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Many-polaron description of impurities in a Bose-Einstein condensate in the weak-coupling regime
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The weak-coupling many-polaron formalism is applied to the case of the polaronic system consisting of
impurities in a Bose-Einstein condensate. This allows investigating the ground-state properties and the response
of the system to Bragg spectroscopy. Then, this theory is applied to the system of spin-polarized fermionic
lithium-6 impurities in a sodium condensate. The Bragg spectrum reveals a peak that corresponds to the emission
of Bogoliubov excitations. Both the ground-state properties and the response spectrum show that the polaronic
effect vanishes at high densities. We also look at two possibilities to define the polaronic effective mass and
observe that this results in a different quantitative behavior if multiple impurities are involved.
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I. INTRODUCTION

Quantum gases have revealed themselves as excellent
quantum simulators for many-body theories from condensed-
matter physics and, in particular, to experimentally examine
strong-coupling regimes that are not attainable with solid-
state experiments [1]. Recently, it was shown that, when the
Bogoliubov approximation is valid, the system of impurities
in a Bose-Einstein condensate (BEC) can be added to this
list through a mapping onto the Fröhlich polaron Hamiltonian
[2,3]. The Fröhlich solid-state polaron consists of a charge
carrier (electron, hole) interacting with the longitudinal optical
phonons in an ionic crystal or a polar semiconductor [4,5].
The Fröhlich polaron Hamiltonian has resisted an exact
analytical diagonalization and has been submitted to many
approximation methods (a review on the Fröhlich solid-state
polaron can be found in Ref. [6]). The polaronic effect of
an impurity in a BEC has been the subject of several recent
theoretical papers. Some examples are the polaronic effects
in optical lattices [7–9], the application of the Feynman
variational path-integral technique to study the ground-state
properties [10], an extension of this technique to examine the
response properties [11], and a strong-coupling approximation
[12]. This revealed that the static properties are characterized
by the ratio of the masses of the bosons and the impurity
together with the polaronic-coupling parameter α, defined as

α = a2
IB

ξaBB

, (1)

with aIB as the impurity-boson scattering length, aBB as the
boson-boson scattering length, and ξ as the healing length
of the condensate. As a function of this coupling parameter,
two polaronic regimes were identified, reminiscent of the
acoustic polaron [13]. In the context of the Fröhlich solid-state
polaron, the intermediate- and strong-coupling regimes still
supply important theoretical challenges, but the weak-coupling
regime is well understood. The weak- and intermediate-
coupling theories of Lee et al. [14] were extended by Lemmens
et al. [15] to the case of an interacting polaron gas. Similarly,
the optical absorption theory of Devreese et al. [16] was
extended to the case of interacting polarons in Ref. [17] by
two of the present authors. In these extensions, the effect of
the interactions between the polarons is taken into account

through the structure factor of the electron gas. The goal of
this paper is to apply a similar generalization to extend the
polaronic theory of a single impurity in a Bose condensate to
the case of a dilute gas of interacting impurities. This is needed
since an experimental realization of the BEC-impurity polaron
will involve multiple impurities and will require the use of
Feshbach resonances to reach the strong-coupling regime [10].

Within the Bogoliubov approximation, the Hamiltonian of
N impurities in a condensate can be mapped onto the sum
of the mean-field energy EMF and the Fröhlich N -polaron
Hamiltonian ĤN

pol [10]. The mean-field energy is given by

EMF = EGP + N0NUIB(�q = �0), (2)

where the first term is the Gross-Pitaevskii energy of the
condensate [18] and the second term is the interaction shift due
to the impurities with N0 as the number of condensed bosons
and UIB(�q) as the Fourier transform of the impurity-boson
interaction potential. The polaron Hamiltonian describes the
mutual interaction between the impurities and their interaction
with the Bogoliubov excitations,

ĤN
pol =

N∑
i

�̂p2
i

2mI

+
∑

�k
h̄ω�kâ

†
�kâ�k +

∑
�k

N∑
i

(V�kâ�ke
i�k·̂�ri

+V
†
�k â

†
�ke

−i�k ·̂�ri ) + 1

2

∑
i �=j

v(̂�ri − �̂rj ). (3)

The first term represents the kinetic energy of the impurities
with mass mI and position (momentum) operators �̂ri ( �̂pi),
the second term gives the kinetic energy of the Bogoliubov
excitations with dispersion ω�k and creation (annihilation)
operators â

†
�k ( â�k), the third term is the interaction between

the impurities and the Bogoliubov excitations with interaction
amplitude V�k , and the fourth term represents the mutual
interaction between the impurities with v(�r) as the interaction
potential. The Bogoliubov dispersion is given by

ω�k = ck
√

1 + (ξk)2/2, (4)
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where the speed of sound in the condensate was introduced c =
h̄/(

√
2mBξ ) with mB as the mass of the bosons. The interaction

amplitude is given by

V�k =
√

N0

[
(ξk)2

(ξk)2 + 2

]1/4

gIB, (5)

where a contact potential was assumed for the impurity-boson
interaction potential UIB(�q) = gIB . At low temperatures, the
amplitude gIB is completely determined by the reduced
mass mr = (m−1

B + m−1
I )−1 and the impurity-boson scattering

length aIB , gIB = 2πh̄2aIB/mr .
Another important consideration is the stability of the

mixture against phase separation. At zero temperature, in
Refs. [19] and [20], it was shown that the mixture is stable
if the following inequality is satisfied:

n1/3 � (6π )2/3

12π

mraBB

mBmIa
2
IB

, (6)

with n as the density of the impurities.
Since the impurities are not charged, the response cannot

be studied through optical absorption measurements as for the
Fröhlich solid-state polaron. In Ref. [11], it was shown that the
internal excitation structure of the BEC-impurity polaron can
be probed with Bragg spectroscopy, which is a technique that
has proven to be very successful in the study of BECs (see, for
example, Refs. [21] and [22]). The experimental setup consists
of two laser beams with wave vectors �k1 and �k2 and energies
ω1 and ω2, which are impinged on the impurities. Then, these
can absorb a photon from one beam and can emit it in the
other beam, which results in the exchange of a wave vector
�k = �k1 − �k2 and an energy h̄ω = h̄ω1 − h̄ω2 to the impurities.
The response of the system, after an exposure during a time
interval τ , can be measured by counting the number of atoms
NBragg that have gained a wave vector �k as a function of ω,
which, in the formalism of linear-response theory, is given
by [18]

NBragg = 2

h̄

(
V

2

)2

τ Im χ (�k,ω), (7)

with V as the amplitude of the laser-induced potential and
χ (�k,ω) as the density-response function, defined as

χ (�k,ω) = i

h̄

∫
dt eiωt 〈ρ�k(t)ρ†

�k〉. (8)

In the following, we start by summarizing the main results
of Refs. [15] and [17] on the weak-coupling treatment of
the Fröhlich solid-state N -polaron system together with an
indication of what changes if one considers impurities in
a BEC. We also show two different ways to define the
polaronic effective mass. Then, this formalism is applied
for spin-polarized fermionic impurities, and the results are
examined as a function of the impurity density and the
exchanged momentum for the Bragg response for lithium-6
impurities in a sodium condensate.

II. WEAK-COUPLING TREATMENT OF THE
MANY-POLARON GAS

A. Ground-state properties of the many-polaron gas and the
inertial effective mass

The weak-coupling variational method as introduced in
Ref. [14] by Lee et al. for the description of a single polaron
was generalized in Ref. [15] to the case of a many-polaron
system. With this purpose, the following variational wave
function was introduced:

|	LDB〉 = Û |0〉|ψ〉, (9)

with |0〉 as the vacuum wave function for the bosonic
excitations, |ψ〉 as the wave function of the impurities, and
Û as a canonical transformation of the form

Û = exp

⎧⎨⎩
N∑
i

∑
�k

[f�kâ�ke
i�k ·̂�ri − f ∗

�k â
†
�ke

−i�k ·̂�ri ]

⎫⎬⎭ , (10)

where {f�k} are variational functions. Minimizing the expecta-
tion value of the N -polaron Hamiltonian (3) with respect to
the variational wave function (9) as a function of {f�k} results
in the following expression for the ground-state energy:

E

N
= εkin + 1

2

∑
�k

v(�k)[S(�k) − 1]

−
∑

�k

S2(�k)|V�k|2
h̄ω�kS(�k) + h̄2k2

2mI

, (11)

where εkin is the kinetic energy per particle, εkin =
N−1〈ψ | ∑N

i

p̂2
i

2mI
|ψ〉, and S(�k) is the static structure factor of

the impurities,

S(�k) = 1 + 1

N
〈ψ |

N∑
i �=j

ei�k·(�ri−�rj )|ψ〉. (12)

Another important property of the polaronic system is
the inertial effective mass of the polarons m(in). Within the
one-polaron weak-coupling formalism, m(in) was calculated
in Ref. [14]. The generalization for many polarons allows
a determination of this effective mass, which is related
to the many-polaron system as a whole and is called the
inertial effective mass in the following. The total momentum
�P = ∑

i �pi + ∑
�k h̄�kâ

†
�kâ�k commutes with the Hamiltonian (3)

and, thus, is a conserved quantity. This conserved quantity can
be introduced explicitly in the minimization process by means
of a Lagrange multiplier �v, which corresponds to the velocity
of the polaronic system,

ĤN
pol(�v) = ĤN

pol − �v ·
⎛⎝∑

i

�̂pi +
∑

�k
h̄�kâ

†
�kâ�k − �P

⎞⎠ . (13)

Minimization of the expectation value of Eq. (13) with respect
to Eq. (9) as a function of {f�k} and �v together with an Taylor
expansion for small �v, results in

�P = NmI �v + 2

3
h̄2N

∑
�k

|V�k|2S2(k)[
h̄ω�kS(k) + h̄2k2

2mI

]3 k2�v, (14)
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where isotropy of the system was assumed. We can now
identify the inertial effective mass m(in) through the expression
�P = Nm(in)�v, which relates the speed of the polaron to its
momentum, i.e.,

m(in) = mI + 2

3
h̄2

∑
�k

|V�k|2S2(k)[
h̄ω�kS(k) + h̄2k2

2mI

]3 k2. (15)

Note that the inertial effective mass (15) is a property of the
whole polaron system. This is important for an experiment
where the behavior of all the impurities together is studied.
For example, when one studies the collective oscillation of the
impurities in a harmonic trap, the resulting effective oscillation
frequency is a function of this inertial effective mass. This
effect has been used to experimentally determine the effective
mass of Fermi polarons in Ref. [23].

Note that, for the ground-state properties, the presence
of multiple impurities is completely described through the
static structure factor of the impurities. In the limit of
vanishing density, the static structure factor becomes 1, and
the expressions for the energy and the effective mass of a
single polaron from Ref. [14] are retrieved.

B. Bragg response of the many-polaron gas and
the spectral effective mass

In Ref. [17], the optical absorption of the N -polaron gas
consisting of electrons interacting with phonons was calculated
within the weak-coupling formalism. The polaronic system
consisting of impurities in a BEC cannot be probed with
optical absorption, but instead, an appropriate experimental
technique is Bragg spectroscopy as shown in Ref. [11]. This
means that a finite-momentum exchange has to be taken
into account, which is negligible in the case of the optical
absorption calculation. Furthermore, it is the density-density
correlation function (8) that determines the response instead of
the current-current correlation, which is needed for the optical
absorption. However, these two are related closely since the

application of two partial integrations transforms Eq. (8) into
a correlation function of the time derivative of the density ρ̇�k
after which one can use the Fourier transform of the continuity
equation (ρ̇�k = i�k · �j�k) to obtain a current-current correlation
function,

χ (ω,�k) = − i

h̄ω2

∫ ∞

0
dt eiωt 〈[�k · j�k(t),�k · j

†
�k ]〉. (16)

For the calculation of Eq. (16), we use the derivation of
Ref. [17], which is based on the wave function (9) and which
preserves only terms of the lowest order in the coupling
amplitude |V�k|2. The main difference of the present result
is the incorporation of a finite-momentum exchange �k. This
results in the following expression for the imaginary part of
the density-response function (16), which is proportional to
the Bragg response (7),

Imχ (ω,�k) = 1

ω4

π

m2
I

∑
�q

(�k · �q)2|V�q |2S(�q + �k,ω − ω�q), (17)

where S(�k,ω) is the dynamic structure factor of the
impurities,

S(�k,ω) = 1

2πh̄

∫ ∞

−∞
dt eiωt 〈ψ |ρ�k(t)ρ†

�k |ψ〉. (18)

The response also allows a determination of an effective
mass, which we call the spectral effective mass and denote by
m(spec). This is performed through an extension of the f -sum
rule that was introduced in Ref. [24] and was generalized for
the polaron in a condensate in Ref. [11] as

Nπ

2m(spec)
+

∫ ∞

0+
dω ω lim

�k→0

Im[χ (�k,ω)]

k2
= Nπ

2mI

. (19)

The origin of this sum rule is a δ peak at ω = 0 in the response,
and the spectral weight of this δ peak in the �k → 0 limit equals
the first term in Eq. (19). It is important to note that the spectral
effective mass as determined by Eq. (19) is a single-particle
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FIG. 1. (Color online) The inertial effective mass of the polarons as a function of the density for lithium-6 impurities in a sodium condensate
at α = 0.01 according to formula (22). The inset shows the behavior at small densities. In the limit n → 0, the effective mass of a single polaron
is retrieved, and for n → ∞, the effective mass becomes the bare-impurity mass.
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FIG. 2. (Color online) The Bragg response
(24) of the polaronic system consisting of polar-
ized lithium-6 impurities in a sodium condensate
as a function of ω for different values of the
exchanged momentum k. The impurity density
is taken as n = 0.01, and the polaronic-coupling
parameter is α = 0.01. Everything is in pola-
ronic units, i.e., h̄ = mI = ξ = 1.

property and, thus, is not the same as the inertial effective
mass of expression (15). Only in the limit of one polaron, do
the two masses coincide as can be checked from Eq. (19). This
polaronic spectral effective mass, as defined in Eq. (19), was,
for example, measured in Ref. [25] for the Fröhlich solid-state
polaron.

Note that, in this formalism, the influence of multiple
impurities on the polaronic response is determined solely by
the dynamic structure factor of the impurities.

III. SPIN-POLARIZED FERMIONIC IMPURITY
GAS IN A BEC

In this section, we apply the results of the previous section
to the case of a spin-polarized gas of fermionic impurities.
Because of the Pauli exclusion principle, the s-wave scattering
length is zero, which results in essentially no interactions
between the impurities at low temperatures. This means the
impurities can be described as an ideal fermionic gas for
which the static and dynamic structure factors are known.
All results in this section are presented in polaronic units, i.e.,
h̄ = mI = ξ = 1, and for lithium-6 impurities in a sodium
condensate, i.e., mB/mI ≈ 3.822 07.

A. Ground-state properties

The static structure factor of an ideal fermionic gas at zero
temperature is given by [26]

S(�k) =
{

3
2

k
2kF

− 1
2

(
k

2kF

)3
, if k < 2kF ,

1, if k � 2kF ,
(20)

where kF is the Fermi wave vector, which, for a nondegenerate
gas, is given by kF = (6π2n)1/3 with n as the impurity density.
Introducing the kinetic energy εkin of an ideal fermionic gas
together with the Bogoliubov dispersion (4) and the interaction
amplitude (5) in the expression for the ground-state energy (11)
leads to

E

N
= 3

10
k2
F − α

2π

(
mB + 1

mB

)2 ∫ ∞

0
dk k2

×
[

mBS2(�k)

k
√

k2 + 2S(�k) + mBk2

(
k2

k2 + 2

)1/2

− mB

mB + 1

]
,

(21)

with α as the polaronic-coupling parameter from expression
(1). The first term represents the kinetic energy, and the
second is the polaronic contribution; the interaction energy
has vanished since we are describing an ideal gas. Notice that,
in the polaronic contribution, an additional term appeared,
which was needed to obtain a convergent energy and was
obtained in Ref. [10] as a result of the renormalization of
the boson-impurity interaction. The polaronic contribution in
Eq. (21) grows linearly with kF as the number of particles
is increased. Since the kinetic energy of the Fermi gas
grows as k2

F , the relative contribution of the polaronic energy
with respect to the kinetic energy decreases. In the limit of
high densities, the kinetic energy dominates the polaronic
effect.

Introducing the Bogoliubov dispersion (4) and the interac-
tion amplitude (5) in the expression for the polaron inertial
effective mass (15) results in

m(in) = 1 + 4α

3π

(
mB + 1

mB

)2 ∫ ∞

0
dk

1√
2 + k2

× k2S2(�k)[
1

mB

√
k2 + 2S(�k) + k

]3 . (22)

This expression is presented in Fig. 1 as a function of the
impurity density. In the limit n → 0, the one-polaron result is
retrieved, which already was anticipated using formula (15).
For n → ∞, the inertial effective mass becomes equal to
the bare-impurity mass. This limit can easily be examined
analytically with Eq. (22), which reveals a n−1/3 behavior
at high densities. For the Fröhlich solid-state polaron, the
same qualitative behavior as in Fig. 1 was found for the
effective mass if the electrons are described as a free
gas [27,28].

B. Response to Bragg spectroscopy

For the response, the dynamic structure factor is needed,
which, for an ideal fermionic gas at temperature zero, is given
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(b)(a) FIG. 3. (Color online) In (a), the Bragg
response (24) is shown for the polaronic system
consisting of polarized lithium-6 impurities in
a sodium condensate as a function of ω for
different values of the exchanged momentum k

at small k, showing the shoulder structure on the
peak. In (b), the position of the maximum of the
peak in the Bragg response is presented (mark-
ers) together with the Bogoliubov spectrum (4)
(full line) and the Fermi frequency ωF (dotted
line). In both plots, the impurity density is
n = 0.01, and the polaronic-coupling parameter
is α = 0.01. Everything is in polaronic units,
i.e., h̄ = mI = ξ = 1.

by [29]

S(�q,ω) = 1

4π2q
θ (ω)

⎧⎪⎪⎨⎪⎪⎩
ω, if k2

F

2 > 1
2q2

(
ω + q2

2

)2
,

k2
F

2 − 1
2q2

(
ω − q2

2

)2
, if k2

F

2 < 1
2q2

(
ω + q2

2

)2
,

0, if k2
F

2 < 1
2q2

(
ω − q2

2

)2
,

(23)

with θ as the Heaviside step function. Introducing the Bogoliubov dispersion (4) and the interaction amplitude (5) in the expression
for the imaginary part of the density-response function (17) leads to

Im χ (ω,�k) = α

16πω4

(
mB + 1

mB

)2 ∑
�q

(�k · �q)2 q3√
q2 + 2

S(�k + �q,ω − ω�q). (24)

In Fig. 2, expression (24) is shown as a function of ω for
various momentum exchanges. A peak is seen that represents
the emission of Bogoliubov excitations and which is shifted
to higher frequencies for larger momentum exchanges. This
behavior is to be expected since more energy is needed to
create a Bogoliubov excitation with a higher momentum.

In Fig. 3(a), we have zoomed in on the peak for small
values of momentum exchange, which reveals a shoulder

structure on the main peak. This behavior also was observed
in the context of the optical absorption of Fröhlich solid-state
polarons in Refs. [27] and [17]. It was a consequence of the
Pauli exclusion principle, which provided a constraint on the
number of fermions that can participate in the Bragg scattering
process, and in Ref. [27], it was shown that a maximal
allowed participation was reached for ω = ω�k + ωF [with
ωF = h̄kF /(2mI ), the Fermi frequency]. This phenomenon
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FIG. 4. (Color online) The Bragg response
(24) of the polaronic system consisting of polar-
ized lithium-6 impurities in a sodium condensate
as a function of ω for different impurity densities
n. The exchanged momentum is taken as k = 1,
and the polaronic-coupling parameter is α =
0.01. Everything is in polaronic units, i.e., h̄ =
mI = ξ = 1.
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FIG. 5. (Color online) The spectral effective mass of the polarons as a function of the impurity density for lithium-6 impurities in a sodium
condensate at α = 0.01 as determined by the sum rule (19).

provides a redistribution of the weight of the main peak toward
this value, which explains the shoulder structure in Fig. 3(a).
At larger values of the exchanged momentum k, the effect
diminishes where we, thus, expect the peak to shift according
to the Bogoliubov dispersion (4). In Fig. 3(b), the location of
the maximum of the peak is plotted as a function of k together
with the Bogoliubov dispersion (4), which indeed is a better
fit at larger k. At smaller k, we observe a deviation toward
the Fermi frequency, as expected from this Pauli blocking
mechanism.

In Fig. 4, the peak in the Bragg response is presented for
different impurity densities. Note that, for higher densities,
the spectral weight of the ω > 0 peak diminishes. This is not
in contrast with the f -sum rule: The spectral weight of the
ω = 0 δ peak in the spectrum compensates, in accordance
with expression (19). For �k → 0, the weight of this δ function
is related to the spectral effective mass such that an attenuation
of the peak at ω > 0 corresponds to a decrease of the spectral
effective mass. The spectral effective mass deduced with the
sum rule (19) is presented in Fig. 5 as a function of the impurity
density. Note that the spectral effective mass generally behaves
only qualitatively the same as the inertial effective mass from
Fig. 1, and only in the limit n → 0 is the same result retrieved.
This is because the spectral effective mass is a one-particle
property while the inertial effective mass is related to the entire
polaronic system.

We would like to emphasize that, according to our cal-
culations, different definitions of the effective mass result
in another behavior and, in general, cannot be compared.
This also means that, for an experiment, it is important to
know which effective mass is of importance for the specific
setup.

IV. CONCLUSIONS

The weak-coupling many-polaron formalism, which was
developed in the context of Fröhlich solid-state polarons in
Refs. [15] and [17], was applied in the present paper to the
case of the polaronic system consisting of impurities in a
BEC. The properties of the ground state and the response to
Bragg spectroscopy were examined. The sum rule of Ref. [24],
which related the response to the spectral effective mass was
formulated in the present context. Also, a calculation of the
inertial effective mass was presented, which is related to
the many-polaron system as a whole. It turns out that the
ground-state properties are determined by the static structure
factor of the impurities, while the response is governed by
the dynamic structure factor as in the case of the Fröhlich
solid-state polarons.

This generalization of the many-polaron formalism then
is applied to the case of spin-polarized fermionic impurities,
which behaves as an ideal gas for which the structure factors are
well known. The numerical calculations were performed for
lithium-6 impurities in a sodium condensate. Both the ground-
state properties and the Bragg response indicate that, in the
limit of high-impurity density, the polaron effect disappears,
which is also the case for Fröhlich solid-state polarons. In
the Bragg response, a peak is observed that corresponds to
the emission of Bogoliubov excitations. The behavior of this
peak, as a function of the exchanged momentum and the
impurity density, was examined. Also, it is shown that the two
definitions for the effective mass exhibit a different behavior;
this is because the inertial effective mass is a property of
the system as a whole while the spectral effective mass is
a one-particle property.
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