whereas in (b), (c¢), and (d) the hole is annihilated by
one of the incoming particles: by the second incoming particle
in (b) and (c¢), and by the very same particle that created the
particle-hole pair in the first place in (d).

We denote the matrix elements of 6V, by 8V, ny.ns.m, [cf.
Eq. (5)]. Then, the diagrams on the RHS of Eq. (58) can be
written as

e ST St

/

Xgr(g)(_ws ) p )Ang n4(p )(2 )2 ) (62)
:@9 == Z ananzyﬂ3,n4(p —P/)T
n3,n4,ns
x Y G0, pHG (—wy, —p)
/
X Z DG (=, =P A s (P )2 o )2,
(63)
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/

/ n_dp
E0® = [ 13 Vim0~ 90 0 0 5
ns s

(64)
/Z‘Svm s (P —P)
xT Y G(wy.p)
ng)(_ws , — P )An3 ny (P ) (65)

Qr )2’

[Analytical expressions corresponding to the diagrams (62)
that make up § V,; will be given below; see Egs. (114) to (117).]

The sum over Matsubara frequencies in Eqgs. (62) and (65)
can be evaluated by rewriting it as a contour integral [49] and
gives

Knw@® =T Z G (ws.p)Gy (—w;, —p)

tanh [E(P)eron] + tanh [E(P);;wnn ]

2[2&(p) + wo(n + n')]

For n,n’ #0 and in the quasi-2D limit wy > u the
denominator in Eq. (66) is positive for all values of p and
the arguments of the hyperbolic tangent functions are as large
as wo/T. Then, to within exponential accuracy in this ratio,
we may approximate

(66)

1
K:n,n’(p) ~ 2$(p) + (,()()(n + }’l/)' (67)

If only one of n,n’ is different from zero, the denominator
in Eq. (66) is still positive for all p. For concreteness, let us
assume that n # 0 and n’ = 0. Then we set

1 4 sgn[&(p)]
K e —— 68
0P S p) + won] ©%
thereby omitting a subdominant contribution to the integral
(62) from a narrow shell in momentum space |(p)| < T
where tanh[£(p)/(2T)] deviates appreciably from sgn[£(p)].
Finally, in the case n = n’ = 0, (66) reduces to

K& (p)] = Ko,o(p) = tanh[£(p)/(2T)1/[26(p)].  (69)

In this expression, the denominator vanishes on the Fermi
surface [i.e., for £(p) = 0]. This leads in the limit 7/ < 1 to
a logarithmically divergent integral ocIn(7' /i) on the RHS of
Eq. (62) when n3 = ny = 0.

We have to keep contributions of second order in the gap
equation only if they are multiplied by such a large logarithm
[41]. In Eq. (63) this is the term with n3 = n4y = ns = 0 which
contains the factor

10
T Zg@(ws,p)g“”( s, —p)’ = 5@ [E(P)].  (70)

and in Eq. (65) it is the summand with n3 = n4 = 0. These
simplifications allow us to rewrite Eqs. (62), (63), and (65) as
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[A(P) = Ago(@), 2V(p) = Z( ()]

DQ = _/ Z vm,nz,nz,m(p - p,)’Cﬂ}-M(p/)
n3,ng

, dp’

X B (D)5 (1)

/ K / (1) 44/

__ / Va0 = B3 1ERYIE @)

. dp’

x 8050, (72)
(2] D == [ $Vawmante — OKEGNA®) 2
n1,n2,0, (27_[)2,
(73)

where C, (p) and K[£(p)] are given by Egs. (67)—(69),
respectively.

B. Renormalization

Apart from the region p’ ~ pf) , major contributions to
the integral in Eq. (71) that are actually divergent and need
to be cutoff come also from high momenta. This region,
however, is related to short interparticle distances, at which
the presence of other particles becomes irrelevant and the
dynamics corresponds to the scattering of just two particles
in vacuum. In the gap equation this two-body physics can
be taken into account by expressing the bare dipole-dipole
interaction in terms of the vertex function y,, u,.ns.0,(E.P,P")
for two particles in vacuum with a total energy E in their
center-of-mass reference frame. The Lippmann-Schwinger
equation for the vertex function [50] can be represented
diagrammatically as

SO Cu: g

where particle lines correspond to noninteracting zero-
temperature Green’s functions,

1
o — pt/2m) — won +i0’

GO(w,p) = (75)

For our purposes it is convenient to rearrange the order of
terms on the RHS of Eq. (74) as

Yarznsns (EsPsP) = Vi mynsnys (P — B')
_/ ZVI‘L],nz,l‘lj,n(,(E7p9q)Kn5,rl(,(E7q)

ns,ne

dq
Q2m)*’
where the kernel K, , (E,p) is given by the integral over
frequencies,

X VnSa”ﬁa”}JM(q - P/) (76)

_ 0) © dw
Kn,n’(Evp) = -1 Gn (E + w’p)Gn/ (—0), _P)Z

1
_ _ 77)
p/m+ wy(n +n')— E —i0
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Below we shall choose E = 2, in which case (77) becomes
1
2£(p) 4 wo(n +n") —i0’

In order to carry out the renormalization in the most
transparent way we rewrite the gap equation (58) and the
Lippmann-Schwinger equation (76) schematically as

Kn,n’(zl"/vp) =

(78)

A=-VKA-VIKEDA - 8sVKA, (79)
y=>U0—-yK)V. (80)

We “multiply” (79) from the left by 1 — y K. Then, using (80)
and neglecting terms that contain y VX" and y 8§V (those are

contributions of third order), we obtain the renormalized gap
equation

A=—yK—-—KA—-VIKZTPVA-SVEKA. (8])

In the renormalized gap equation, the kernel K, ,(p) has
been replaced by the difference /C,, ,(p) — K, (244, p) which
converges rapidly at high energies (i.e., high p and large HO
quantum numbers n and n’). To wit, for n = n’ =0, from
Eq. (69) we have

tanh[§(p)/(2T)] 1
25(p) 26(p) —i0°
(82)

Ko,o(p) — Ko,0(2u,p) =

which decays as 1/p* for p — oo, ensuring the convergence
of the integral over the momentum in the first term on the RHS
of Eq. (81) without the need to introduce an additional cutoff.
If either n or n’ is nonzero, with Eq. (68) we have

O[-&(p)]
28(p) + won
In Eq. (81) this results in a term that is O(u/wp) and may

safely be neglected. Finally, for both n and n’ not equal to
zero, with the aid of Eq. (67) we obtain

ICn,n/(p) - Kn,n’(2ﬂap) ~ 0 (84)

Therefore, in the propagators in Eq. (81), we may restrict
ourselves to the HO quantum numbers being equal to zero,
and we obtain a closed equation for A(p) = Ag,o(p). With

Y(E,p,p") = v0.0,00(E,p,p") and §Vo(p,p") = 8Vo,0,00(P,P)s
we have

1
A(p) = — /{V(zlu’p’p,) |:IC(§/) B m}

oK
+ Vo(p — p’)E(“(p’)E(s’)

+8Vo(p,p)K(E") } A(p)

K:n,O(p) - Kn,O(zl'va) N — (83)

dp’
Qm)?

To proceed, we need to find an expression for the vertex
function y 2u,p,p’).

(85)

C. Two-body vertex function

Iteration of Eq. (76) yields the familiar Born series.
Terminating this series at second order we obtain for n; =
Ny = N3 = Nyg = 0:

yQu,p,p) = yPQu,p,p) + y@Qu,p,p),  (86)
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where the first-order contribution is just the Fourier transform
of the effective 2D dipole-dipole interaction

yPCu,p.p) = Vo(p — p), (87)

and to second order we have to include virtual excitations to
higher HO levels at the intermediate stage of the interaction
[i.e., we have to take the sum over n,n’ € Ny (non-negative
integers)],

P — QVa(q—p) dq

(2) _

@np.p) = Z/2s<q>+wo<n+n/>—10<2n>2’
(88)

where Vn n (P) = VO 0,n,n’ (P) - n n’,0, O(P) EXphClt expres-
sions for these matrix elements—calculated exactly as well
as in WKB approximation—are given in Appendix C.

D. Asymptotic gap equation

In the integral on the RHS of Eq. (85), we perform the
change of variables

p=p¢,9) =

where p = (cos ¢, sin¢). We shall simplify the notation by
introducing the functions (avoiding to explicitly state the
dependence on & and ¢)

d /
f(E/)E/ zi [y 2u,p.p") + 8Vo(p.pH1AE @),

2m(g +¢0)p, (89)

d /
gEH = / zi vy u,p,p)AE @), (90)

N o d(ﬁ/ / (1) 4n/ /A
h(’;‘)z/EvVo(p—p)E (PHAEP).

With these definitions we can write the gap equation (85) in a
very compact form:

A=—/ d’ [K(S)f(é)JriC(S)h(é)— s¢") ]
—H

28 —i0
oD

In the second term on the RHS we integrate by parts.
Neglecting boundary terms that are of second order in the

AG.¢) =

e’

5 | 5 vele - p?)A0,9).

Our calculation of the critical temperature is carried
out in two steps: First we omit all terms on the RHS of
Eq. (96) but the first. This is equivalent to the commonly
used BCS approach and allows us to obtain the controlling
factor for the dependence of 7. on g as well as the leading

P 0
R A }— [, dm
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dipole-dipole interaction and are not multiplied by the large
logarithm In(7"/it), we obtain

8¢

26 —i0] "

92)

Inthe limit 7 /u < 1 the function KC(€”) behaves as JC(§7) ~
1/(2|¢’]). Hence, the main contribution to the integral over
the first term on the RHS of Eq. (92), as has already been
discussed above, is logarithmic in 7/ and comes from states
near the Fermi surface where |£’| < w. In order to single out
this contribution we divide the integral over &’ into two parts:
(a) the integration of }C(¢")[f(0) — A'(0)] from —pu to pu, and
(b) the sum of the integrals of IC(E")[ f(§") — h'(E") — f(0) +

h'(0)] over [—p, 1) and of K(E")[f(§') — h'(§")] over (11,00).
In part (a) we use the asymptotic formula

/ 2 Jtanh[£'/(2T)] 1n(2€y“>, ©3)
o 28/ 7T

A= / ds’{ms@[ﬂsd H(EN]
—H

where y ~ 0.5772 is the Euler constant, and in part (b) we
once more [cf. Eq. (68)] replace tanh[¢'/(2T)] by sgn(&”) and
integrate by parts. Consequently, keeping terms that are O(g?)
only when they are multiplied by the large logarithm In(7' /),
Eq. (92) takes the form

2e" /
A:—ln( )[f(O) h(0)]

1 ¢
+§/;Md§'ln

—/ dé'n |5
—u

The value & =0 corresponds to the momentum

I [fEN—N(E)—gE)]

| pelrE) — e + i%g(ox 94)

m(s(FO) + Su)

P+ @au, (95)
where u is the first-order correction to the chemical po-
tential (28). Inserting this expansion as well as the explicit
expressions (90) for f, g, and /& in the gap equation (94), we
obtain

8 /

2¢7 e g’ W om aVe(p—pY
—In{ —=F Volp—p¢) + 5 Mau + @262 p.p") + 8Vo(p.pY) | 20,4
xT 27r p})

(0)

5 [/ 9 Voo — pIAGE ¢)]

(96)

behavior of A(&,¢) in the limit g < 1. We will find that
T. x e exp(l /Ao), where Ay o< g. The calculation of the
prefactor of exp(1/A¢) in the second step requires us to take
account of all terms on the RHS of Eq. (96), which is referred
to as the GM approach.
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E. Critical temperature in BCS approach

Keeping only the dominant contribution on the RHS of
Eq. (96), we have

T do’
A<s,¢)=ln(ﬁ) / %VVO(P p?)AO.¢). ©O7)
F

We expand A(0,¢) in terms of a complete set of eigenfunctions
®,(¢),s € Ny of the integral operator with the kernel Vj (p(O)

(O) ), which for p )lo <« 1 can be written as [cf. Eq. (4)]

Vo(pl — p) ~ —(g/v)sin(l¢p — ¢'1/2)
x[cos(¢p + ¢’ )sm 6o + 2P>(cos b6p)].
93)

The expansion of A(0,¢) reads

A0,9) = D AD($), (99)

where the functions ®;(¢) satisfy the eigenvalue equation

/ 0 V() = ) 0,6 = 1@y, (100)
and are normalized to unity according to f [do/2m) P, (p) =
1. We label the eigenvalues A; such that A; < Ay for s < s’
Inserting the expansion (99) in Eq. (97) and specifying the
resulting equation to £ = 0 we obtain the set of equations, for
NS N(),

[1— A In(T/eD)]A, = 0. (101)

Thus, the existence of a nontrivial solution for A(0,¢) requires
at least the smallest eigenvalue Ao to be negative [note
that ln(T/e(FO)) < 0 since T/sjg) < 1]. Then the controlling
factor of the critical temperature follows immediately from
1—2 ln(Tc/sg))) = 0, and we have Ay # 0 whereas Ay =0
for s # 0. Solving the eigenvalue equation (100) numerically
reveals that, as the tilting angle 8y of the dipoles is increased,
Ao becomes negative at 6, ~ 0.72, and for 6y not too close to
6. the corresponding eigenfunction is well approximated by

Do(p) ~ V2 cos(¢)

(i.e., the order parameter has p-wave symmetry). Contribu-
tions from higher partial waves are important only in the
immediate vicinity of the critical angle and may safely be
neglected otherwise (see Fig. 7). Within the approximation
(102), the eigenvalue Ay equals the diagonal matrix element

d de¢’
ho A 2/ % cos(¢)/ %vvo(p(ﬁ) 0l ¥ ) cos(¢”)
= (g/7)(4/3 — 3sin ). (103)

In the BCS approach, therefore, for 6y = 6. the critical
temperature is given by

(102)

TC(BCS) — Sig))efﬂ/(g|4/373 sin? 9()\)7 (104)
and Eq. (97) determines the order parameter as
1 [d¢ /
AGE.¢) = — / wVo(p—pY ) @o(¢).  (105)
)\.0 2
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1 r
0.8

0.6

Cn

0.4 |

0.2 r

w/4 37/8 w/2

to

FIG. 7. (Color online) To solve (100) numerically we expand
®(¢p) in a Fourier cosine series [the integral operator in Eq. (100) does
not couple cosine and sine series and it turns out that ®((¢) can be rep-
resented as a cosine series; note that in this series expansion we retain
only those terms that ensure the correct parity of the order parameter,
AE.¢+7) = —AE.$)] Do(d) = V2, ¢, cos[(2n — 1)¢] with
sufficiently large N and solve the resulting linear system for the
coefficients c¢,. The above plot shows the coefficients ¢, (solid blue
line), ¢, (dashed green line), and c¢; (dotted red line) as functions of
90 for 90 > 90~

We note that within the BCS mean-field theory with only the
p-wave contribution to the order parameter [12], the same
exponent appears in the expression for the gap at 7 = 0 as in
Eq. (104).

F. Critical temperature in GM approach
As we have pointed out earlier, within the BCS approach it
is possible to obtain only the controlling factor [the exponential
in Eq. (104)] of the dependence of T, on g. In order to find the
correct prefactor we proceed by substituting the ansatz

T, = (w /e T B (106)

into Eq. (96). We set £ = 0 in the resulting equation, multiply
it by ®¢(¢), and take the integral over the angle ¢. Using the
normalization condition of the eigenfunction ®, we obtain, to
leading order in g,

w o im
ln< (0)> —7—1H<267>
1 0]
)\—/2— (¢)/ d&'In
L0 (p® —p)A ]
- U P)AE )

107)
where the correction §1 to the eigenvalue X is composed of
four contributions:

Sho = 0ag" +8A5™ + 8™ + 810, (108)
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Physically, & )L(()Bp ") and 8A0™ are due to the fact that the pairing
occurs between quasiparticles and not bare particles [these
corrections contain the Fermi surface deformation (29) and
the effective mass (31), respectively, see discussion below],

Skgmb) has its origin in the many-body corrections 6V, to the
|
d d¢’
5APP) 4 520m) — / _¢¢0(¢)/ aé ﬂo
27 2 p;)

9 ©
ag_-/ [V (pF

With the aid of Egs. (100) and (105), the expression for
8297 can be put in the form

52070 — 2/ _q>0(¢)/ ¢/U5pF(¢)
xp- VVo(pY — p) ®o(9),

where the Fermi surface deformation §pr is given by Eq. (29)
[the exponential smallness of 7, allows us to use the zero
temperature expression (27) for the self-energy].

For 82.3" we find

8)\83'") :/§—¢¢’0(¢)/ d¢/v8mn(1¢/)

xVo(pl — pi) @o(¢), (111)

with ém(¢) given by Eq. (31). Performing the angular integrals
in Egs. (109) and (111), we find

16 I 1
?gz sin2 90 <§ — g sin2 90) s
(112)

2 2 -2 .4
—mg (200 — 820 sin” Gy + 829 sin” ).

(110)

©6pr) __
S =

5)\,83"1) —

(b) Many-body corrections. The leading many-body cor-
rections are given by

53 = / 9 o) / 0 V(o ) 0ot
(113)

where the analytical expressions corresponding to the dia-
grams (60) that make up §V; read

8V (p.p)) = [Vo(p-)I?
n(q+p-/2)—n(q—p-/2) dq
E(q+p-/2) —&(q—p-/2) —i0 (2n)*’
(114)

sV (p.p)) = —Vo(p_) / Vo(q — p4/2)

n(q+p-/2)—n(q—p-/2) dq
E(q+p-/2) —&(q—p-/2) —i0 (27)?’
(115)
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bare interaction, and 8)»85) incorporates the second-order Born
correction to the two-body vertex function.

(a) Self-energy corrections. The terms in Eq. (108) that
involve the self-energy X! and the correction to the chemical
potential . are

/)2(1)(p’)A($’,¢/)]E,_O}.

! 0) ()
aVo(py —pr') | dVo(py —p
( F ) 4 ( F F ) 8/1/(1)0(45/)
ap ap’

(109)

8V (p,p)) = —Vo(p-) / Vo(q + p+/2)

y n(q+p-/2)—n(q—p-/2) dq
E(q+p-/2) —&(q—p-/2) —i0(2n)*’
(116)

5v()(d)(p,p/) = — [ Vo(q — p-/2)Vo(q + p-/2)

y n(q+ps/2) —n(q—py/2) dq
E(Q+p+/2) —&(q—p4/2) —i0(2n)?
(117)

(we are neglecting contributions that involve excited states
of the transverse trapping potential because they contain an

additional factor of ef)/wo < 1). Here pr =p=xp/, and

n(p) = G(p(o) — p) is the Fermi-Dirac distribution at zero
temperature [the use of n(p) at zero temperature is justified
by the exponential smallness of 7;]. Performing a numerical
integration we find

5™ = ¢%(0.37 — 1.67sin> 6y + 1.82sin* 6p).  (118)

(c) Second-order Born correction. The second-order Born
correction (88) to the vertex function results in the contribution

d d¢’' '
BAEBE/ f%("’)/ %”V@(28§3)ap(19)’139)‘Do("’)
(119)

to §Ao. We decompose (119) as a sum of contributions with
fixed HO quantum numbers at the intermediate state of the
second-order scattering process, (SA(()B) =D w 5.7 where

nn’
sl = [ 52 [

« Vn,n’ (pF - q) Vn ' (q p(lg) ) dq
28(Q) + wo(n +n') —i0  (2m)?°

For n = n’ = 0 we find the asymptotic expression

f Do(¢)Po(9")

(120)

sa "= g2 (0.35 —

+21()<1—
g In(n ( 5

1.56 sin 6y + 1.79 sin* 6,

9 41

< sin 6 + 2> sin’ 00) —iZh.
(121

063633-15



L. M. SIEBERER AND M. A. BARANOV

Note that, despite the smallness of n = prly, terms which
are proportional to g*In(n) represent a small correction to
Ao = O(g) in the limit where g/n =r /1y < 1.

We are left with the calculation of the contribution to the
second-order Born correction that involves excited states of the
transverse trapping potential, AP = BAEB) - 8)\5)30) . In terms
of new summation indices that may be interpreted as “relative”
and “center-of-mass” HO quantum numbers, we put it in the
form

[s] N 00 N
(B) _ (B) (B) .
8)‘* - Z Z BANJrn,an + Z Z S)LNJrnfl,an’
N=1n=-N N=1n=-N+1

(122)

that is, we separate parts in which the sum of HO quantum
numbers is even and odd, respectively.

For the present purpose we rewrite the WKB matrix
elements (C8) and (C9) as

1 8 2
Vaan Nen(D) = ] — —E—e=*/@N)
N-+n.N=n(P) 2N nnve
) (plo)*
X [u(p) sin“ 6y — 2P>(cos Bp)] ————,
[u(p) o 2( 0)](pl0)2+2N
(123)

and

Viin iy a(p) = 2i =S (1) e 12720
TNV
plo
(plo)* + 2N~
(124)

X sin(26p)v(p)

Inserting these expressions in Eq. (120) and performing the
integrals we find, in the limit n — O,

2
(B) 8 —n?/N
8AN+n,an Z_(T[N) € "/

x 2 4in* 0 +43sin49 (125)
3 °" 12 o)

7( 8\ _oipy/n .
M bt N-n = —g<m> e~ 2N sin(26,).

(126)

In the second line we are actually restricting ourselves to
the asymptotic behavior of 8)\(1\12,171 N_n for N — 00, which,
however, gives a sufficiently accurate approximation even for

N = 1. We insert Eqs. (125) and (126) into (122) to obtain

8)»553) = —#gz |:Sl (% — 4sin” 0, + g sin* 90>
7. . )
+6 S5 sin(26)) } , 127)
where the sums S, for « = 1,2 are given by
o0
Sa =D Su(N)/N?, (128)
N=1
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with
N N
—n2 o 5
Si(N) = N SNy = Y TN,
n=—N n=—N+1

(129)

These sums can be calculated semianalytically with the result
818 = g%(—0.02 — 0.01 sin? 6y + 0.03 sin* ). (130)

Adding the contributions of Eqgs. (112), (118), (121), and
(130) we obtain the correction to the eigenvalue X:

Sho = g%(0.52 — 2.47 sin* Oy + 2.83 sin* )

+ 22 In(n)(0.25 — 1.13 sin> 6y + 1.28sin* 6y).  (131)

In the third term on the RHS of Eq. (107) we express the
gap A(&',¢’) via (105) and perform a numerical integration.
We find that this term gives a contribution

(g/10)*(—0.14 + 0.63 sin® 6y — 0.71 sin* 6y)

to ln(w/egg)).

The combination of Egs. (107), (131), and (132) yields
the final expression for the critical temperature in the GM
approach (6y = 6,):

(132)

2¢7e?
T. ~ — f@)n*™ exp(—m/g|4/3 — 3sin® 6p), (133)
T
where
0.52 — 2.47 sin% 6, + 2.83 sin* 6
o) = . (134
F(Bo) = exp <0.18—0.8151n290+0.91sin490) (134)
and
0.25 — 1.13sin% 6y + 1.28 sin* 6
2(0p) = sin“ 6y + sin” 6y (135)

0.18 — 0.815sin26y + 0.91 sin* 6y

Figure 8 shows the critical temperature as a function of the
tilting angle for values of g and 5 that correspond to a gas of
polar KRb molecules. The corresponding eigenfunction ®(¢)
for the order parameter is given by Eq. (102).

4
3,
=)
E 9l
&
1,
oL ‘ ‘
0 w/4 w/2

0

FIG. 8. Critical temperature as a function of 6, for g ~ 1.2
and n ~ 0.2. These values correspond to a gas of KRb molecules,
with n,p = 4 x 108 em™2 and wy = 27 x 100 kHz; see discussion
in Sec. IX.
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IX. SUMMARY AND CONCLUSION

In this paper, we studied various properties of a quasi-
2D dipolar Fermi gas. Using the (conserving) Hartree-Fock
approximation at 7 = 0, we found that the normal phase
is characterized by an anisotropic Fermi surface, which—in
order to minimize the interaction energy—is elongated along
the projection of the dipoles on the plane of confinement
(here, the x axis). Consequently, the dispersion relation of
single-particle excitations is anisotropic, too, with an increased
effective mass in the x direction and a decreased effective mass
in the y direction (see Fig. 2).

Long-wavelength collective excitations (zero sound), cor-
responding to deformations of the equilibrium Fermi surface,
can propagate through the medium only when the tilting angle
exceeds a value of 6y ~ 0.5, which depends only weakly on g
for (atleast) 0.1 < g < 2. In this regime we found two distinct
modes, symmetric and antisymmetric about the propagation
direction, respectively.

The experimental observation of zero sound requires 7' so
low that the attenuation is negligible. Note, however, that for
6y > 6, ~ 0.7 (the critical angle for the superfluid transition)
we also require T > T, for the observation of zero sound,
although under certain conditions, zero sound can still persist
below T, (see discussion in Ref. [36] and references given
therein).

At higher values of g and for large tilting angles, we found
complex eigenfrequencies of the long-wavelength collective
modes indicating the instability of the system toward collapse
in this part of the phase diagram; see Fig. 9. Instabilities
with finite momentum that drive the system toward a state
with periodic density modulation, which breaks translational
symmetry, appear at small tilting angles. This phase can
be detected experimentally using Bragg spectroscopy. In the
isotropic case with 6y = 0 (dipoles are aligned perpendicular to

/2
3m/8+t SF
< w4y
/8 NFL
% 05 1 15 >

g

FIG. 9. (Color online) Phase diagram of the quasi-2D dipolar
Fermi gas at T = 0. For 0 < g < 1.45 and small tilting angles the
system is a normal Fermi liquid (NFL). The transition to the superfluid
phase (SF) occurs at the critical angle 6, ~ 0.7217. In our perturbative
approach, which is—strictly speaking—valid only for g < 1, this
value is independent of g. At moderately strong interactions there
appears a density wave phase (DW) in the lower part of the phase
diagram and a long-wavelength instability (LWI) in the upper part.
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the plane of confinement) also rotational symmetry is broken,
and it is believed that three density waves form a triangular
lattice to minimize the breaking of rotational symmetry [33].

Finally, let us discuss prospects for observing the superfluid
transitions in the quasi-2D dipolar Fermi gas at finite temper-
ature. In current experiments with KRb at the Joint Institute
for Laboratory Astrophysics (JILA), electric dipole moments
of d =~ 0.3D are available. Then, assuming an area density
of nyp ~ 4 x 108 cm? corresponding to & ~ 100 nK, the
dimensionless coupling constant takes the value g & 1.2. Note
that, strictly speaking, this value of g lies beyond the weak-
coupling regime in which Eq. (133) is valid. However, this
formula still provides an estimate for the onset of superfluidity
in the intermediate-coupling regime.

The strong confinement condition is realized for a trans-
verse trapping frequency of wy = 2w x 100 kHz, so that
n ~ 0.2. For the above value of g the system is stable up
to a tilting angle of 6y &~ 1.3 (see Fig. 9). Then we have T, =
0.04852) ~ 4 nK, which is comparable to the values of T, that
are to be expected in bilayer systems (see Refs. [14,18,19]).
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APPENDX A: CALCULATION OF HF SELF-ENERGY

In order to solve Egs. (22) and (24) for pp it is convenient
introduce another unknown function f(¢) according to

f@) = pr@)/py” — 1. (AD)
The expansion of f in a Fourier series takes the form
f@) = cycos2ne); (A2)

neN

that is, the constant term is absent, as is immediately apparent
by inserting the definition (A1) into Eq. (23). Moreover, due
to the symmetry of the problem, terms which are proportional
to sin(n¢) or cos(n¢) with odd n do not appear.

We solve for the Fourier coefficients ¢, by iteration. As
initial values we take the results from first-order perturbation
theory (see Sec. V):

c,(f) _ {%g sin@y forn =1 (A3)
0 forn =2,3,....

The iteration scheme consists of repeatedly carrying out the
integrals [which result from the combination of Egs. (22), (24),
(A1), and (A2)]

1
D = % / dx f dode’ cosng)x[1 + fFD(P)]
0
xvVo (V1 + (@b — pPxy/T+ fFO(@HP),

(A4)
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for given values of g and 6y, where we keep coefficients up to
n = 4 [i.e., terms in the series (A2) up to cos(8¢)] and f(¢)
is obtained by replacing ¢, in Eq. (A2) by c¢\). A measure for
the convergence of this procedure is the relative change in f
in one step of the iteration process,

||f(i+1) _ Z (cE,H'l) cﬁ,’))
1FD] o
and we terminate the iteration when this quantity drops below
1073,
From the final result for f we immediately obtain py by
inverting Eq. (A1). Then, £ and ¢ follow from Eq. (19), and

by taking the gradient in Eq. (19) we obtain the Fermi velocity
(26) as

1 d¢’ [Pr
= —[pF - / a¢’ f dp'p'vV Vo(pr — p’)] (A6)
m 2 0

APPENDX B: NUMERICAL SOLUTION
TO BETHE-SALPETER EQUATION

Sl

(A5)

To solve Eq. (32) numerically it is advantageous to rewrite
it in a form that is symmetrized with respect to the transferred
momentum q. Toward this end, we introduce the shifted
function %q(p) = x(p — q/2; q). Then we have

~()—fdp/f( ) (B1)
Xq\P) = (27_[)2 ph(P —P-q
n(p —q/2) —n@P +4q/2)
w+e(p' —q/2) —&(p' +4q/2)
The factor n(p’ — q/2) — n(p’ + q/2) in the numerator on
the RHS restricts the area of integration as depicted in

Fig. 10. Rewriting the integral in polar coordinates p’ =
p'(cos @', sin ¢’) and in terms of a new function

Xq(P)
w+eP—q/2)—eP+q/2)
Eq. (B1) becomes [for the definition of the angles ¢ that limit

the ¢’ integration see Fig. 10; p1(¢’) are the angle-dependent
upper and lower boundaries for the integration over p']

[w+e(P—q/2) —e(p+ q/2)]ve(P)

1 b+ d¢ p+(8) = ,
=5= / dp'p'Tpn(P — P, @)vq(P)
27 Jy (@)

1fﬂ+¢+ d¢’ p+(¢)
27 Javo. 27 Jpoe

We introduce a new variable x € [0,1] that parametrizes

the momentum as p(x,¢) = p_(¢) + [p+(¢) — p_(¢)]x and
discretize the resulting integrals over x’ and ¢’.

Xq(@)- (B2)

ve(p) = (B3)

dp'p'Tun(p — p'.@)ve(P).
(B4)

APPENDX C: MATRIX ELEMENTS V,, .

In this Appendix we present explicit expressions for the
matrix elements (5) with n3 = ny = 0, which appear in the
second-order term (88) in the Born series for the two-
body vertex function. Omitting the momentum-independent
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q/2 q/2

—q/2

—q/2
O+

q/2 A

—q/2

FIG. 10. (Color online) Area of integration in Eq. (B1) and
definition of the limiting angles ¢, for three different values of
q, with |q] < 2pr(¢q) (top left), [q] =2pr(dy) (top right), and
lal > 2pr(¢) (bottom).

contribution (see footnote 1), with the aid of the integral
table [51] we find, for n + n’ € 2Nj,

’ 1 !
Vi (B) = 2"+ iy ™21 (+++”)

x(d*/ lo)[u(p) sin® By — 2 P>(cos Hp)]

;2 1
X(plo)1+n+n el 15/21" <—n 212/2) , (Cl)

where u(p) = (p? — pi)/pz, and I'(z) and T'(v,z) are the
complete and incomplete Gamma functions, respectively. For
n+n' € 2Ny + 1, with v(p) = p1/p, we have

+n+n/
2

ntn o /2) R (er)

Vi (P) = (=1 /2" ntn/ V2T <1
x(2d?/ lo)v(p) sin(26y)

X(pl0)1+n+n/epzlz/2r (

The relatively complicated functional dependence of the
matrix elements V, ,» on the momentum p prevents us from
calculating the integrals in Eq. (120) analytically. We avoid
this problem by using WKB matrix elements [52] instead of
the exact ones.

The WKB eigenfunctions of the one-dimensional HO,
which give good approximations to the exact eigenfunctions
forn > 1, are [9]

$n(2) = (=1)"v/2may/[7 pa(2)] cos[ W (2) — /4],

where the position-dependent momentum p,(z) and the phase
W, (z) are given by

(C3)

pn(2) = V2mlE, — V(2)], (C4

Wo(2) = / " 47 (@), (C5)
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FIG. 11. (Color online) Top: Solid and dashed lines correspond
to VO (p) with n =0,2,...,10, calculated exactly and in WKB
approximation, respectively. (We do not use the WKB approximation
in the case n = 0, hence there is no dashed line corresponding to the
uppermost solid line.) Bottom: Same as above, for Vn(r,)l +1(p) with
n =0,2,...,10. In both figures higher values of n correspond to

darker colors.

with the potential V(z) = mw3z*/2 and the HO energy levels
E, = wo(n + 1/2). Above expression for ¢,(z) is valid in the
classically allowed region [i.e., for values of z such that E,, >
V(z)] and far away from the two turning points at £z, =
+ly+/2n + 1, at which the kinetic energy is zero, p,(+z,) =0
or, equivalently, E, = V(&£z,).
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The HO ground-state wave function decays exponentially
on a scale that is set by /. Therefore, the integration in the
matrix elements V,, , is essentially restricted to the interval
|z| < lp. For these values of z we may use the approximations

Vi(2)  ppz + (/4)(2n + 1).
(C6)

DPn(2) & pp(0) = py,

The WKB wave function (C3) then becomes

&n(2) = (—=1)'/2mwy /(7w p,) cos(puz +nm/2). (C7)

Consequently, for the matrix elements V,, ,,» in WKB approxi-
mation we find

"V~ —(n—n")?/[A(n+n’
Vn,n’(p)wz(l’l—kn) 1/26‘ ( )7 /[4(n+ )](dZ/lo)

x[u(p) sin® @y — 2 P,(cos 90)]%

(plo* +n+n’
(C8)

for even n + n’, and
Vi (p) & 4i" " = (=M tntn)]
d? in(260)v(p) plo (©9)
X — sin v
lo ’ p(l?lo)2+1+n+n’

foroddn +n'.

In order to conveniently compare the exact results for V,, ,/
with those obtained in WKB approximation we introduce
reduced matrix elements which are real, dimensionless, and
depend only on the magnitude p of the momentum. For even

n +n’ the reduced matrix element V,ff;/( p) is defined via the

relation
d? -2 (]
Vo (p) = E[”(P) sin” 6y — 2Pa(cos )1V, (p), (C10)
and, for odd n 4 n’, we set
N ®
V() = lEv(p)VM/(p)- (CI11)

Figure 11 compares the reduced matrix elements in the WKB
approximation with the exact ones. Quantitative agreement
improves with increasing HO quantum numbers (correspond-
ing to darker colors in Fig. 11) and is, however, satisfactory
even forn,n’ > 1.
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