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Atom-interferometric techniques for measuring uniform magnetic field gradients
and gravitational acceleration
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We discuss techniques for probing the effects of a constant force acting on cold atoms using two configurations
of a grating echo-type atom interferometer. Laser-cooled samples of 85Rb with temperatures as low as 2.4 μK have
been achieved in a new experimental apparatus with a well-controlled magnetic environment. We demonstrate
interferometer signal lifetimes approaching the transit time limit in this system (∼270 ms), which is comparable to
the time scale achieved by Raman interferometers. Using these long time scales, we experimentally investigate the
influence of a homogeneous magnetic field gradient using two- and three-pulse interferometers, which enable us
to sense changes in externally applied magnetic field gradients as small as ∼4 × 10−5 G/cm. We also provide an
improved theoretical description of signals generated by both interferometer configurations that accurately models
experimental results. With this theory, absolute measurements of B gradients at the level of 3 × 10−4 G/cm
are achieved. Finally, we contrast the suitability of the two- and three-pulse interferometers for precision
measurements of the gravitational acceleration, g.
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I. INTRODUCTION

Atom interferometers (AIs) have been employed to inves-
tigate a host of inertial effects over the past few decades. Such
effects include the acceleration due to gravity [1–5], gravity
gradients [6–8], and rotations [9–11]. Raman interferometric
measurements of gravity [1–3] use cold atoms and transit
time-limited experiments in an atomic fountain to reach a
precision of ∼3 parts per 109 (ppb) with 1 min of interrogation
time. This technique requires two phase-locked lasers to drive
Raman transitions between two hyperfine ground states. It also
requires state selection into the mF = 0 magnetic sublevel to
avoid sensitivity to B fields and B gradients, as well as velocity
selection to guarantee that all interfering atoms have the same
initial subrecoil velocity.

In contrast to the Raman interferometer, the grating echo-
type AI [12,13] uses a single off-resonant excitation frequency
that drives a cycling transition with the same initial and final
state. This AI requires no internal state or velocity selection,
and has reduced sensitivity to both the ac Stark effect (which
scales inversely with the excitation field detuning) and the
Zeeman effect. Additionally, as we will show on the basis of a
theoretical model, the intensity of the AI signal is insensitive
to uniform B gradients provided the atoms are pumped into a
single magnetic sublevel—which need not be mF = 0.

In this work, we use two configurations of the grating echo
AI to demonstrate experiments with time scales comparable to
those of Raman AIs. An improved theoretical description of the
echo AI has enabled accurate modeling of experimental data
from which sensitive measurements of an externally applied
B gradient can be extracted. This model is sufficiently general
to describe many time-domain configurations of grating echo
AIs, while accounting for a constant force on the atoms, as
well as the sublevel structure of the atomic ground state.
Recent work [14] has shown that measurements of the phase
of the electric field are less sensitive to mirror vibrations with
a particular configuration of this AI. Here, we investigate the
influence of B gradients on the same AI configuration, which
validates our predictions of gravitational effects, and indicates

that this AI is particularly well suited for precise measurements
of the gravitational acceleration g.

We begin with a review of the two AI configurations used
in this work, which are illustrated in Fig. 1. The two-pulse
echo AI [12,13,15,16] utilizes short (Raman-Nath) standing
wave (sw) pulses to diffract a sample of laser-cooled atoms at
t = T1 into a superposition of momentum states: |nh̄q〉. Here, n
is an integer and q = k1 − k2 ≈ 2k is the difference between
the traveling wave vectors comprising the sw. At t = T2, a
second sw pulse further diffracts the atomic wave packets—
creating sets of center-of-mass trajectories that overlap and
produce interference in the form of a density modulation in
the vicinity of t

(2)
echo = T1 + (N̄ + 1)T21, where T21 ≡ T2 − T1

and N̄ = 1,2, . . . is the order of the echo, as shown in
Fig. 1(a). The induced density modulation is coherent for
τcoh = 2/qσv∼3 μs about these “echo” times, beyond which
the modulation dephases due to the distribution of velocities in
the sample. Here, σv = (2kBT /M)1/2 characterizes the width
of the velocity distribution along ẑ. A traveling wave pulse
is applied along the ẑ direction in the vicinity of t

(2)
echo to

“read out” the amplitude of the grating by coherently Bragg
scattering light along the −ẑ direction. The duration of this
signal is limited by the coherence time τcoh. Due to the nature
of Bragg diffraction, this back-scattered light is proportional
to the Fourier component of the density distribution with
spatial frequency q. This harmonic is only produced by the
interference of momentum states that differ by h̄q (�n = ±1).
As a result, the two-pulse AI exhibits a temporal modulation
at the two-photon atomic recoil frequency, ωq = h̄q2/2M , and
is therefore sensitive to recoil effects.

The three-pulse “stimulated” grating echo AI (henceforth
referred to as the three-pulse AI) was first demonstrated in
Ref. [13] using a single hyperfine ground state, and was termed
a “stimulated” echo due to similarities in pulse geometry
with the stimulated photon echo scheme [17–20]]. Recent
work involving this interferometer [14] has shown certain
advantages over the two-pulse scheme for phase measurements
of the atomic grating. The three-pulse AI involves applying

063623-11050-2947/2011/84(6)/063623(17) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.063623


B. BARRETT, I. CHAN, AND A. KUMARAKRISHNAN PHYSICAL REVIEW A 84, 063623 (2011)
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FIG. 1. (Color online) Recoil diagrams for the two-pulse (a) and
three-pulse (b) AIs in the absence of any external forces. Standing
wave excitations are labeled by SW1–SW3. At t = T1 the atom
is diffracted into a superposition of momentum states differing
by integer (n) multiples of h̄q. A second sw pulse is applied at
t = T2 which further diffracts the atoms. In the two-pulse case,
interference between states differing by h̄q (�n = ±1) occurs at
times t

(2)
echo = T1 + (N̄ + 1)T21. For the three-pulse scheme, a third

sw pulse is applied at t = T3 which produces interference at times
t

(3)
echo = T1 + (N̄ + 1)T21 + T32. Examples of interfering trajectories

for N̄ = 1 and 2 are labeled by solid black and dashed blue lines,
respectively. Circles indicate locations where interference fringes
occur with spatial frequency q.

two sw pulses at t = T1 and t = T2, followed by a third pulse
applied at t = T3 = T2 + T32. This pulse geometry produces
an echo in the vicinity of t

(3)
echo = T1 + (N̄ + 1)T21 + T32, as

shown in Fig. 1(b). However, unlike the two-pulse AI where
all pairs of trajectories produced by the second pulse interfere
at the echo times, for the three-pulse AI only momentum states
of the same order (�n = 0) after the second pulse produce
interference at the echo times for arbitrary T21 and T32. For this
reason, the signal produced by this interferometer as a function
of T32 (with T21 fixed) is insensitive to atomic recoil (i.e., no
temporal modulation) and is therefore ideal for probing other
effects—such as those due to a constant force on the atoms.

Reference [21] extensively reviews the grating echo AI and
discusses applications relating to atomic recoil [15,16,22–25],
gravity, and magnetic gradients [26].

Previous experiments based on this AI [12,13,15,16,22–
24,27] were typically limited to T21 < 10 ms by decoherence
effects due to spatially and temporally varying B fields.
Additionally, the sample temperature (typically ∼50 μK)
and excitation beam configuration (fixed frequency sw with
∼0.5 cm diameter) limited the transit time in these experi-
ments. In this work, we have improved the level of B-field

and B-gradient suppression by using a nonmagnetic vacuum
chamber, which has enabled the extension of AI signal
lifetimes. The magnetically controlled environment allows a
sample of 85Rb atoms to be cooled to temperatures as low as
2.4 μK. By expanding the excitation beam diameter to ∼2 cm,
and chirping the sw pulses to cancel Doppler shifts, echo AI
signal lifetimes of ∼220 ms and transit times of ∼270 ms have
been achieved. These time scales are comparable to those of
fountain experiments involving Raman AIs [1,2,28]. To the
best of our knowledge, long-lived grating echo AI signals have
so far only been observed by using magnetic guides to limit
transverse cloud expansion [14].

The experimental apparatus presented here has made it
possible to exploit the aforementioned advantages of the
grating echo AI for a variety of precision measurements,
such as the atomic recoil frequency [25] and the gravitational
acceleration [21], that are currently underway. Additionally,
we recently utilized this apparatus to perform a coherent
transient experiment with cold Rb atoms to achieve a precise
determination of the atomic g-factor ratio [29].

In this article, we utilize long-lived signals to investigate the
effects of B gradients using both the two-pulse and three-pulse
grating echo AIs [13,14]. The influence of B gradients on AI
experiments is of interest for precise measurements of g, and
has been considered in the past. Reference [30] calculates how
both gravity and B gradients affect the visibility of interference
patterns in atomic diffraction experiments. A Raman AI is used
in Ref. [30] to map spatial variations in the B gradient along
the trajectory of an atomic fountain. In previous work [26],
we demonstrated the effect of both gravity and B gradients
on the two-pulse grating echo AI. A theoretical description of
these effects based on a spin-1/2 system was able to explain
the basic signal dependence on the pulse separation, T21, but
was insufficient to model experimental data.

This work relies on an improved theoretical description
of a generalized grating echo AI that includes an arbitrary
number of sw excitation pulses, the effects of a constant
force on the atoms, spontaneous emission, and the sublevel
structure of the atomic ground state (the 5S1/2 F = 3 state of
85Rb is used in experiments). Coupled with these theoretical
predictions, we achieve sensitivity to changes in B gradients
at the level of ∼4 × 10−5 G/cm. This quantity is comparable
to the ∼3 × 10−5 G/cm resolution recently achieved using a
Raman interferometric technique [31]. In addition, absolute
measurements of B gradients as small as 3 × 10−4 G/cm, and
sensitivity to the curvature of B fields are demonstrated. These
studies help place limits on the sensitivity of a broad class of
time-domain AIs to B gradients.

We also consider implications for achieving precise mea-
surements of g using the two- and three-pulse grating echo
AIs. In particular, analysis of the three-pulse AI suggests there
are significant advantages for measuring g over the two-pulse
AI. Although the experimental apparatus used in this work
is not designed to detect gravitational effects, predictions of
the grating phase modulation due to gravity for both AIs have
been validated by measuring the effects of externally applied B

gradients. Measurements of g using these AIs will be presented
elsewhere.

This article is organized as follows. In Sec. II we present
theoretical predictions for the two- and three-pulse AI signals
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in the presence of a uniform B gradient. In Sec. III, we describe
details related to the experimental apparatus. We present
the results of experiments related to long signal lifetimes
in Sec. IV, and discuss measurements of B gradients using
both the two-pulse and three-pulse techniques. Section V
discusses the feasibility of a precise measurement of g using
the formalism developed to describe B gradients. We conclude
in Sec. VI. The Appendix presents a calculation of the signal
generated by a generalized grating echo AI—encompassing
the two- and three-pulse AIs—in the presence of a constant
force.

II. THEORY

In this section, we present the key results of calculations for
both the two- and three-pulse AI signals in the presence of a
homogeneous B gradient. Details of the calculations—which
are sufficiently general to account for any constant force on
the atoms, and an arbitrary number of excitation pulses—are
presented in the Appendix.

In general, the sensitivity of these interferometers can be
characterized by the space-time area they enclose. Since only
those states differing by h̄q at the echo time contribute to the
signal, the area of both AIs is primarily controlled by T21. In
the absence of any external forces, the areas of the two- and
three-pulse AIs can be calculated by inspecting their recoil
diagrams [Figs. 1(a) and 1(b), respectively]:

A(2) = h̄q

2M
N̄ (N̄ + 1)

(
T

(2)
21

)2
, (1a)

A(3) = h̄q

2M

[
N̄ (N̄ + 1)

(
T

(3)
21

)2 + 2N̄T32T
(3)

21

]
, (1b)

where M is the mass of the atom. Henceforth, quantities
containing superscripts (2) or (3) indicate the interferometer
for which that quantity applies. At first glance, it might
appear that the three-pulse AI encloses a larger area than the
two-pulse AI due to the extra term in Eq. (1b). However,
one must compare the enclosed areas at the same echo
times, which are given by t

(2)
echo = T1 + (N̄ + 1)T (2)

21 and t
(3)
echo =

T1 + (N̄ + 1)T (3)
21 + T32 for the two- and three-pulse schemes,

respectively. By setting t
(2)
echo = t

(3)
echo, it can be shown that

A(2) − A(3) = h̄qN̄T 2
32/2M(N̄ + 1). This suggests that the

two-pulse AI is always more sensitive to external forces than
the three-pulse AI. Nevertheless, the three-pulse AI offers
a unique feature: The spatial separation between interfering
wave packets remains constant between the application of
the second and third sw pulses. This is advantageous because
larger spatial separation leads to increased decoherence, and
therefore reduced time scale in the experiment [14]. Since the
separation can be precisely controlled by the pulse separation
T21, one can increase the signal lifetime by using smaller T21.

Additionally, since the signal generated by the two-pulse
AI is modulated at the recoil frequency ωq , there are periodic
regions where the signal-to-noise ratio is less than one and not
well suited for accurate phase measurements. However, the
three-pulse technique is insensitive to atomic recoil if T21 is
fixed. Therefore, the scattered field amplitude has no additional
modulation at ωq as T32 is varied—allowing regions of low
signal-to-noise ratio to be avoided.

Both the gravitational force and a constant B gradient
produce a constant force on the atoms, F = F ẑ, which
induces a phase shift in the atomic interference pattern. The
basic physical mechanism that causes this phase shift is a
difference in potential energy between the two arms of the
AI. One can compute the relative phase between the two arms
�φ = (SB − SA)/h̄ using the classical action [3]:

S(t) =
∫ t

0
L[z(t ′),ż(t ′)]dt ′, (2)

where L = Mż2/2 + Fz is the Lagrangian in this case. If SB

and SA represent, respectively, the action along the upper and
lower arms of the two-pulse AI, it can be shown that the phase
shift between these arms is

�φ(2) = N̄ (N̄ + 1)

[
ωqT21 + qF

M
T 2

21

]
+ N̄2qv0T21, (3)

where v0 is the initial velocity of the atom along the ẑ direction.
The term proportional to v0 is due to the relative Doppler
shift between the two arms of the AI. Since the atomic
sample has a finite velocity distribution (characterized by a
1/e radius, σv , and temperature T ), this term is responsible for
the coherence time of the echo: τcoh = 2/qσv . As expected, the
contribution to the phase shift from the potential energy (the
term proportional to F) is independent of the initial velocity
of the cloud.

A similar calculation for the relative phase shift between
the arms of the three-pulse AI yields

�φ(3) = N̄ (N̄ + 1)

[
ωqT21 + qF

M
T 2

21

]

+ N̄
qF
M

T32T21 + N̄qv0(T32 + N̄T21). (4)

This expression is similar to Eq. (3), with additional terms
proportional to the pulse spacing T32. One can vary either T21

or T32 to detect phase modulation produced by an external
force F . However, since there are no terms containing the
phase ωqT32, one can effectively turn off the sensitivity to
atomic recoil by fixing T21. This makes the three-pulse AI
ideal for investigating the effects due to F , especially when
qFT21/M � ωq since no additional modulation at ωq is
present. This is particularly advantageous for measurements
of gravity, as discussed in Sec. V.

Since the two-pulse AI is intrinsically more sensitive than
the three-pulse AI, it is better suited to measurements of F
when qFT21/M < ωq . In this work, we demonstrate this
feature by measuring externally applied B gradients. The
sensitivity of the three-pulse AI to F can be enhanced by
utilizing the additional phase proportional T32T21 in Eq. (4).
Experimentally, this can be accomplished by varying both
pulse separations, T21 and T32, with T21 varied in integer
multiples of the recoil period: τq = π/ωq .

We now give the main results of theoretical calculations
pertaining to the response of the grating echo AI in the presence
of a constant force. We have assumed a potential energy with
the form,

Û (z) = −M̂ z, (5)
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where M̂ = −∂Û/∂z is a matrix operator with units of force
that commutes with both the position (z) and momentum (p)
operators. In the case of a constant B gradient, the potential is

Û (z) = −μ · B(z) = −gF μBβ

h̄
F̂zz, (6)

where gF is the Landé g factor, μB is the Bohr magneton,
B(z) = β z is the magnetic field vector with gradient β along
the z direction (also assumed to be the quantization axis), and
F̂z is the projection operator for total angular momentum F. In
this case, M̂ = F F̂z/h̄ and the force is F = gF μBβ, where
F̂z operates on the basis states |F mF 〉 and has eigenvalues
h̄mF .

In both interferometer schemes, the phase of the grating is
imprinted on the electric field back-scattered from a traveling-
wave read-out pulse applied in the vicinity of an echo time. For
the two-pulse AI, measuring the phase of the scattered field
is equivalent to measuring the relative position of the grating,
since both the position and the phase scale as T 2

21. Similarly, in
the three-pulse case, the phase measured as a function of T32 is
proportional to the velocity of the grating—which scales as T21.

We first examine the effects of B gradients on the two-pulse
AI, followed by a comparison with the three-pulse AI.

A. Two-pulse interferometer

In general, the electric field scattered by the atoms at the
time of an echo is proportional to the amplitude of the Fourier
harmonic of the atomic density grating with spatial frequency
q. For the case of an external B gradient, β, the scattered field
has distinct contributions from each magnetic sublevel:

E
(2)
β (t ; T ) =

∑
mF

E(2)
mF

(t ; T )eimF φ
(2)
β (t ;T ), (7)

where E(2)
mF

is the field scattered by the state |F mF 〉 [given by

Eq. (A21)] and mF φ
(2)
β is the phase shift of the density grating

produced by the same state in the presence of the B gradient.
For the N̄ th order echo at t

(2)
echo = T1 + (N̄ + 1)T21, with the

set of onset times T = {T1,T1 + T21} and �t = t − t
(2)
echo, the

phase shift of the grating φ
(2)
β (t ; T ) is given by

φ
(2)
β (�t ; T21) = qgF μBβ

2M

{
N̄ (N̄ + 1)T 2

21

+ 2[T1 + (N̄ + 1)T21]�t + �t2
}
. (8)

The general form of this equation for a constant force F is
given by Eq. (A23) in the Appendix. In the discussions that
follow, we take �t = 0 which corresponds to the echo time.
Since the echo lasts for τcoh ∼ 3 μs about �t = 0, the signal is
obtained by integrating the back-scattered field over this time.

Equations (7) and (8) indicate that the field amplitude
scattered from state |F mF 〉 exhibits phase modulation as a
function of T21 at a frequency mF ω

(2)
β (T21) due to the presence

of the gradient, where

ω
(2)
β (T21) =

∣∣∣∣∣∂φ
(2)
β

∂T21

∣∣∣∣∣
= qgF μBβ

M
[N̄(N̄ + 1)T21 + (N̄ + 1)�t]. (9)

This modulation frequency has a linear dependence on β and
the pulse separation T21 (i.e., the frequency is chirped with
T21). The phase modulation of the grating produced by state
|F mF 〉 also scales linearly with the magnetic quantum number
mF , as shown in Eq. (7). For an arbitrary set of magnetic
sublevel populations, the total scattered field [Eq. (7)] contains
all harmonics mF ω

(2)
β (T21), where mF = −F, . . . ,F . If more

than one sublevel is populated, interference between the fields
scattered off of each state produces modulation in the total
scattered field. This effect can then be detected in the field
amplitude E

(2)
β , or the field intensity |E(2)

β |2, by varying β

or the pulse separation T21. The amplitude of each harmonic
comprising this modulation is determined by the sublevel
populations, as well as the transition probabilities between
ground and excited state sublevels.

If the system is optically pumped into a single sublevel,
such as the extreme state |F F 〉, then the phase modulation
of the grating only affects the phase of the electric field—
which cannot be observed using intensity detection. Instead,
one can use heterodyne detection to measure the electric field
amplitude and obtain the relative phase of the scattered light
[12,22,26]. Furthermore, if the system is optically pumped into
the |F 0〉 state, there is no phase modulation due to B gradients
since this state is insensitive to magnetic fields.

Figures 2(a) and 2(b) show the expected two-pulse AI
signal as a function of T21 in steps of the recoil period,
τq = π/ωq (∼32 μs for 85Rb). Since ω

(2)
β < ωq , incrementing

T21 in this fashion eliminates additional modulation due
to atomic recoil. Figure 2(a) shows the signal for equally
distributed sublevel populations, while Fig. 2(b) is for an
optically pumped system in the two extreme states: |3 −3〉
and |3 3〉. Both of these figures show amplitude modulation,
but in the optically pumped case there is only one frequency
component present and the modulation occurs with maximum
contrast—increasing the sensitivity to gradients.

Eliminating the amplitude modulation in the signal due to
B gradients [shown by the dashed lines in Fig. 2(a)] is a key
requirement for precision measurements of ωq . We will show
in Sec. IV that these conditions can be realized with sufficient
suppression of ambient B gradients in a glass cell. It is also
possible to eliminate sensitivity to B gradients using intensity
detection if the atoms are pumped into a single magnetic
sublevel.

B. Three-pulse interferometer

The effects due to B gradients manifest themselves
differently in the three-pulse interferometer. We derive the
expression for the signal in the appendix [see Eqs. (A25) and
(A29)] and find that the amplitude of the scattered field does
not depend on the time between the second and third sw pulses
T32, but only on T21—similar to the two-pulse AI. However,
the phase of the grating in the three-pulse case depends on
both T21 and T32:

φ
(3)
β (�t ; T ) = qgF μBβ

2M

{
N̄ (N̄ + 1)T 2

21 + 2N̄T32T21

+ 2
[
T1 + T32 + (N̄ + 1)T21

]
�t + �t2

}
.

(10)
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FIG. 2. (Color online) The predicted B-gradient signal for the two-pulse AI (a) and (b) [based on Eq. (7)], where T21 is varied in steps of
τq ∼ 32 μs, and the three-pulse AI (c) and (d), where T32 is varied. In all plots the solid red line is the real part of the scattered field, the black
dashed line shows the field intensity (which is measured in the experiment), the B gradient is fixed at β = 10 mG/cm, and the first-order echo
(N̄ = 1) is used. In parts (a) and (c) the excitation beams are circularly polarized (|qL| = 1) and the magnetic sublevel populations are equally
distributed among the F = 3 ground state of 85Rb. In this case, the field undergoes amplitude modulation with multiple frequency components,
and the field intensity exhibits modulation with a contrast <100%. For the two-pulse AI (a), the field intensity exhibits modulation at a chirped
frequency, whereas for the three-pulse AI (c) the modulation is not chirped. Parts (b) and (d) show the field generated by a sample that is
optically pumped equally into the |3 −3〉 and |3 3〉 states with linearly polarized excitation beams (qL = 0). Here, both the field and the field
intensity exhibit modulation with only one frequency component, and the contrast of the oscillations is 100%. For both (c) and (d), T21 was
fixed at a typical experimental value of 5 ms.

In this case, the set of pulse onset times is given by
T = {T1,T1 + T21,T1 + T21 + T32} and �t = t − t

(3)
echo. This

phase is identical to Eq. (8) for the two-pulse interferometer
with the addition of the two terms proportional to T32.
Equation (10) suggests that the force can be determined by
measuring the phase modulation of the grating as a function
of either T21 or T32, or by varying both pulse separations
simultaneously. Varying T32 produces a phase modulation of
the atomic grating at a frequency that is proportional to T21:

ω
(3)
β (T21) =

∣∣∣∣∣∂φ
(3)
β

∂T32

∣∣∣∣∣ = qgF μBβ

M
(N̄T21 + �t). (11)

Figures 2(c) and 2(d) show the expected three-pulse
signal as a function of T32, with T21 fixed at a typical
experimental value of 5 ms, in the presence of a B gradient
β = 10 mG/cm. When the sublevel populations are equally
distributed [Fig. 2(a)] the phase of the total scattered field con-
tains multiple frequency components—one for each sublevel:
mF ω

(3)
β . The interference between these components produces

a modulation in the total scattered field amplitude. This is
similar to the two-pulse case shown in Fig. 2(a), except that
the modulation occurs at a single frequency that is fixed by
β, T21, and N̄ . For a sample that is optically pumped equally
into the two extreme states, |3 −3〉 and |3 3〉, as shown in
Fig. 2(d), there is only one frequency component present in

the scattered field, and the amplitude modulation occurs with
greater contrast.

III. EXPERIMENTAL SETUP

We now review the experimental setup that has made
possible long-lived grating echo AI signals. This setup is
substantially different from previous echo experiments [15,23,
24,26] after implementing many improvements. These include
suppression of stray magnetic gradients using a nonmagnetic
chamber, increasing the trapped atom number with large
diameter beams, extending the transit time by cooling the
sample to ∼10 μK and implementing large diameter excitation
beams, and by chirping the excitation frequencies to eliminate
Doppler shifts associated with the falling cloud.

The experiment utilizes a sample of laser-cooled 85Rb
atoms in a magneto-optical trap (MOT) containing approx-
imately 109 atoms in a Gaussian spatial distribution with a
horizontal e−1 radius of ∼1.7 mm. The MOT is contained in a
borosilicate glass cell maintained at a pressure of ∼10−9 Torr.
In addition to the anti-Helmholtz coils used for trapping, three
pairs of square quadrupole coils are centered on the MOT, as
shown in Fig. 3. Each square frame contains two overlapping
coils, one connected in the Helmholtz configuration with a
coil in the opposite frame, and the other in the anti-Helmholtz
configuration. These sets of coils are used to cancel ambient
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FIG. 3. (Color online) Diagram of the experiment. The excitation
beams are both σ+ polarized by the λ/4 plates. The glass cell has
approximate dimensions 7.6 × 7.6 × 84 cm. Each pair of square
quadrupole coils has a side length of ∼66 cm and contain overlapped
coils wired in both Helmholtz and anti-Helmholtz configurations for
canceling B fields and B gradients, respectively.

magnetic fields and field gradients over the volume of the
MOT at the level of ∼1 mG and ∼0.1 mG/cm, respectively.
The initial set points for the currents in the canceling coils
that produced ∼1 mG of B-field suppression were determined
using an atomic magnetometer experiment [29] that allowed
the field at the location of the MOT to be measured.

Light derived from a Ti:sapphire laser (linewidth ∼1 MHz)
with frequency νL operating 130 MHz above the 5S1/2 F =
3 → F ′ = 4 resonance frequency (ν0) is downshifted using an
acousto-optic modulator (AOM) operating in dual-pass mode,
such that νL = ν0. This light is locked to ν0 using saturated
absorption spectroscopy. A separate “trapping” AOM shifts
this light by −148 MHz such that the detuning is � =
−18 MHz (νL = ν0 − 18 MHz). Approximately 370 mW
of this light is transmitted through an antireflection-coated,
single-mode optical fiber (operating at 60% efficiency) and
expanded to a diameter of ∼5.4 cm for trapping atoms from
background vapor.

An external cavity diode laser is used to derive repump light
for the trapping setup. It is locked to the 5S1/2 F = 2 → F ′ =
(2,3) crossover transition and up-shifted by ∼32 MHz using
an AOM. Approximately 25 mW of repump light is obtained
after coupling through the same optical fiber as the trapping
light. At t = 0, the MOT coils are pulsed off in ∼100 μs, while
the trapping and repump beams are left on for 6 ms of molasses
cooling. For ∼3 ms of this time, the detuning of the trapping
light is linearly chirped from � = −18 MHz to −50 MHz to
further cool the atoms, and the power is simultaneously ramped

FIG. 4. (Color online) Schematic of the rf chain used for chirped
AI pulses. A phase-locked loop (PLL) generates a 220-MHz rf signal
which is split and mixed with the output of two separate arbitrary
waveform generators (AWGs). The AWGs are triggered at the start
of the experiment to output a frequency sweep from 20 MHz to
20 MHz ± δ(t) after a time t , where δ(t) = gt/λ, g∼9.8 m/s2 and
λ∼780 nm. The sum frequency from the mixers is isolated using a
band-pass filter (BPF) with a center frequency of 240 MHz and a
5-dB pass band of 4 MHz. The outputs of the BPFs are pulsed using a
set of transistor-transistor logic (TTL) switches, which are then sent
to the k1 and k2 AOMs. The two-pulse AI sequence for both k1 and
k2 are shown. Here, P1 and P2 refer to traveling wave components
comprising the first and second sw pulses, and RO denotes the
traveling wave read-out pulse sent along k1. Both AWGs and the
PLL are externally referenced to a 10-MHz Rb clock.

down in order to reduce heating due to photon scattering. With
this procedure we achieve temperatures as low as T = 2.4 μK.

Light from the Ti:sapphire laser is also used to derive the
AI pulses. A “gate” AOM operating in dual-pass configuration
shifts the undiffracted light from the “trapping” AOM from
νL = ν0 + 130 MHz to νL = ν0 + 290 MHz. The gate AOM
is also pulsed so as to serve as a high-speed shutter during
the experiment. The light from the gate AOM is split and
sent into two separate AOMs (referred to as the “k1” and
“k2” AOMs) operating at 240 MHz ± δ(t) that produce the
sw pulses. Here, δ(t) = gt/λ is a time-dependent frequency
shift that is added to (subtracted from) the radio frequency
(rf) driving the k1 (k2) AOM using an arbitrary waveform
generator, as shown in Fig. 4. Chirping the excitation pulses in
this manner cancels the Doppler shift of the atoms falling under
gravity. The rf driving these AOMs is also phase locked to a
10-MHz rubidium clock to eliminate any electronically in-
duced phase shifts. Light entering the k1 AOM is downshifted
by 240 MHz + δ(t) and sent into an optical fiber that carries the
light toward the MOT. Similarly, the k2 AOM downshifts the
light by 240 MHz − δ(t). In this configuration, the detuning
of the k1 (k2) pulse is �1 = 50 MHz − δ(t) [�2 = 50 MHz +
δ(t)]. This light is coupled into a separate fiber and aligned
through the MOT along the vertical direction, as illustrated
in Fig. 3. The output of both fibers is expanded to a e−2

diameter of ∼2 cm. The rf pulses driving the k1 and k2

AOMs are controlled using TTL switches with an isolation
ratio of 100 dB, which produces optical pulses with rise times
of ∼20 ns. The “gate” AOM is turned off between excitation
pulses to further reduce background light from reaching the
atoms.

In the vicinity of any given echo (see Fig. 1), the read-out
pulse is applied to the sample along the k1 direction and a
coherent back-scattered field from the atoms occurs along the
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(a)

(b)

(c)

FIG. 5. (Color online) (a) Temperature measurement of the laser-cooled sample. The horizontal e−1 cloud radius is measured as a function
of expansion time using a CCD camera. A hyperbolic fit to these data (shown as the solid red line) yields a measurement of T = 2.4 ± 0.2 μK.
Each error bar is the 1σ statistical uncertainty of the cloud radius obtained from a Gaussian fit to each cloud profile. (b) Data showing the signal
lifetime for various pulse configurations. The horizontal axis is the time of the read-out pulse TRO, relative to the time of trap turn-off T0, which
signifies the start of the experiment. An echo energy of ∼ 0.1 pJ is equivalent to the level of noise in the detector. These data were obtained
with pulse durations for the two-pulse (three-pulse) AI: τ1 = 800 (800) ns, τ2 = 100 (70) ns, τ3 = 0 (70) ns; pulse intensity I ∼ 64 mW/cm2;
and a sample temperature of T ∼ 20 μK. Pulse separations for each configuration are shown in the figure. (c) Pulse timing diagrams for the
data shown in (b). The red arrows distinguish which pulses were varied and the time step dT indicates the amount each pulse was incremented
relative to the others. For the two-pulse AI, dT = nτq , where n = 10. Pulses without arrows are fixed in time.

direction of k2. The power of the scattered field is recorded
as a function of time using a photomultiplier tube (PMT)
that is gated on for 9 μs. The echo signal lasts τcoh ∼ 3 μs
before coherence is lost due to Doppler dephasing. For
T21 � 10 ms, the scattered field can reach powers greater than
100 μW. However, for T21 > 10 ms, the signal size decreases
exponentially. The noise floor for the PMT is approximately
0.1 μW. Typically, one computes the time-integrated area of
the echo signal as a measure of the signal size for a given
set of parameters. Since this quantity has units of energy, it is
henceforth referred to as the echo energy.

IV. RESULTS AND DISCUSSION

We now review the main experimental results of this work
relating to long-lived AI signals and sensing externally applied
B gradients.

A. Investigations of AI time scale

Figure 5(a) shows a measurement of the temperature of the
laser-cooled sample. At t = T0, all optical and magnetic fields
associated with the MOT are switched off and the atoms are
allowed to thermally expand in the dark. At t = T0 + Texp,
the trapping and repump beams are turned back on and
a calibrated charged-coupled device (CCD) is triggered to
photograph the cloud with an exposure time of 100 μs. This
process is repeated for various expansion times Texp, and
the e−1 radius of the cloud R is measured by fitting to the

Gaussian intensity profiles obtained from each image. The
temperature is obtained by fitting to a hyperbola [32,33] with
the form R = [R2

0 + σ 2
v (Texp − t0)2]1/2, where R0 is the initial

cloud radius, σv = (2kBT /M)1/2 is the e−1 radius of the
velocity distribution, and t0 is a phenomenological offset from
Texp = 0. The data shown in Fig. 5(a) give a temperature of
T ∼ 2.4(2) μK in 85Rb. This relatively low MOT temperature
is attributed to the well-controlled magnetic environment
within the glass cell, as well as the molasses cooling procedure
described above.

Measurements of the AI signal lifetime under different
pulse configurations are shown in Fig. 5(b), with each
configuration explained schematically in Fig. 5(c). For the
transit time measurement, the two-pulse AI configuration
was used with T21 fixed. The excitation and read-out pulses
were incremented synchronously. The signal lifetime for the
three-pulse AI was determined by fixing T21 and varying the
third sw pulse and read-out synchronously. For the two-pulse
AI, the lifetime was measured by fixing the first sw pulse and
incrementing the second sw pulse and read-out in steps nτq

and 2nτq , respectively, where n = 10.
Here, all ambient B fields and B gradients are canceled

along all three axes at the level of ∼1 mG and ∼0.1 mG/cm,
respectively. The transit time data were obtained by using the
two-pulse AI with T21 fixed at ∼1.690 ms and varying the
time of all sw pulses relative to the time of trap turn-off T0. In
this measurement, the AI signal is proportional to the number
of atoms that remain in the volume defined by the ∼2-cm
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diameter excitation beams during the thermal expansion of the
cloud. Although the echo energy spans almost three orders
of magnitude as it decays exponentially, signals are clearly
distinguishable from the noise floor (∼0.1 pJ) at times as
large as ∼270 ms, as shown in Fig. 5(b). This time represents
the transit time limit for the conditions of our experiment—
corresponding to a drop height of ∼36 cm. This distance nearly
coincides with the bottom viewport of the vacuum system. We
emphasize here that such lifetimes are not possible with this
interferometer unless the frequencies of the k1 and k2 beams
are oppositely chirped such that the Doppler shift due to gravity
[δ(t) = gt/λ] is canceled or the bandwidth of the sw pulses is
large enough to account for such a shift. The frequency chirp
puts the sw pulses on resonance for the two-photon transition
back to the same ground state for all times during the sample’s
free fall.

The signal lifetime for the two-pulse AI configuration is
shown as the red curve in Fig. 5(b). Here, the signal lasts
approximately 130 ms, corresponding to T21 ∼ 65 ms. To
the best of our knowledge, this is the largest time scale ob-
served with the two-pulse configuration of this interferometer,
corresponding to more than a factor of 6 improvement over
our previous work [15,23,24,26]. However, the lifetime of the
two-pulse echo is still limited by decoherence from a small,
inhomogeneous B gradient that the atoms sample over the
∼8 cm they have fallen in 130 ms. A nonlinear B(z) produces
a spatially dependent force between interfering trajectories—
resulting in a differential phase shift between paths of the
interferometer that causes dephasing and, therefore, a loss
of signal. Such a nonlinearity in B(z) has been measured to
be ∂2B/∂z2 ∼ −0.4 mG/cm2 with a flux-gate magnetometer
placed at different spatial locations around the glass chamber.
This curvature is produced by a combination of nonideal
coil configurations and the presence of nearby ferromagnetic
materials.

There are two important features that should be recognized
from the data for the three-pulse AI shown in Fig. 5(b).
First, at TRO − T0 ≈ 0, the echo energy for the three-pulse
AI is a factor of ∼2 smaller than that of the two-pulse
AI. This comes about because the additional Kapitza-Dirac
pulse involved in the three-pulse AI produces fewer pathways
that result in interference at the echo time compared to the
two-pulse AI. Second, the lifetime of the three-pulse echo
depends strongly on the value of T21. As T21 increases, the

signal lifetime approaches that of the two-pulse AI. This
feature comes about because, between the second and third
sw pulses, the wave packets that interfere at the echo times
have a constant spatial separation [see Fig. 1(b)], which is
given by �z = N̄h̄qT21/M . From this expression, it is clear
that �z can be controlled by T21 and the choice of echo order
N̄ . By decreasing this separation, the interferometer becomes
less sensitive to decoherence from nonlinear B fields since
phase shifts produced by this effect become approximately
common mode between interfering momentum states. Refer-
ence [14] also used this interferometer and a magnetic guide
to show that smaller spatial separations lead to increased time
scales.

In general, the lifetime for the three-pulse echo can be
tailored to last much longer than that of the two-pulse echo,
which is advantageous for precisely measuring the effects of
external forces. For example, we achieve time scales as large
as ∼220 ms for T21 fixed at ∼1.3 ms—which is much closer
to the transit time limit than the lifetime of the two-pulse
echo. To the best of our knowledge, the only experiment that
has achieved longer time scales for the three-pulse AI have
employed magnetic guides [14] to limit transverse expansion
of the sample and thereby extending the transit time.

B. Investigations of external B gradients

When T21 is large, the two-pulse AI can be used to explore
the sensitivity to small external B gradients. We demonstrate
the detection of changes in the B gradient as small as
∼ 4 × 10−5 G/cm in Fig. 6(a). Here, the N̄ = 1 echo signal
was recorded with T21 fixed at ∼40.6 ms for various applied
gradients. Changes in the gradient were facilitated by varying
the current through the set of vertical quadrupole coils centered
on the MOT (see Fig. 3). The smallest controllable increment
in current we could achieve was 1 mA, which corresponds to
a change of ∼0.04 mG/cm as estimated from an independent
calibration based on a flux-gate magnetometer.

In a similar experiment, the N̄ = 1 echo energy was
measured for T21 fixed at ∼40.6 ms as a function of β, as
shown in Fig. 6(b). Here, it is clear that the echo energy
has a strong periodic dependence on the applied B gradient.
These data provide confirmation of the theoretical prediction
given by Eqs. (7) and (8). This dependence is produced by the
interference between electric fields scattered off of gratings
produced by different magnetic sublevels. For example, for

(a) (b)

FIG. 6. (Color online) (a) First order (N̄ = 1) two-pulse echo signal for various applied B-field gradients β. The theoretically expected
echo time is at �t = t − 2T21 = 0. Each mA of current corresponds to a change of ∼0.04 mG/cm in the applied gradient. (b) First order
(N̄ = 1) two-pulse echo energy as a function of β. The solid red line is a fit based on Eq. (12). The value of β is obtained from a calibration
using a flux-gate magnetometer. Pulse parameters for both (a) and (b): τ1 = 800 ns, τ2 = 130 ns, I∼64 mW/cm2, T21 ∼ 40.6 ms.
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(a) (b)

FIG. 7. (Color online) (a) Two-pulse echo energy as a function of T21 in the presence of a fixed β. Gradient-induced oscillations are shown
for the first two echo orders (black points, N̄ = 1; gray points, N̄ = 2). Here, T21 is varied in integer multiples of τq to avoid sensitivity to
atomic recoil effects. Fits based on Eq. (12), shown as the solid lines, give |β| = 9.30(1) mG/cm and |β| = 9.34(1) mG/cm, respectively.
(b) Data analogous to (a) obtained using a slightly larger gradient with the three-pulse AI. Here, T21 is fixed at 2.0 ms and T32 is varied to map
out the modulation for the first two echo orders (black points, N̄ = 1; gray points, N̄ = 2). Fits based on Eq. (13) give |β| = 17.50(4) mG/cm
and |β| = 17.78(5) mG/cm, respectively. Two-pulse (three-pulse) AI parameters: τ1 = 800 (800) ns; τ2 = 100 (70) ns; τ3 = 0 (70) ns;
I∼64 mW/cm2.

a given β, gratings produced by states |F mF 〉 and
∣∣F m′

F

〉
undergo phase shifts mF φ

(2)
β and m′

F φ
(2)
β , respectively, where

φ
(2)
β is given by Eq. (8). For constructive interference between

fields scattered by these states, the B gradient must satisfy
(mF − m′

F )φ(2)
β /2 = 2nπ , for integer n. Thus, as β is varied,

the phase shift induced in the |F mF 〉 and
∣∣F m′

F

〉
gratings

produces periodic constructive (destructive) interference in
the total scattered field, and therefore, maxima (minima) in
the echo energy. This process occurs simultaneously in all
2F + 1 sublevels. As a result, the observed signal is a weighted
sum of the scattered fields from all states. Here, there are
2F (2F + 1) = 42 pairs of states that produce interference—
although not all pairs have unique contributions. Since the
excitation beams were circularly polarized in the experiment,
the fields scattered from the extreme states (|3 3〉 or |3 −3〉)
dominate the signal.

We use the following model, based on the squared modulus
of Eq. (7), to fit the data shown in Fig. 6(b):

S(2)(β,T21) = S0e
−(T21−t0)2/τ 2

∑
mF ,m′

F

amF
am′

F

× eiA(mF −m′
F )βN̄ (N̄+1)(T21−t1)2

, (12)

where S0, t1 and the set of {amF
} are free parameters, A =

qgF μB/2M is a constant, and t0 was set to T21 for this data.
In this model, the Gaussian factor outside the sum is added
phenomenologically to account for signal loss due to both the
transit time and any decoherence in the system. In addition,
each amF

is proportional to the magnetic sublevel population,
|αmF

|2, through Eq. (A21). As a result, these parameters
are constrained to be positive. All other fit parameters are
unconstrained. In principle, it should be possible to obtain the
sublevel populations from the set of best fit parameters {amF

}.
However, determining the constant of proportionality between
the amF

, the populations, and the scattered field intensity is
complicated [34,35] and not addressed by the theory presented
here. We emphasize, however, that fits to data presented in
this work give similar results for the set of {amF

}, which

are consistent with our expectations for circularly polarized
excitation beams.

Surveys of gradient-induced modulation on the echo signal
shown in Fig. 7 provide additional confirmation of the theory
outlined in Sec. II and the Appendix. Figure 7(a) indicates that,
in the presence of a B gradient, the two-pulse echo energy
becomes modulated at a frequency that increases linearly with
T21 (i.e., the modulation is chirped), as predicted by Eq. (9).
This figure shows gradient oscillations for both the N̄ = 1 and
the N̄ = 2 orders of the two-pulse echo. Since the chirp rate
increases as N̄ (N̄ + 1), the second-order echo is modulated
at a rate three times that of the first-order echo. Confirmation
of this is provided by a least-squares fit to the data based
on Eq. (12), as shown by the solid lines in Fig. 7(a). Since
the gradient was held fixed in the experiment, the fits to the
two data sets should provide similar measurements of |β| .1

The two measurements yield |β| = 9.30(1) mG/cm for N̄ = 1
and |β| = 9.34(1) mG/cm for N̄ = 2, where the quoted error
is the 1σ statistical uncertainty generated by the fit. These
measurements are in good agreement with each other and an
independent measurement from a flux-gate magnetometer. We
emphasize that accurate fits to these data and the extraction of
β were possible only through the development of the multilevel
formalism presented in the Appendix. In particular, since
the oscillations shown in Fig. 7(a) do not occur with 100%
contrast (i.e., each oscillation minima does not reach the level
of the noise), a model including only two magnetic sublevels
with equal excitation probabilities, such as that described in
Ref. [26], is insufficient to model the data.

Figure 7(b) shows data similar to that shown in Fig. 7(a), but
for the first two orders of the three-pulse echo and a slightly
larger B gradient. These data illustrate that the three-pulse
AI is less sensitive to gradients than the two-pulse AI. Since
T21 is fixed at 2.0 ms, the modulation frequency is constant

1Measurements of the B gradient from the scattered field intensity
are not sensitive to the sign of β. However, the sign can be determined
using a heterodyne technique to measure the scattered electric field
amplitude.
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and proportional to N̄ and T21—confirming the predictions of
Eq. (11). The data are fit to the following model:

S(3)(β,T32,T21) = S0e
−(T32−t0)2/τ 2

∑
mF ,m′

F

amF
am′

F

× eiA(mF −m′
F )β[N̄ (N̄+1)T 2

21+2N̄T21(T32−t1)], (13)

which is based on Eqs. (A25), (A26), and (A28), with a
Gaussian decay factor added phenomenologically. All other
parameters in this model are similar to those discussed in
reference to Eq. (12). Measurements of the magnitude of the
gradient from fits to these data yield |β| = 17.50(4) mG/cm
and |β| = 17.78(5) mG/cm for the N̄ = 1 and N̄ = 2 echoes,
respectively. These two measurements differ by more than 5σ ,
which deserves some explanation. By inspecting the fit to the
N̄ = 2 echo, it is clear that the data are not well modeled by a
single frequency sinusoid as T32 becomes large. This provides
evidence that the atoms are sampling different gradients as
they drop under gravity—an effect that is not accounted for in
the theory. By analyzing different sections of these data, we
estimate that the gradient varies by as much as ∼1.6 mG/cm
between T32 ∼ 40 ms and 100 ms—during which time atoms
fall ∼4 cm. Independent measurements of the curvature of the
B field, where |β| was found to change by ∼0.4 mG/cm every
centimeter, are consistent with the variation in β detected by
atoms.

Although we have demonstrated sensitivity to changes in
the B gradient as small as ∼ 4 × 10−5 G/cm using T21 ∼
40 ms with the two-pulse AI, our ability to measure the
absolute magnitude of the applied gradient is less sensitive.
This is primarily because the measurement is based on fitting
data to an oscillatory model and extracting the modulation
rate—which cannot be done accurately without the presence of
an oscillatory component in the data. To estimate the smallest
measurable B gradient with the two interferometers, we tuned
the applied fields for each AI separately such that the first
revival in the N̄ = 1 echo energy occurred at the largest
time. The resulting data are shown in Fig. 8, which yielded
measurements of |β| = 0.26(3) mG/cm for the two-pulse AI
[Fig. 8(a)] and |β| = 9.5(1) mG/cm for the three-pulse AI
[Fig. 8(b)].

V. APPLICATIONS TO GRAVITY

The apparatus shown in Fig. 3 is not isolated from
external vibrations and is unsuitable for measurements of the
optical phase of the scattered read-out light using heterodyne
detection. For this reason, a measurement of g from the phase
of the atomic grating [21,26] is beyond the scope of this
article and will be presented elsewhere. However, the afore-
mentioned results relating to B gradients validate theoretical
predictions that can be applied to precise measurements of
gravity. In this section, we discuss the feasibility of such
a measurement by applying the formalism presented in the
Appendix.

The best portable gravimeter [36] uses an optical Mach-
Zehnder interferometer where one arm contains a free-falling
corner cube for position-sensitive measurements of g at the
level of ∼1 ppb over a few minutes. The position sensitivity
in these devices comes from detecting interference fringes

FIG. 8. (Color online) Smallest direct measurement of a B

gradient using the two-pulse (a) and three-pulse (b) AIs. Here, the
applied fields were tuned separately for each AI such that the first
revival in the N̄ = 1 echo energy occurred at the largest time. A fit
based on Eq. (12) for the two-pulse AI gave |β| = 0.26(3) mG/cm.
Similarly, a fit based on Eq. (13) yielded |β| = 9.5(1) mG/cm for
the three-pulse AI, with T21 ∼ 1.27 ms. Two-pulse (three-pulse) AI
parameters: τ1 = 800 (800) ns, τ2 = 100 (70) ns, τ3 = 0 (70) ns,
I ∼ 64 mW/cm2.

as a function of the drop time of the cube relative to an
inertial frame defined by a stationary mirror. The frequency
at which the fringes accumulate scales linearly with the drop
time (i.e., the frequency is chirped). The matter-wave analog
of this gravimeter is the two-pulse grating echo AI [21,26],
where changes in the phase of the grating due to gravity
are detected relative to the nodes of an sw—which serves
as the inertial reference frame. In this case, the accumulation
of fringes due to matter-wave interference is also described by
a chirped-frequency sinusoid.

We now review the main results of the grating echo theory
that pertain to gravity. The gravitational potential can be
written as

Û (z) = MgÎz, (14)

where the force is F = −Mg and Î is the (2F + 1) ×
(2F + 1) identity matrix. The effect on the AI is similar to
that of the B gradient on a sample that has been optically
pumped into a single state. Since gravity acts equally on
all states, the phase shift of the grating produced by each
state is the same. Therefore, the expression for the field
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FIG. 9. (Color online) The real part of the scattered electric field (red solid line) in the presence of gravity for the two-pulse (a) and (b) and
the three-pulse (c)–(f) AIs. In parts (a)–(d), the black dashed line shows the signal envelope [based on Eq. (A21) for (a) and (b) and Eq. (A29)
for (c) and (d)], which is modulated at 2ωq ≈ 2π × 31 kHz. (a) The field oscillates at a frequency ω(2)

g (T21) ∼ 2π × 50 kHz in the vicinity of
T21 ∼ 1 ms. (b) The modulation frequency increases to ω(2)

g ∼ 2π × 450 kHz at T21 ∼ 9 ms. Parts (c) and (d) show results for the three-pulse
AI as a function of T21, with T32 fixed at 100 μs. The field oscillates at approximately the same frequency in (a) and (c), and in (b) and (d),
since T32 is small. Parts (e) and (f) show the three-pulse signal as a function of T32 with T21 = 5 ms. Since T21 is fixed, there is no sensitivity
to atomic recoil and the signal envelope is not modulated. As T32 increases, the modulation frequency of the scattered field amplitude remains
fixed at ω(3)

g (T21) ∼ 2π × 125 kHz.

scattered from the grating simplifies significantly compared
to Eq. (7):

E(2)
g (t ; T ) =

[∑
mF

E(2)
mF

(t ; T )

]
eiφ

(2)
g (t ;T ), (15)

where the grating phase due to gravity is

φ(2)
g (�t ; T21) = −qg

2

{
N̄ (N̄ + 1)T 2

21

+ 2[T1 + (N̄ + 1)T21]�t + �t2} , (16)

as determined by Eq. (A23). This phase cannot be detected
from the intensity of the scattered light because there is no
differential phase shift between magnetic sublevels—thus,
there is no amplitude modulation of the grating [26]. The
scaling of the grating phase with T 2

21 in Eq. (16) shows the

similarity between the two-pulse AI and the optical Mach-
Zehnder interferometer discussed in Ref. [36].

Figures 9(a) and 9(b) show the expected two-pulse AI signal
in the presence of gravity as a function of T21—illustrating
that the modulation frequency is chirped linearly with T21

(ω(2)
g = ∂φ(2)

g /∂T21 ∝ T21). As T21 increases, ω(2)
g becomes

larger than the recoil frequency (for the first-order echo in 85Rb,
this occurs when T21 > 300 μs), and T21 must be incremented
in steps less than τq to avoid undersampling the frequency.
However, this effect causes reduced sensitivity to the grating
phase, since modulation at the recoil frequency produces
periodic regions with small signal amplitude. Additionally,
as shown in Ref. [14], this AI is very sensitive to phase
changes due to mirror vibrations, which can be detrimental
to measurements of g using this technique.

Figures 9(c) and 9(d) show the expected three-pulse signal
as a function of T21 in the presence of gravity. It is clear that
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the envelope of the scattered field has a complicated periodic
dependence on T21, with a zero every τq ∼ 32 μs due to the
destructive interference of momentum states differing by h̄q.
This is similar to the two-pulse case shown in Figs. 9(a) and
9(b). Here, the grating phase modulation frequency is given
by∣∣∣∣∣∂φ(3)

g

∂T21

∣∣∣∣∣ = qg[N̄ (N̄ + 1)T21 + N̄T32 + (N̄ + 1)�t], (17)

which is identical to the two-pulse case, ω(2)
g , with the addition

of the term proportional to T32.
Figures 9(e) and 9(f) show the expected three-pulse signal

as a function of T32, with T21 fixed at 5 ms. In this case, there
is no sensitivity to atomic recoil, so the envelope remains at
a constant level as T32 is varied. The frequency of the phase
modulation is also fixed by N̄ and T21, as given by

ω(3)
g (T21) =

∣∣∣∣∣∂φ(3)
g

∂T32

∣∣∣∣∣ = qg(N̄T21 + �t). (18)

For the conditions presented in these figures, ω(3)
g ∼ 2π ×

125 kHz. The work of Ref. [14] shows that the three-pulse
AI is significantly less sensitive to mirror vibrations than
the two-pulse AI if T32 � T21. Our results have also shown
that this configuration is less sensitive to B gradients. For all
these reasons, this AI is particularly well suited for precise
measurements of g.

Simulations of the two-pulse AI signal with N̄ = 1, T21 ∼
150 ms, and a phase error of 1% suggest the precision of a
measurement of g should be ∼1.4 ppb. Similarly, we estimate
a precision of ∼0.4 ppb for the three-pulse AI using N̄ = 1,
T21 = 75 ms, T32 varied over 150 ms, and the same phase
error. From these estimates, it is clear that these AIs can
have greater sensitivity than the best industrial sensor [36].
Since the precision scales linearly with the phase error,
we anticipate further improvements in sensitivity without
extending the time scale. If systematic effects of such a cold
atom gravimeter are characterized, it may be possible for
the AI experiment to serve as a reference to calibrate other
gravimeters.

VI. CONCLUSIONS

Measurements of applied B gradients using both the two-
and three-pulse techniques are in good agreement with inde-
pendent measurements of β using a flux gate magnetometer.
We have demonstrated sensitivity to changes in the B gradient
at the level of ∼ 4 × 10−5 G/cm. This result is comparable to
the ∼300 pT/mm resolution achieved in recent experiments
using a Raman AI [31]. Absolute measurements of |β| as small
as ∼3 × 10−4 G/cm were also possible using the two-pulse
AI. These measurements are highly dependent on an accurate
description of the data presented above, which necessitates the
inclusion of effects due to all ground-state magnetic sublevels.
We have also shown sensitivity to spatial variation in the B

gradient using a long-lived second-order (N̄ = 2) three-pulse
echo. This nonlinearity in the ambient B field strongly affects
the signal lifetime in grating echo AIs.

As tests of the theoretical results presented in Sec. II,
we have separately confirmed the linear dependence of the

β-induced oscillation frequencies, ω
(2)
β and ω

(3)
β [given by

Eqs. (9) and (11), respectively], on the B gradient. We have
also verified that these frequencies both scale linearly with T21,
and, for the three-pulse AI, ω(3)

β is constant as a function of T32.
Since we have achieved signal lifetimes approaching

the transit time limit, we have shown that fountain-based
experiments are possible with grating echo AIs. The advantage
of a fountain configuration is that the spatial extent of
the AI (∼11 cm for a 300-ms time scale) can be made
small, which reduces the requirements for inhomogeneous
B-field suppression. Such a configuration is ideal for precise
measurements of gravity, particularly with the three-pulse AI.
Passive suppression of B fields with a series of cancellation
coils, or optically pumping into the mF = 0 sublevel, represent
two ways in which such a measurement can be realized.

Despite the widespread use of Raman-type AIs for inertial
sensing [8,37,38], grating echo-type AIs—which offer reduced
experimental complexity—are also excellent candidates for
precision measurements of ωq and g. This work has brought
about understanding of systematic effects produced by B

gradients on these measurements.
In summary, we have developed an improved understanding

of the effects of a constant force that applies to time-
domain grating echo AIs. Although the sensitivity for AI-
based gradient detection cannot compete with commercial
magnetic gradiometers (which offer sensitivities of the order of
∼1 pT/m), the technique is useful for absolute measurements
of gradients in cold atom experiments.
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APPENDIX

In this appendix, we derive expressions for the signals
generated by the two- and three-pulse interferometers in the
presence of a constant external force F . In Ref. [26], a similar
calculation for the two-pulse signal is given, in which only
two ground-state sublevels are considered, and effects due
to spontaneous emission are ignored. Here, we account for
2F + 1 magnetic sublevels in the field scattered from the
atoms, as well as spontaneous emission during the excitation
pulses. Both of these effects are crucial for an accurate
description of these interferometers. We also give a general
expression for the signal generated by an N -pulse AI from
which all classes of time-domain grating echo AIs can be
realized.

The potential is assumed to have the form Û (z) = −M̂z,
where M̂ = −∂Û/∂z is an operator that computes with z

and p, and acts on the basis states |F mF 〉 with eigenvalues
mFF . Here, F is a constant with units of force. We proceed by
computing the ground-state wave function after the application
of each sw pulse at times t = T1 and T2, with a period of
evolution before, between, and after each pulse (with durations
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T1, T2 − T1, and t − T2, respectively) in the presence of the
force. During the application of each sw pulse, the kinetic
and potential energy terms in the Hamiltonian are ignored by
assuming the pulses are sufficiently short such that the atom
does not move significantly (Raman-Nath approximation). In
this manner, the sw pulses are treated as δ-function excitations,
although they are given durations τj for the purposes of the
calculation.

The interferometer signal is defined as the back-scattered
electric field amplitude at the time of an echo, which is
proportional to the amplitude of the q-Fourier harmonic of the
density distribution at these times. The results for the two-pulse
AI signal are then generalized for an N -pulse AI, from which
we compute the three-pulse AI signal.

The Hamiltonian for the ground state |F mF 〉 in the
presence of an sw field and an external potential, Û (z), can
be approximated by [15,16]

ĤmF
= p2

2M
+ h̄χmF

eiθ cos(qz) + Û (z), (A1)

where θ is a phase associated with spontaneous emission
during the sw pulse,

θ = tan−1

(
− γ

�

)
, (A2)

and χmF
is a two-photon Rabi frequency given by

χmF
= �2

0

2�

(
1 + γ 2

�2

)−1/2 (
CF 1 F+1

mF qL mF +qL

)2
. (A3)

Here, �0 is the on-resonance Rabi frequency for a two-level
atom, � = ωL − ω0 is the atom-field detuning with atomic
resonance frequency ω0 and laser frequency ωL, γ is half of the
spontaneous emission rate, and (CF 1 F+1

mF qL mF +qL
) is a Clebsch-

Gordan coefficient for a light field with a polarization state
qL. We ignore the excited state in this treatment, since the
field is assumed to be relatively weak and far off-resonance
(|�| � �0, γ ). We also neglect the Zeeman shift of magnetic
sublevels by assuming |�| � gF μBB/h̄.

The amplitude of the ground-state wave function at t = 0
can be written as a superposition of spin states:

a(z,0) =
∑
mF

amF
(z,0) |F mF 〉 , (A4)

where the amplitude of each spin state is

amF
(z,0) = αmF√

2πh̄
eip0z/h̄, (A5a)

amF
(p,0) = αmF

δ(p − p0). (A5b)

Here, p0 is the initial momentum of the atom along the
z direction, |αmF

|2 is the population of state |F mF 〉, with∑
mF

|αmF
|2 = 1, and amF

(p,0) is the amplitude of the spin
state in momentum space.

The main challenge in this calculation is evolving the wave
function between sw pulses in the presence of the additional
potential energy Û (z). In the absence of this potential, it
is straightforward to integrate the Schrödinger equation in

momentum space. However, with Û (z) present, we have the
following equation of motion:

ih̄
∂amF

∂t
=

(
p2

2M
− M̂z

)
amF

(p,t). (A6)

One can integrate this equation to find

amF
(p,t) = e−i(−M̂z+p2/2M)t/h̄amF

(p,0), (A7)

but some care must be taken when evaluating the right-
hand side. The challenge arises from the fact that z and
p = −ih̄∂/∂z are noncommuting operators. As a result, the
exponential in Eq. (A7) is really a matrix exponential of
noncommuting matrices Â and B̂. In general eÂ+B̂ �= eÂeB̂ ,
but one can use the Zassenhaus formula [39] to expand the
matrix exponential as

eξ (Â+B̂) = eξÂeξB̂e−ξ 2[Â,B̂]/2

× eξ 3([Â,[Â,B̂]]−2[[Â,B̂],B̂])/6 · · · , (A8)

where ξ is an arbitrary constant. The higher order factors
(represented by · · · in the above equation) vanish if [[Â,B̂],B̂]
and [Â,[Â,B̂]] commute with all higher order nested commu-
tators. Choosing Â = −M̂z and B̂ = p2/2M ,2 and using the
commutation relations [z,p2] = i2h̄p, [z,p] = ih̄, we find[

−M̂z,
p2

2M

]
= −i

h̄M̂
M

p, (A9a)

[
−M̂z,

[
−M̂z,

p2

2M

]]
= −h̄2M̂2

M
, (A9b)

[[
p2

2M
, − M̂z

]
,

p2

2M

]
= 0. (A9c)

Using Eq. (A8) with ξ = −it/h̄ and the commutators in
Eqs. (A9), Eq. (A7) becomes

amF
(p,t) = eiM̂tz/h̄e−ip2t/2Mh̄e−iM̂pt2/2Mh̄

× e−iM̂2t3/6Mh̄amF
(p,0). (A10)

Since eξ (M̂)n |F mF 〉 = eξ (mFF)n |F mF 〉, it follows that the
amplitude of the state |F mF 〉 before the onset of the first sw
pulse is

amF
(p,t) = αmF

ei(mFF)t z/h̄e−ip2t/2Mh̄e−i(mFF)p t2/2Mh̄

× e−i(mFF)2t3/6Mh̄δ(p − p0), (A11a)

amF
(z,t) = αmF√

2πh̄
ei(p0+mFF t)z/h̄e−iε0t/h̄e−i(mFF)p0t

2/2Mh̄

× e−i(mFF)2t3/6Mh̄, (A11b)

where ε0 = p2
0/2M is the initial kinetic energy of the atom.

The first sw pulse, applied at t = T1, diffracts the atom
into a superposition of momentum states. The wave func-
tion is computed in position space using the Raman-Nath
approximation and integrating the Schrödinger equation to
obtain

2This choice is not arbitrary. Since the p-space wave function is an
eigenstate of the operator p2/2M , but not −M̂z, we save ourselves
some effort by choosing B̂ = p2/2M since eB̂ operates on the wave
function before eÂ.
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a(1)
mF

(z,T1) = amF
(z,T1)

∑
n

(−i)nJn(�(1)
mF

)einqz, (A12a)

a(1)
mF

(p,T1) = αmF
e−iε0T1/h̄e−i(mFF)p0T

2
1 /2Mh̄e−i(mFF)2T 3

1 /6Mh̄
∑

n

(−i)nJn

(
�(1)

mF

)
δ(p − p0 − mFFT1 − nh̄q). (A12b)

Here, �(1)
mF

≡ u(1)
mF

eiθ is the (complex) area of pulse 1, u(1)
mF

= χmF
τ1, τ1 is the duration of the pulse, and a(1)

mF
(p,T1) is the wave

function in momentum space. The superscript (1) on a(1)
mF

denotes the number of sw pulses that have been applied to the atom so
far. We use the prescription of Eq. (A10) to evolve the amplitude in momentum space [Eq. (A12b)] until the onset of the second
pulse,

a(1)
mF

(p,t) = αmF
ei(mFF)(t−T1)z/h̄e−i[p2

0T1+p2(t−T1)]/2Mh̄e−i(mFF)[p0T
2

1 +p(t−T1)2]/2Mh̄

× e−i(mFF)2[T 3
1 +(t−T1)3]/6Mh̄

∑
n

(−i)nJn

(
�(1)

mF

)
δ(p − p0 − mFFT1 − nh̄q). (A13)

To apply the next sw pulse to the wave function, it is convenient to transform back to position space:

a(1)
mF

(z,t) = αmF√
2πh̄

ei(p0+mFF t)z/h̄e−i[p2
0T1+(p0−mFFT1)2(t−T1)]/2Mh̄

× e−i(mFF)[p0T
2

1 +(p0+mFFT1)(t−T1)2]/2Mh̄e−i(mFF)2[T 3
1 +(t−T1)3]/6Mh̄

×
∑

n

(−i)nJn

(
�(1)

mF

)
einqze−inqv0(t−T1)e−in2ωq (t−T1)e−inq(mFF)[(t−T1)2+2T1(t−T1)]/2M. (A14)

Here, v0 = p0/M is the initial velocity of the atom and ωq = h̄q2/2M is the two-photon recoil frequency. Applying the second
pulse at t = T2, the wave function becomes

a(2)
mF

(z,T2) = αmF√
2πh̄

ei(p0+mFFT2)z/h̄e−iε2
0T2/h̄e−ip0(mFF)T 2

2 /2Mh̄e−i(mFF)2T 3
2 /6Mh̄

×
∑
n,m

(−i)(n+m)Jn(�(1)
mF

)Jm(�(2)
mF

)ei(n+m)qze−inqv0(T2−T1)e−in2ωq (T2−T1)e−inq(mFF)(T 2
2 −T 2

1 )/2M. (A15)

To evolve the wave function in the presence of the external force until time t , once again we transform into p space and use
Eq. (A10) to obtain

a(2)
mF

(p,t) = αmF
ei(mFF)(t−T2)z/h̄e−i[p2

0T2+p2(t−T2)]/2Mh̄e−i(mFF)[p0T
2

2 +p(t−T2)2]/2Mh̄e−i(mFF)2[T 3
2 +(t−T2)3]/6Mh̄

×
∑
n,m

(−i)(n+m)Jn

(
�(1)

mF

)
Jm

(
�(2)

mF

)
e−inqv0(T2−T1)e−in2ωq (T2−T1)e−inq(mFF)(T 2

2 −T 2
1 )/2M

× δ[p − p0 − mFFT2 − (n + m)h̄q]. (A16)

Finally, the amplitude in position space after the second pulse can be shown to be

a(2)
mF

(z,t) = αmF√
2πh̄

ei(p0+mFF t)z/h̄e−iε0t/h̄e−i(mFF)p0t
2/2Mh̄e−i(mFF)2t3/6Mh̄

×
∑
n,m

(−i)(n+m)Jn

(
�(1)

mF

)
Jm

(
�(2)

mF

)
ei(n+m)qze−iqv0[n(T2−T1)+(n+m)(t−T2)]

× e−iωq [n2(T2−T1)+(n+m)2(t−T2)]e−iq(mFF)[n(T 2
2 −T 2

1 )+(n+m)(t2−T 2
2 )]/2M. (A17)

To compute the field scattered from the atomic interference as a function of t , we use the q-Fourier component of the ground-state
density, ρ(2)

mF mF
(z,t) = |a(2)

mF
(z,t)|2, which can be shown to be

ρ(2)
mF mF

(z,t) = |αmF
|2

2πh̄

∑
n,m,n′,m′

(−i)n+m−n′−m′
Jn

(
�(1)

mF

)
Jm

(
�(2)

mF

)
Jn′ (�(1) ∗

mF
)Jm′

(
�(2) ∗

mF

)
ei(n+m−n′−m′)qz

× e−iqv0[(n−n′)(T2−T1)+(n+m−n′−m′)(t−T2)]e−iωq {(n2−n′2)(T2−T1)+[(n+m)2−(n′+m′)2](t−T2)}

× e−iq(mFF)[(n−n′)(T 2
2 −T 2

1 )+(n+m−n′−m′)(t2−T 2
2 )]/2M. (A18)

Since the density distribution contains frequency components that depend only on the difference between interfering momentum
states, we recast the sums over n′ and m′ in terms of νN̄ = n − n′ and ν = n′ + m′ − n − m (the integer difference between
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momentum states after the first and second pulses, respectively):

ρ(2)
mF mF

(z,t) = −|αmF
|2

2πh̄

∑
ν,N̄,n,m

iνJn

(
�(1)

mF

)
Jn−νN̄

(
�(1) ∗

mF

)
Jm(�(2)

mF
)Jm+ν(N̄+1)(�

(2) ∗
mF

)e−iνqz

× eiνqv0[(t−T2)−N̄ (T2−T1)]eiνωq {[2(n+m)+ν](t−T2)−N̄ (2n−νN̄ )(T2−T1)}eiνq(mFF)[(t2−T 2
2 )−N̄(T 2

2 −T 2
1 )]/2M. (A19)

The scattered field is proportional to the q-Fourier harmonic of ρ(2)
mF mF

(z,t) [the coefficient of the e−iνqz term in Eq. (A19), with
ν = 1]. Summing over all magnetic sublevels in the ground state, one can show that

E
(2)
F (t ; T ) =

∑
mF

E(2)
mF

(t ; T )eimF φ
(2)
F (t ;T ), (A20)

where

E(2)
mF

(t ; T ) ∝ |αmF
|2 (

CF 1 F+1
mF qL mF +qL

)2 ∑
N̄

(−1)N̄+1e−[(t−t
(2)
echo)/τcoh]2

eiqv0(t−t
(2)
echo)

× JN̄

(
2u(1)

mF

√
sin(ϕ1 − θ ) sin(ϕ1 + θ )

)
JN̄+1

(
2u(2)

mF

√
sin(ϕ2 − θ ) sin(ϕ2 + θ )

)
×

(
sin(ϕ1 + θ )

sin(ϕ1 − θ )

)N̄/2 (
sin(ϕ2 − θ )

sin(ϕ2 + θ )

)(N̄+1)/2

(A21)

is the field scattered from each magnetic sublevel, with recoil phases,

ϕ1(t ; T ) = ωq

(
t − t

(2)
echo

)
, (A22a)

ϕ2(t ; T ) = ωq(t − T2), (A22b)

and mF φ
(2)
F is the phase shift of the density grating produced in the ground state |F mF 〉 due to the presence of the external force

F , with φ
(2)
F given by

φ
(2)
F (t ; T ) = qF

2M

[(
t2 − T 2

2

) − N̄
(
T 2

2 − T 2
1

)]
. (A23)

In deriving Eq. (A21) we have made use of the Bessel function summation theorem [15,16,40],

∑
n

Jn(ueiθ )Jn+η(ue−iθ )ei(2n+η)φ = iηJη(2u
√

sin(φ − θ ) sin(φ + θ ))

(
sin(φ − θ )

sin(φ + θ )

)η/2

, (A24)

and we averaged over the velocity distribution of the sample assuming a Maxwellian distribution centered at v0 with e−1 width
σv = √

2kBT /M . In this way, we account for the possibility of an initial launch of the atomic cloud and for the dephasing of the
echo due to the distribution of Doppler phases in the sample. An additional factor of (CF 1 F+1

mF qL mF +qL
)2 was added to the scattered

field to account for the atom-field coupling by the read-out pulse. The scattered field lasts for a time τcoh = 2/qσv—called the
coherence time—about each echo, which occur at times t

(2)
echo = N̄ (T2 − T1) + T2. The phase θ in Eq. (A21), associated with

spontaneous emission during the excitation pulses, affects only the recoil-dependent component of the signal [16].
These results can be generalized for the case of an N -pulse interferometer with a set of onset times T = {T1,T2, . . . ,TN } for

which Tj+1 > Tj . After N sw pulses, each with pulse area u
(j )
mF

, the total scattered field at time t is

E
(N)
F (t ; T ) =

∑
mF

E(N)
mF

(t ; T )eimF φ
(N)
F (t ;T ), (A25)

where

E(N)
mF

(t ; T ) ∝ −|αmF
|2 (

CF 1 F+1
mF qL mF +qL

)2 ∑
l1,l2,...,lN−1

e−[(t−t
(N)
echo)/τcoh]2

eiqv0(t−t
(N)
echo)

×
N∏

j=1

J(lj −lj−1)
(
2u(j )

mF

√
sin(ϕj − θ ) sin(ϕj + θ )

) (
sin(ϕj − θ )

sin(ϕj + θ )

)(lj −lj−1)/2

. (A26)

Here, l = {l1,l2, . . . ,lN } denotes the set of momentum states that interfere after the pulse sequence, where lj is the
difference between interfering momentum states (in units of h̄q) after pulse j . The echo times and the recoil phases are
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given by

t
(N)
echo(T ) = TN − 1

lN

N−1∑
j=1

lj (Tj+1 − Tj ), (A27a)

ϕj (t ; T ) = ωq

N∑
k=j

lk(Tk+1 − Tk), (A27b)

and the contribution to the phase of the grating due to the force F is

φ
(N)
F (t ; T ) = qF

2M

N∑
j=1

lj
(
T 2

j+1 − T 2
j

)
. (A28)

In Eqs. (A26)–(A28) lN = 1, which corresponds to the scattered field from the q-Fourier harmonic of the density formed after
the sw pulses, and it is understood that l0 = 0 and TN+1 = t .

We now use the formalism for the N -pulse echo signal [Eq. (A26)] to obtain an expression for the three-pulse interferometer
signal discussed in Sec. II. We begin by setting N = 3 and T = {T1,T1 + T21,T1 + T21 + T32}. For an echo to occur at t

(3)
echo =

T1 + T32 + (N̄ + 1)T21 for any T1, T32 and T21, Eq. (A27a) dictates the set of lj to be l = {−N̄,0,1}. Then, it can be shown that
the scattered field is given by

E(3)
mF

(t ; T ) ∝ |αmF
|2 (

CF 1 F+1
mF qL mF +qL

)2 ∑
N̄

(−1)N̄+1e
−
[(

t−t
(3)
echo

)
/τcoh

]2

e
iqv0

(
t−t

(3)
echo

)

× JN̄

(
2u(1)

mF

√
sin(ϕ1 − θ ) sin(ϕ1 + θ )

)
JN̄

(
2u(2)

mF

√
sin(ϕ2 − θ ) sin(ϕ2 + θ )

)
× J1

(
2u(3)

mF

√
sin(ϕ3 − θ ) sin(ϕ3 + θ )

)( sin(ϕ1 + θ )

sin(ϕ1 − θ )

)N̄/2
(

sin(ϕ2 − θ )

sin(ϕ2 + θ )

)N̄/2 (
sin(ϕ3 − θ )

sin(ϕ3 + θ )

)1/2

, (A29)

where the recoil phases in this case are

ϕ1 = ωq

(
t − t

(3)
echo

)
, (A30a)

ϕ2 = ϕ3 = ωq

(
t − t

(3)
echo + N̄T21

)
, (A30b)

and the grating phase due to F is

φ
(3)
F (t ; T ) = qF

2M

[−N̄
(
T 2

2 − T 2
1

) + (
t2 − T 2

3

)]
= qF

2M

{
N̄ (N̄ + 1)T 2

21 + 2N̄T32T21 + 2[T1 + T32 + (N̄ + 1)T21]�t + �t2
}
. (A31)
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C. Bréant, D. Bassi, and G. Scoles, Phys. Rev. A 30, 1836
(1984).

[19] L. Allen and J. H. Eberly, Optical Resonance and Two-Level
Atoms (Dover, New York, 1987).

[20] B. Dubetsky, P. R. Berman, and T. Sleator, Phys. Rev. A 46,
R2213 (1992).

[21] B. Barrett, I. Chan, C. Mok, A. Carew, I. Yavin,
A. Kumarakrishnan, S. B. Cahn, and T. Sleator, in Advances
in Atomic, Molecular and Optical Physics, Vol. 60, edited by
E. Arimondo, P. R. Berman, and C. C. Lin (Elsevier, Amsterdam,
2011), Chap. 3.

[22] M. Weel and A. Kumarakrishnan, Phys. Rev. A 67, 061602(R)
(2003).

[23] S. Beattie, B. Barrett, I. Chan, C. Mok, I. Yavin, and
A. Kumarakrishnan, Phys. Rev. A 79, 021605(R) (2009).

[24] S. Beattie, B. Barrett, I. Chan, C. Mok, I. Yavin, and
A. Kumarakrishnan, Phys. Rev. A 80, 013618 (2009).

[25] B. Barrett, S. Beattie, A. Carew, I. Chan, C. Mok, I. Yavin, and
A. Kumarakrishnan, in Proceedings of ICONO 2010: Inter-
national Conference on Coherent and Nonlinear Optics, Vol.
7993, edited by C. Fabre, V. Zadkov, and K. Drabovich (SPIE,
Bellingham, 2011), pp. 79930Y–1.

[26] M. Weel, I. Chan, S. Beattie, A. Kumarakrishnan, D. Gosset,
and I. Yavin, Phys. Rev. A 73, 063624 (2006).

[27] M. F. Andersen and T. Sleator, Phys. Rev. Lett. 103, 070402
(2009).

[28] A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, Phys. Scr.
T102, 82 (2002).

[29] I. Chan, B. Barrett, and A. Kumarakrishnan, Phys. Rev. A 84,
032509 (2011).

[30] T. M. Roach, J. Phys. B 37, 3551 (2004).
[31] M.-K. Zhou, Z.-K. Hu, X.-C. Duan, B.-L. Sun, J.-B. Zhao, and

J. Luo, Phys. Rev. A 82, 061602(R) (2010).
[32] D. S. Weiss, E. Riss, Y. Shevy, P. J. Ungar, and S. Chu, J. Opt.

Soc. Am. B 6, 2072 (1989).
[33] A. Vorozcovs, M. Weel, S. Beattie, S. Cauchi, and A. Kumarakr-

ishnan, J. Opt. Soc. Am. B 22, 943 (2005).
[34] S. Slama, C. von Cube, M. Kohler, C. Zimmermann, and P. W.

Courteille, Phys. Rev. A 73, 023424 (2006).
[35] A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin,

Phys. Rev. Lett. 106, 223903 (2011).
[36] T. M. Niebauer, G. S. Sasagawa, J. E. Faller, R. Hilt, and

F. Klopping, Metrologia 32, 159 (1995).
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