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Universal relations for the two-dimensional spin-1/2 Fermi gas with contact interactions

Manuel Valiente, Nikolaj T. Zinner, and Klaus Mølmer
Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and Astronomy,

Aarhus University, DK-8000 Aarhus C, Denmark
(Received 30 September 2011; published 20 December 2011)

We present universal relations for a two-dimensional Fermi gas with pairwise contact interactions. The
derivation of these relations is made possible by obtaining the explicit form of a generalized function—selector—
in the momentum representation. The selector implements the short-distance boundary condition between two
fermions in a straightforward manner and leads to simple derivations of the universal relations, in the spirit of
Tan’s original method for the three-dimensional gas.
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I. INTRODUCTION

The physics of strongly interacting quantum many-body
systems has been one of the most active fields of research
for a number of decades. Strongly correlated states of matter
are ubiquitous in many areas of physics ranging from atomic,
molecular, optical [1], condensed matter [2] and the study of
quantum phase transitions [3], and quark-gluon plasma [4]
to the physics of neutron stars [5]. A prominent example is
the observed non-Fermi liquid behavior in high-temperature
superconducting materials suggesting a strongly coupled state
beyond the Landau paradigm [6]. Perturbative approaches to
strongly coupled quantum systems are untenable, and even
modern numerical techniques can be hard to apply. It is
therefore of great interest to have analytical insights into
systems where interactions are strong.

Research in strongly interacting three-dimensional (3D)
Fermi gases has experienced an intense growth since the
recent appreciation of Tan’s universal relations [7]. These
important results relate many of the many-body properties,
such as the adiabatic change of the energy when varying
the two-body scattering length, the asymptotic momentum
distribution, the two-body loss rate [8], and the pressure to
a single quantity called the contact, and were recently verified
experimentally [9,10]. These universal relations and quantities
involved therein have received much recent attention [11–21].

Interestingly, Tan relations have also been obtained for the
one-dimensional (1D) Fermi gas [22], by means of the operator
product expansion [23] that had been successfully applied in
3D [8]. However, less is known about these universal relations
for the two-dimensional (2D) Fermi gas. Only the energy
theorem [24–26], which relates the energy of the system to
the momentum distribution, the large-momentum tail of the
latter [25,26], and the adiabatic theorem [26], have been so
far derived, and only in the homogeneous, or untrapped, case.
The problem has been recently investigated numerically in
Ref. [27].

In this paper, we derive the universal relations for the zero-
range interacting spin-1/2 Fermi gas in 2D, with or without
an external trapping potential. To do so, we use Tan’s original
method involving a generalized function, called Tan’s selector.
We find the explicit form of the selector in momentum space,
in analogy with its 3D counterpart recently obtained by one of
us [28]. Our approach greatly simplifies the derivation of the
adiabatic theorem with respect to more conventional methods.

Once the adiabatic theorem is shown, we use it to derive the
generalized virial theorem, the pressure relation, and the two-
body loss rate.

II. SYSTEM HAMILTONIAN

The zero-range interacting many-body Hamiltonian for
N = N↑ + N↓ spin-1/2 fermions has the form

H =
N∑

i=1

p2
i

2m
+

N∑
i<j=1

V (rij ) +
N∑

i=1

W (ri), (1)

where m is the particle’s mass, rij = |ri − rj |, W is a
single-particle external potential, and V is the 2D regularized
pseudopotential [29]:

V (r) = 2πh̄2

m
δ(r)r

∂

∂r
, (2)

which is a particular member of the Olshanii-Pricoupenko �

family of pseudopotentials [30]. Note that the pseudopotential
(2) does not depend on the 2D scattering length a, which
only enters the problem through the boundary condition at
short-interparticle distances ψ(rij ) ∼ ln(rij /a). The universal
singlet binding energy in the homogeneous case (W = 0) can
be seen to be [31]

EB = 4h̄2e−2γ

ma2
, (3)

where γ = 0.577 215 665 . . . is Euler’s constant. The binding
energy is the most appropriate fitting parameter of the theory
in momentum space, as we see in the following paragraph.

III. TAN’S SELECTOR

To derive the universal relations for the Fermi gas in 2D,
we will make use of Tan’s original method [7], particularized
to two dimensions. In Ref. [24], Tan defined two selectors, η̃

and l, the last of which is unnecessary in 2D, and involves the
logarithm of a dimensioned quantity. The η̃ selector satisfies∫

d2rη̃(r) = 1,
∫

d2rη̃(r) ln(r/a) = 0, while η̃(r) = 0 for r �=
0.
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We here redefine the momentum representation η(k) of η̃(r)
as follows:

η(k) = 1 (k < ∞), (4)∫
d2kη(k)

1

h̄2k2/m + EB

= 0, (5)

where EB is the two-body universal binding energy, Eq. (3). It
is easy to see that Eq. (5) is equivalent to Eq. (16b) of Ref. [24],
but our condition is more natural and represents a clear way of
writing the two-body bound state integral equation. Proceeding
in analogy to the 3D case [28], we see that

η(k) = 1 + ln

(
2e−γ

ka

)
δ(1/k)

k
. (6)

The above explicit form for η(k) will prove crucial for the
derivation of the two-dimensional adiabatic theorem.

IV. ENERGY THEOREM

In Ref. [24] Tan stated, without derivation, that the energy
of the 2D Fermi gas can be written as

E =
∑
kσ

η(k)
h̄2k2

2m
nkσ + 〈W〉, (7)

where nkσ = 〈c†k,σ ck,σ 〉, with ck,σ the spin-σ annihilation
operator at momentum k, is the momentum distribution, and
W = ∑

W (ri) is the total external potential.
To prove Eq. (7) it is sufficient to consider a pure,

normalized state |φ〉 with Nσ fermions of spin σ =↑, ↓ and a
total number of fermions N = N↑ + N↓:

|φ〉 = 1

N↑!N↓!

∫
dRdSφ(R,S)

N↑∏
i=1

ψ
†
↑(ri)

N↓∏
j=1

ψ
†
↓(sj ) |0〉, (8)

where R (S) is shorthand for r1, . . . ,rN↑ (s1, . . . ,sN↓ ), and
the integrals are done over the whole 2N -dimensional space.
Above, ψ†

σ (r) is the spin-σ creation operator at position r, and
|0〉 is the vacuum.

Tan’s derivation [7] for the 3D gas can be followed in
parallel for the 2D case until the following expression is
encountered:∫

dR′d2r0

∫
d2t η̃(t)∇2

t K(R′,r0,t), (9)

where R′ = (r2, . . . ,rN↑ ,s2, . . . ,sN↓), r = r1 − s1, r0 = (r1 +
s1)/2, and K is defined as

K(R′,r0,t) =
∫

r<ε

d2rφ∗(R′,r0,r)φ(R′,r0 + t/2,r + t), (10)

where φ(R′,r0,r) stands for φ(R,S), with r1 and s1 replaced
by r0 + r/2 and r0 − r/2, respectively. In Eq. (10), ε > 0 is a
small, positive quantity with dimensions of length; however it
is much larger than t = |t|. The goal is to show that the integral
in Eq. (9) vanishes since, if it does, relation (7) holds [7]. First,
we expand φ as

φ(R′,r0,r) = A(R′,r0)[ln(r/a) + O(r)], (11)

and

A(R′,r0 + t/2) = A(R′,r0) + ∇r0A(R′,r0) · t/2 + O(t2).

(12)

We obtain K = K0 + K1, with

K0 ≈ π |A(R′,r0)|2 t2

2
[ln(t/a) − 1], (13)

K1 ≈ πA∗(R′,r0)
t3

4
[ln(t/a) − 1]∇r0A(R′,r0) · t̂. (14)

Inserting K into (9), we see that the integral vanishes, as we
wanted to show.

We can express the energy relation in Eq. (7) more explicitly
by using the form of the η selector in Eq. (6) as

E = h̄2 ln(2e−γ )

2πm
�C

+
∑
k,σ

h̄2k2

2m

[
nk,σ − C

k3(k + a−1)

]
+ 〈W〉, (15)

where � is the area and C = limk→∞ k4nk,σ is the 2D contact
density. The above relation, Eq. (15), was expressed in a
somewhat different manner by Combescot et al. in Ref. [25]
and by Werner and Castin in Ref. [26]. The tail of the
momentum distribution was found in Refs. [25,26] to be
∝1/k4, and therefore the contact C is a finite quantity.

V. ADIABATIC THEOREM

The adiabatic theorem states the relation between the
contact and the change in energy as the scattering length is
slightly varied. This is the central result among the universal
relations for the Fermi gas, since it is needed to derive the virial
theorem, the pressure relation, and the inelastic two-body loss
rate.

The fact that the 2D pseudopotential, Eq. (2), does not
depend explicitly on the scattering length adds a complication
to the proof of the adiabatic theorem that was not present in
3D and 1D. Indeed, the Hellmann-Feynmann theorem, which
was employed to derive this important result in 3D by Braaten
and Platter [8] and in 1D by Punk and Zwerger [22], cannot
be applied directly to Eq. (2) nor to any member of the so-
called � family of pseudopotentials [29,30]. In addition, Tan’s
approach to the 2D problem [24] lacked a simple dependence
of the η selector on the scattering length. These two facts have
prevented a simple derivation of the adiabatic theorem using
regularized pseudopotentials, which has been first shown by
Werner and Castin [26] who obtained it using the Bethe-Peierls
boundary condition. Below, we present a very simple proof of
the adiabatic theorem by using the explicit form, Eq. (6), of
the η selector.

We begin by defining the following operator:

ηaT ≡
∑
k,σ

η(k)(h̄2k2/2m)c†k,σ ck,σ , (16)

where η(k) corresponds to the scattering length a. It is then
easy to see that

E(a′) − E(a) = 〈φ(a)| ηaT − ηa′T |φ(a′)〉
〈φ(a)|φ(a′)〉 , (17)
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where E(a) and φ(a) are an energy eigenvalue and associated
eigenstate of Hamiltonian (1), respectively, corresponding to
the scattering length a. Using Eq. (6) we find

E(a′) − E(a)

ln(a′/a)
=

∑
k,σ

h̄2k2δ(1/k)

2mk

〈φ(a)| c†k,σ ck,σ |φ(a′)〉
〈φ(a)|φ(a′)〉 .

(18)

If we now take the limit a′ → a in the above equation, we
obtain the desired adiabatic theorem

dE

da
(a) = h̄2�

2πma
C. (19)

An immediate application of the adiabatic theorem is the
calculation of the contact for a weakly coupled 2D Fermi gas.
The energy density for the spin-balanced case is given by [32]

E

N
≈ h̄2k2

F

4m

(
1 − 1

ln(kF a)

)
, (20)

where N is the number of particles and kF is the Fermi
momentum. The contact in this limit is therefore given by

C = πρk2
F

2 ln2(kF a)
. (21)

where ρ = N/� is the particle density.

VI. GENERALIZED VIRIAL THEOREM

We assume now that the system is under an external po-
tential of the form W (r) ∝ rβ , which has not been considered
before for the 2D case. In this case, we will show that the virial
theorem reads

E = β + 2

2
〈W〉 − h̄2�C

4πm
. (22)

To see this, we follow a technique used for the 3D gas [7].
We begin with a state φ corresponding to the scattering length
a. We slightly change the scattering length to a′ = (1 + ε)a,
with ε small, associated with state φ′ which has energy E′.
Expanding E′ in powers of ε, and using the adiabatic theorem,
Eq. (19), we find

E′ = E + ε
h̄2�C

2πm
+ O(ε2). (23)

We now define a rescaled wave function φ′′(R,S) ≡ (1 +
ε)Nφ′((1 + ε)R,(1 + ε)S). Expanding φ′′ as in Eq. (11), we
find that φ′′ is a state at scattering length a′′ = a′/(1 + ε) = a.
Using the scaled wave function in the expectation value of the
energy, we find its energy E′′ to be

E′′ = (1 + ε)2E′
in + (1 + ε)−β〈φ′|W |φ′〉, (24)

where E′
in = E′ − 〈φ′|W |φ′〉. Expanding E′′ in powers of ε,

we obtain E′′ − E′ = 2εE′
in − βε〈φ′|W |φ′〉 + O(ε2). From

the quadratic convergence properties of variational energies
[33], we have E′′ − E = O(ε2), and therefore, using Eq. (23)
twice, we obtain

2εEin − βε〈φ|W |φ〉 + ε
h̄2�C

2πm
= O(ε2), (25)

which, after taking the limit ε → 0, proves the virial
theorem (22).

VII. PRESSURE RELATION

For a homogeneous system (W = 0), there is a relation
between pressure, energy, and contact, which has been derived
in 3D [7,8] and 1D [22]. In 2D, it is given by

P = E

�
+ h̄2C

4πm
, (26)

To show Eq. (26), we follow most of the steps taken for the
proof of the virial theorem (22), and we arrive at the expression

P� = lim
ε→0

E′′ − E

1 − (1 + ε)−2

=
(

2E + h̄2�C

2πm

)
lim
ε→0

ε

1 − (1 + ε)−2
. (27)

Using L’Hôpital’s rule in the above equation, we obtain the
desired pressure relation (26).

VIII. INELASTIC TWO-BODY LOSS RATE

Two-particle loss rates can be calculated [8] by adding a
small imaginary part aI (|aI | � |a|) to the scattering length,
so that we replace a → a + iaI . The resulting complex energy
is then expanded as E(a + iaI ) = E(a) + iaI dE/da(a) +
O((aI )2), and the inelastic loss rate � is identified as −�/2 =
aI dE/da. Using the adiabatic theorem (19), we obtain

� = −aI

h̄2�C

πma
+ O((aI )2). (28)

IX. CONCLUSIONS

We have obtained the universal Tan relations for the two-
dimensional spin-1/2 Fermi gas with zero-range interparticle
interactions. These results can be tested with current exper-
imental techniques such as Bragg [10] or RF spectroscopy
[9,34,35], already available for the two-dimensional Fermi
gas [36]. Our methodology is close to the original approach
for the three-dimensional problem [7]. The power of our
approach relies on obtaining the explicit form, in momentum
representation, of the so-called Tan’s selector, which expresses
the contact conditions between two particles with a given
scattering length in closed form. This allowed us to overcome
the fact that the Hamiltonian of the system does not depend
on the two-body scattering length, and led us to a more
straightforward derivation than with conventional methods.
Our method is directly applicable also to universal three-
body physics in two dimensions [37–39] where additional
three-body contact parameters were recently proposed in the
three-dimensional case [40,41]. This is an interesting direction
for future study.
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