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Ground-state Dirac monopole
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We show theoretically that a monopole defect, analogous to the Dirac magnetic monopole, may exist as
the ground state of a dilute spin-1 Bose-Einstein condensate. The ground-state monopole is not attached to
a single semi-infinite Dirac string but forms a point where the circulation of a single vortex line is reversed.
Furthermore, the three-dimensional dynamics of this monopole defect is studied after the magnetic field pinning
the monopole is removed and the emergence of antimonopoles is observed. Our scheme is realizable with the
current experimental facilities.
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I. INTRODUCTION

Topologically nontrivial configurations of quantum and
classical fields play a fundamental role in the physics of various
phase transitions ranging from superfluids to the early universe
[1,2]. In particular, they can give rise to exotic quantum states
relevant to electromagnetism [3], elementary particles [4],
grand unified theories [5], and cosmology [6]. Given the
difficulties of making detailed observations on cosmological
scales or probing conventional matter on ultrashort length
scales, experimental evidence for many of these topological
excitations is scarce and indirect at most.

Dilute ultracold Bose gases with a spin degree of freedom
can host a variety of topologically interesting structures,
such as coreless vortices, knotted textures, skyrmions, and
several types of monopoles [7–15]. The high controllability of
these quantum systems and their observability using optical
imaging techniques allow, in principle, detailed experimental
investigations of the various defects. In practice, topologically
nontrivial configurations occur as excited states and their
topological nature dictates that they cannot be easily created
from a topologically trivial ground state. In particular, config-
urations relevant to tabletop experiments of exotic phenomena
in high-energy physics and cosmology can be especially
challenging to create in an atomic gas since they require
intricate manipulation of the atomic cloud in all three spatial
dimensions [16–20].

A major step forward was taken recently when a robust
method for creating an analog of the Dirac monopole was
proposed [20]. The Dirac monopole [3] is the simplest
model for a magnetic point charge, which unlike its electric
counterpart, has not been convincingly observed. In Ref. [20],
the monopole defect was created into the spin texture of
a dilute Bose–Einstein condensate (BEC) by adiabatically
modifying external magnetic fields. The resulting monopole
state is not the ground state of the system because of its
tendency to degrade due to dynamical instabilities associated
with the Dirac string. In this Article, we demonstrate that an
analog of the Dirac monopole in an atomic gas can exist as a
ground-state configuration. We find that in an experimentally
feasible time-independent magnetic field the ground state of
the BEC corresponds to a strong-field seeking state (SFSS)
with a monopole defect. A similar defect is also found

for the weak-field seeking state (WFSS). In contrast to the
previous studies, we find that the minimum-energy monopole
is not attached to a single Dirac string with two circulation
quanta but is manifested as a point where the circulation of
a single-quantum vortex is reversed. A similar configuration
may be obtained from the ideal Dirac monopole by applying
a gauge transformation [21]. Our results show that the Dirac
monopole is a physically viable concept and can represent a
robust and long-lived state.

We consider a condensate of 87Rb atoms with ferromag-
netic spin-spin interactions [22]. The total hyperfine spin of
the constituent atoms is F = 1, and the order parameter is
a three-component spinor field. In the presence of a strong
external magnetic field, the condensate spin tends to align with
the local field. Hence external fields can be used to imprint
topologically nontrivial spin textures to the condensate. For
topological reasons, the ferromagnetic phase cannot sustain
stable isolated pointlike defects [23]. This does not, however,
completely exclude the existence of point defects, as they may
appear as endpoints of quantized vortices. These defects are
characterized by a geometric charge Q3D corresponding to the
area on the unit sphere covered by the condensate spin as one
encloses the point defect in the spatial coordinate space [20].

Let us consider an external magnetic field which is a
combination of two crossing quadrupole fields,

B(r) = B ′
1(xêx + yêy) + B ′

2zêz. (1)

Since B is a monopole-free field, Maxwell’s equation ∇ · B =
0 imposes a condition 2B ′

1 + B ′
2 = 0. The alignment of the

hyperfine spin with the magnetic field in Eq. (1) gives rise to a
spin texture that is depicted in Fig. 1(a) and has the geometric
charge Q3D = 1. The analogy to the Dirac monopole comes
from the vorticity �s = ∇ × vs , where vs is the superfluid
velocity. The vorticity �s is equivalent to the magnetic field
of a magnetic monopole and the Dirac monopole can be
considered as a point source of the superfluid flow. Using
the Mermin-Ho relation [24], the geometric charge Q3D of the
spin texture can be related to the total vorticity in the system.
Vorticity corresponding to the spin texture in Fig. 1(a) takes
almost everywhere the radially outward hedgehog form

�s = h̄

mr ′2 êr ′ (2)
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FIG. 1. (Color online) (a) Spin texture corresponding to the
magnetic field in Eq. (1). (b) Vorticity �s corresponding to the spin
texture in panel (a). Vector fields in panels (a) and (b) are symmetric
with respect to rotations about the axis depicted with the dashed line.
(c) Illustration of the polar angles α and β used to parametrize the
local magnetic field B.

in the scaled units (x ′,y ′,z′) = (x,y,2z) [20]. This establishes
the analogy to the magnetic monopole proposed by Dirac [3].

II. MEAN-FIELD THEORY

In the zero-temperature limit, the stationary states of the
condensate are solutions to the time-independent Gross–
Pitaevskii (GP) equation [25],

H[�]�(r) = μ�(r), (3)

where the Hamiltonian for a spin-1 condensate is

H[�] = ĥ(r) + c0|�(r)|2 + c2�
†(r)F�(r) · F. (4)

Here, F = (Fx,Fy,Fz)T is a vector of spin-1 matri-
ces and ĥ(r) is the single-particle Hamiltonian given by
ĥ(r) = −h̄2∇2/2m + Vopt(r) + gF μB B(r) · F , where gF is
the Landé g-factor and μB is the Bohr magneton. Un-
less otherwise mentioned, we consider a three-dimensional
optical trapping potential Vopt(r) = mω2

r r
2/2. The coupling

constants are given by c0 = 4πh̄2(a0 + 2a2)/3m and c2 =
4πh̄2(a2 − a0)/3m, where af is the s-wave scattering length
corresponding to the channel with total hyperfine spin f . The
Hamiltonian in Eq. (4) corresponds to a free-energy functional
of the form [25,26]

E[�] =
∫

d r
[

h̄2

2m
|∇�(r)|2 + [Vopt(r) − μ]|�(r)|2

+ c0

2
|�(r)|4 + c2

2
|S(r)|2 + gF μB B(r) · S(r)

]
,

(5)

where S = �†F�. The dynamics of the BEC is solved from
the time-dependent GP equation, ih̄∂t� = H[�]�, where H
is given in Eq. (4).

Let us write the stationary order parameter in the form
� = ϕζ , where ϕ is a scalar field and ζ is a spinor field
normalized to unity. Assuming that the condensate spins align
with the local field, the free energy of the system can be written

as [27]

E[�] =
∫

d r
{
ϕ†

[
1

2m
(−ih̄∇ + mvs)

2 + gF μBB(r)

+ h̄2

2m
[|∇ζ |2 + (ζ †∇ζ )2] + Vϕ†ϕ

]
ϕ

}
, (6)

where V is the local interaction potential. Equation (6) is
a Hamiltonian for a scalar particle with order parameter ϕ,
and it is equivalent to the Hamiltonian for charged particles
coupled to a vector potential A. Hence the equation of
motion for the condensate is equivalent to that of charged
particles in an electromagnetic field. The vector potential of
the electromagnetic field corresponds to the superfluid velocity
of the condensate if we set mvs = q A [27].

For an optically confined BEC, minimization of the energy
in Eq. (5) results in a condensate in the SFSS which is lower in
energy than the WFSS. We stress that only the SFSS monopole
represents a robust ground-state configuration. In order to
study a realistic minimum-energy WFSS, we consider a purely
magnetic trap provided by the two quadrupole fields in Eq. (1).

We parametrize the magnetic field using
polar angles α and β [Fig. 1(c)] such that
B(r) = |B|(sin β cos α, sin β sin α, cos β)T . As the Landé
g-factor is negative for spin-1 87Rb and we are considering
the WFSS, the hyperfine spin S is antiparallel with the local
magnetic field. In the eigenbasis of the spin operator F̂z, the
order parameter can be expressed as⎛

⎜⎝
�1

�0

�−1

⎞
⎟⎠ = f e−iγ

⎛
⎜⎝

e−iα sin2(β/2)

− 1√
2

sin β

eiα cos2(β/2)

⎞
⎟⎠ = f e−iγ ζ , (7)

where f is the amplitude of the order parameter and ζ if fixed
by Eq. (1). We substitute the order parameter in Eq. (7) into
Eq. (3) and denote � = f0ζ , where f e−iγ = f0. This gives a
reduced GP equation which can be written in the dimensionless
form as

− 1
2 [∇̃2 + 2(ζ †∇̃ζ ) · ∇̃ + (ζ †∇̃2

ζ )]f̃0

+ |B̃|f̃0 + (c̃0 + c̃2)f̃0
3 = μ̃f̃0. (8)

Here μ̃ = μ/h̄ωr , B̃ = μB B/h̄ωr , f̃0 = a
3/2
r f0, c̃i =

ciN/(a3
r h̄ωr ), and ar = √

h̄/(mωr ). We normalize the
complex-valued function f̃0 to unity as

∫ |f̃0|2dr̃ = 1. The
minimum-energy density and phase distributions are solved
from Eq. (8) using the standard imaginary-time propagation
combined with finite-difference methods. The strong-field
seeking ground state is found by minimizing the free energy
in Eq. (5) with full-spin degrees of freedom using the
successive over-relaxation method. The temporal evolution
of the monopole defect is solved from the time-dependent
GP equation using the split-operator and Crank–Nicolson
methods.

III. NUMERICAL RESULTS

The mass of a 87Rb atom is taken to be m = 1.44 ×
10−25kg, the Landé g-factor is gF = −1/2, and the total
number of atoms N = 8 × 104. For the coupling constants of
87Rb, we use the value c2/c0 = −0.01 and adopt c̃0 = 7500.
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FIG. 2. (Color online) Particle densities corresponding to
(a) WFSS and (b) SFSS for x > 0. The densities are given in the units
of N/a3

r . The field of view is (a) 8 × 16 × 8 and (b) 6 × 12 × 14 in
the units of a3

r .

For ωr = 2π × 250Hz, the dimensional values for the
parameters are given by B ′

1 = 0.1 T/m for the simulations with
the WFSS and B ′

1 = −0.03 T/m with the SFSS. The volume
considered in the simulation is 23 × 23 × 28 in the units of a3

r .
The computational grid consists of 141 × 141 × 161 points.

For both SFSS and WFSS, the minimum-energy configu-
ration corresponds to a monopole defect associated with two
vortices (Dirac strings), each carrying a single quantum of
angular momentum. Both strings carry vorticity toward the
monopole defect which lies in the zero point of the magnetic
field. In Ref. [20], the Dirac monopole is associated with
only one vortex line that carries two quanta of vorticity. For
energetic reasons, it is natural that this two-quantum vortex
splits into two singly quantized vortices in the ground-state
configuration [28,29].

In the WFSS, the Dirac strings lie on the z axis because
the magnetic trap is strongest along this direction. For the
SFSS, the confinement in the z direction is weaker than in
the x and y directions due to the symmetric optical trap,
and the two strings lie in the xy plane. For the SFSS,
we also consider an asymmetric optical trap of the form
Vopt(r) = m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2. In general, the Dirac

strings associated with the monopole defect lie along the
direction that minimizes the length of the vortex lines. Particle
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FIG. 3. (Color online) Densities of the three spinor components
for (a) WFSS and (b) SFSS. In both panels, the top segment corre-
sponds to |�1|2, the central segment to |�0|2, and the bottom segment
to |�−1|2. The colorbar scales are in the units of N/a3

r . The segments
are bounded by density isosurfaces for spinor components for x > 0.
On the plane x = 0, the isosurfaces are capped with a density
colormap for the corresponding spinor component. In panel (a),
all isosurfaces correspond to density 1.4 × 10−3 N/a3

r and the singly
quantized vortices are manifested as density depletion along the z

axis. In panel (b), the vortices lie on the y axis and the isosurfaces
correspond to densities 1.2 × 10−3 N/a3

r for |�1|2 and |�−1|2 and
4.5 × 10−4 N/a3

r for |�0|2.
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FIG. 4. (Color online) (a) Spin density for the strong-field-
seeking ground-state monopole in the z = 0 plane. Spin density
is depleted along the two vortices, which lie on the y axis.
The figure corresponds to spin densities from 0.1 × 10−4 N/a3

r

to 0.92 × 10−4 N/a3
r . (b) Spin of the ground-state monopole. The

arrows represent the projection of the spin to a plane corresponding
to x = 0. The Sx component is zero in this plane.

densities for the SFSS and WFSS are shown in Fig. 2. For
the WFSS, the vortices corresponding to the Dirac strings are
singular and the particle density vanishes at the vortex core. In
the case of the SFSS, particle density is only partially depleted
along the two vortices, implying that they are polar-core
vortices [30]. The particle densities for each spin state in the
WFSS and SFSS are shown in Fig. 3. In the SFSS, the two
vortices are manifested as a depletion in the spin density [see
Fig. 4(a)].

Vorticities and spin textures corresponding to SFSS and
WFSS were found to be qualitatively similar, and we present
further results only for the SFSS. The condensate spin is shown
in Fig. 4(b), and one observes that the spin indeed tends to align
with the local magnetic field. From Figs. 5(a)–5(c) we observe
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FIG. 5. (Color online) (a)–(c) Vorticity of the ground-state
monopole at different locations. (d)–(f) Temporal evolution of
vorticity at fixed location. In panels (a)–(c), arrows represent a
projection of the unit vorticity �̂s = �s/|�s | to the xz plane
for (a) y = 0.8 × ar , (b) y = 0 × ar , and (c) y = −0.8 × ar . In
panels (d)–(f), y = −0.7 × ar at time instants (d) t = 2/ωr ,
(e) t = 6/ωr , and (f) t = 8/ωr . The y component is presented with
the colormap.
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RUOKOKOSKI, PIETILÄ, AND MÖTTÖNEN PHYSICAL REVIEW A 84, 063627 (2011)

t= 2/ωr t = 10/ωr
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FIG. 6. (Color online) Schematic representation of the temporal
evolution of the monopole defect. The spheres represent the atomic
cloud and the black lines correspond to vortices. The arrows illustrate
the direction of vorticity associated with the single-quantum vortices.
The condensate is depicted at two instants of time t = 2/ωr and
t = 10/ωr . In the top panels the condensate is viewed along the y

axis and in the bottom panels, along the z axis.

that near the monopole defect vorticity takes the hedgehog
form of Fig. 1(b).

Next we study the dynamics of the monopole after the
external magnetic fields are turned off. We take the initial state
to be the strong-field-seeking ground state with vortices on
the y axis. The fields are turned off instantaneously and the
state is evolved up to 10/ωr with a time step 10−4/ωr . During
the time evolution, the Dirac strings are observed to expand, see
Figs. 5(d)–5(f). Furthermore, two antimonopoles emerge from
the boundary of the condensate and move toward the center
of the trap. The emergent antimonopoles are characterized by
Dirac strings that carry vorticity outward from the monopole.
Similarly to the ground-state monopole, the Dirac strings are
coreless vortices. We note that the Dirac strings associated with
antimonopoles guarantee that the total vorticity remains zero
after the antimonopoles emerge. A schematic representation of
the temporal evolution is shown in Fig. 6, and high-resolution

figures of the simulation are available in the supporting online
material [31]. At the end of the simulation, the vorticity of the
monopole defect has spread out and is no longer strictly of the
hedgehog form.

In conclusion, we have shown that a monopole defect may
exist as the ground state of a dilute ferromagnetic spin-1
BEC in the presence of an experimentally feasible magnetic
field configuration. Vorticity of this defect is analogous to
the magnetic field of a magnetic monopole. The ground-state
monopole is associated with two Dirac strings that extend
symmetrically outward from the monopole defect. From the
relation between the geometric charge of the monopole defect
and the total vorticity in the system, it follows that each of
the two coreless vortices associated with the SFSS monopole
defect carry a single quantum of angular momentum. This is
remarkable, since in general the angular momentum associated
with coreless vortices is not quantized. Thus, the monopole
defect is responsible for the quantization of coreless vortices
similarly to the Dirac magnetic monopole, which imposes the
quantization of electric charge. If monopoles are to appear
spontaneously in BECs, one would expect for energetic
reasons that they are associated with two singly quantized
vortices instead of a single two-quantum vortex. Hence such
monopoles are of great interest. In the experiments, the
ground-state monopole can be created during the cooling
process, without the need to adjust the external magnetic fields
in time. These monopoles are expected to be extremely robust
and long lived.
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