
PHYSICAL REVIEW A 84, 063609 (2011)

Semiclassical spectrum of small Bose-Hubbard chains: A normal-form approach
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We analyze the spectrum of the three-site Bose-Hubbard model with periodic boundary conditions using a
semiclassical method. The Bohr-Sommerfeld quantization is applied to an effective classical Hamiltonian which
we derive using resonance normal form theory. The derivation takes into account the 1:1 resonance between
frequencies of a linearized classical system and brings nonlinear terms into a corresponding normal form. The
obtained expressions reproduce the exact low-energy spectrum of the system remarkably well even for a small
number of particles N corresponding to fillings of just two particles per site. Such small fillings are often used
in current experiments, and it is inspiring to get insight into this quantum regime using essentially classical
calculations.
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I. INTRODUCTION

Recent experimental and theoretical progress in the field
of ultracold quantum gases has stimulated many studies
at the interface of traditionally different disciplines such
as atomic physics, quantum optics, and condensed matter
physics providing an intriguing link to fundamental many-
body problems [1,2]. A specific, but yet particularly interesting
topic is the quantum-to-classical correspondence in degenerate
quantum gases such as the adiabaticity versus nonadiabaticity
of the quantum dynamics of finite matter-wave systems [3–15].

The Bose-Hubbard model (BHM) which we study here is a
hallmark of condensed-matter theory, and was realized exper-
imentally using ultracold quantum gases in optical lattices [2]
following an ingenious theoretical suggestion [16]. At the same
time, in the classical limit it is described by the celebrated
discrete nonlinear Schrödinger equation (DNLSE), which
possesses both a rich statics and dynamics [17]. Properties of
the BHM at high fillings (many particles per site) are known
to be well reproduced by several semiclassical methods such
as the mean-field approximation [18] or the truncated Wigner
approximation [19,20]. At low fillings one would generally
expect semiclassical methods to be inapplicable. Interestingly
enough, in a two-site BHM it was shown recently [21,22] that
semiclassical quantization reproduces the quantum spectrum
remarkably well. That is, when considering the classical limit
of the BHM and applying the Bohr-Sommerfeld quantization
to the classical action, one obtains (semi)classical energies
which show a good quantitative agreement with the exact
(quantum) energies. A similar approach has been taken for
the case of the three- and five-site BHM [23], with signif-
icant insights into the qualitative properties of the quantum
spectrum, but no explicit expressions for the semiclassical
spectrum have been obtained, and a corresponding comparison
of the quantum and semiclassical predictions is still missing.

As we show here, the multisite BHM exhibits an intricate
classical dynamics which renders the construction of an effec-
tive Hamiltonian, necessary for a corresponding semiclassical
quantization, a nontrivial mathematical problem. Our approach
for the derivation of an effective classical Hamiltonian relies on
resonance normal form theory [24]. We note that the classical
system linearized around its equilibrium can be represented as

a collection of harmonic oscillators, the frequencies of these
oscillators being doubly degenerate. A pair of oscillators with
frequencies in resonance 1:1 to each other can be analyzed
using normalization techniques. To this end one needs to apply
a series of canonical transformations that bring the quadratic
and quartic terms of the Hamiltonian to a normal form,
thereby completely eliminating all cubic terms. The obtained
normalized Hamiltonian, written in terms of action-angle
variables, depends on a pair of classical actions, which can
then be straightforwardly quantized.

We note that our use of the normalization technique is very
similar to that exploited recently in the studies of the mean-field
dynamics of a nonlinear stimulated Raman adiabatic passage
(STIRAP) process [25,26]. In its simplest version, nonlinear
STIRAP considers three uniform condensates: an atomic
Bose-Einstein condensate (BEC) in its ground state and
a molecular BEC in its ground state and an excited state
coupled by laser fields (a theory for the nonuniform case has
also been developed [27]). Using a certain time-dependent
sequence of laser pulses, it is possible to convert the atomic
BEC into a ground-state molecular BEC without populating
the molecular BEC in the excited state. From a mathematical
point of view, the system is a Hamiltonian dynamical system
with two degrees of freedom possessing a rich dynamics,
including nonlinear instabilities due to 1:1 resonances. It is an
interesting fact that exactly the same degeneracy influences
the dynamics of small Bose-Hubbard chains, as we will show
below.

In detail we proceed as follows. Section II describes our
classical and quantum model. It contains a derivation of the
effective classical Hamiltonian, its semiclassical quantization,
and a comparison with the exact numerical results for the
spectra for both the weak and strong interaction regime.
Section III provides our conclusions. The Appendix contains
a discussion of the two-site Bose-Hubbard chain, where
the difference between weak and strong interaction regimes
becomes transparent.

II. CLASSICAL AND QUANTUM MODEL

Let us consider the three-site Bose-Hubbard
model with periodic boundary conditions (i.e., a ring
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geometry)

H = −J
∑
〈i,k〉

(â†
i âk + H.c.) + U

2

3∑
l=1

â
†
l â

†
l âl âl , (1)

where the first sum runs over all the nearest neighbours. As
discussed in Ref. [23], one may try to understand its spectrum
using the quantization of a corresponding effective classical
Hamiltonian which will be derived in the following. To apply
a semiclassical quantization we first slightly modify the BHM
Hamiltonian, thereby writing it in a symmetrized form

H = −J
∑
〈i,k〉

(â†
i âk + H.c.) + U

2

3∑
l=1

(
n̂l + 1

2

)2

, (2)

where n̂l = â
†
l âl is the particle number operator for the lth site.

Since the total number of particles is constant, this modification
introduces only a (uniform) shift of all energy levels. The
classical limit is then obtained by introducing c-numbers
for the operators n̂l in analogy to a classical coherent state
formalism n̂l + 1

2 → |ψl|2. This leads to the DNLSE

H = −J
∑
〈i,k〉

(ψ∗
i ψk + c.c.) + U

2

3∑
l=1

|ψl|4, (3)

i
dψj

dt
= ∂H

∂ψ∗
j

= −J (ψj+1 + ψj−1) + Uψj |ψj |2. (4)

It is important to note that the normalization of the classical
amplitudes is

∑
i |ψi |2 = Ns = N + 3

2 , where N is the total
number of atoms in the quantum model [21]. Introducing real
pairs (xn,yn) with ψn = xn+iyn√

2
, the DNLSE is equivalent to the

Hamiltonian equations of motion of the Hamiltonian

H = U

3∑
l=1

(
x2

l + y2
l

)2

8
− J

∑
〈i,k〉

(xixk + yiyk) . (5)

Switching to polar coordinates xi = √
2ni sin φi,yi =√

2ni cos φi , we arrive at the Hamiltonian

H = U

2

3∑
l=1

n2
l − 2J

∑
〈i,k〉

[
√

nink cos(φi − φk)], (6)

with
∑

i ni = const = Ns = N + 3
2 . We now perform a rescal-

ing ni = IiNs , H = hNs . With g = NsU this leads to the
Hamiltonian

h = g

2

3∑
l=1

I 2
l − 2J

∑
〈i,k〉

√
IiIk cos(φi − φk), (7)

with
∑

i Ii = const = 1.

It is possible to introduce an effective classical Hamiltonian
for the low-energy and high-energy dynamics of the system.
Here we restrict ourselves to the low-energy part. Without loss
of generality we put J = 1 in the following.

For g > gcr = −9/2 the ground state is uniform in density
and phase Ii = 1/3 ∀ i and φi = φj ∀ i,j . For strongly
attractive interaction g < gcr = −9/2 the ground state is
essentially different [17]. Here we only consider values of
interactions far from this bifurcation, (i.e., we have g > gcr ).

A. Low-energy spectrum for small and moderate values
of interaction

It is possible to eliminate one degree of freedom
by applying a transformation with the generating func-
tion W = p1(φ1 − φ2) + p2(φ1 + φ2 − 2φ3)/

√
3 + p3(φ1 +

φ2 + φ3)/3. This generating function is chosen such that the
expressions occurring in the below-given Taylor expansion
will have a simple appearance.

The transformed Hamiltonian depends only on two new
phases θ1,θ2 and their corresponding momenta p1,p2, while
the third momentum is an integral of motion p3 = ∑3

i=1 Ii =
1. At values of g larger than the critical value gcr , the stable
equilibrium is at the origin p1,2 = 0, θ1,2 = 0. We expand our
Hamiltonian around the origin up to terms of fourth-order
power in coordinates and momenta.

The resulting Hamiltonian is

h = h0 + θ2
1 + θ2

2

2
+ 9 + 2g

2

(
p2

1 + p2
2

) + H3 + H4, (8)

where H3 and H4 contain the cubic and quartic terms,
respectively, and h0 = −2 + g

6 is a constant. Note that the
quadratic part of the Hamiltonian describes two harmonic
oscillators whose frequencies are in resonance 1:1. It is exactly
this type of degeneracy which was recently considered in
Refs. [25,26]. The quadratic part of the Hamiltonian implies a
bifurcation at gcr = −9/2 (i.e., at sufficiently strong attractive
interaction). As already mentioned above, we focus on the
low-energy dynamics off this bifurcation (i.e., for weakly
attractive or repulsive interactions).

The cubic terms are given by

H3 =
√

3

4

[
2θ1θ2p1 + (

θ2
1 − θ2

2 − 27p2
1

)
p2 + 9p3

2

]
. (9)

To bring the Hamiltonian to its normal form, we need to get
rid of the cubic terms. This can be done by a nonlinear near-to-
identity canonical transformation p1,2,θ1,2 → P1,2,X1,2 deter-
mined by the generating function

W = θ1(P1 + βP1P2) + θ2
(
P2 + αP 2

2

+ γP 2
1 + cθ2

1 + dθ2
2

)
, (10)

with the coefficients

α = −9
√

3

4A
, β = −2α, γ = −α, (11)

c =
√

3
18 − A

4A2
, d = −c/3, A = 9 + 2g. (12)

This transformation does not change the quadratic terms,
removes the cubic terms, and modifies the quartic ones.
We subsequently change to polar coordinates J1,2,	1,2, with
X1,2 = √

2J1,2A
1/4 sin 	1,2,P1,2 = √

2J1,2A
−1/4 cos 	1,2.

In the resulting Hamiltonian, we keep only slowly
varying terms which depend on 	1 − 	2, and average
out (i.e., omit) other (“fast”) trigonometric terms (e.g.
cos 2	1, cos 2	2, cos[2(	1 + 	2)], etc.). We thus arrive to
the normal form

H =
√

A(J1 + J2) + B
(
J 2

1 + J 2
2

) + CJ1J2

+DJ1J2 cos[2(	1 − 	2)], (13)
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where

B = − 3g

8A2
(54 + 24g + g2), C = − g

2A2
(6 + g)(18 + g),

(14)

D = − g

4A2
(−54 + 24g + g2). (15)

One can easily see that at g = 0 all coefficients B,C,D are
equal to zero, implying the degeneracy of the Hamiltonian with
respect to J1 − J2 at this point. Introducing J = J1+J2

2 ,P =
J1−J2

2 , we get the Hamiltonian

h = 2
√

AJ + 2B(J 2 + P 2) + C(J 2 − P 2)

+D(J 2 − P 2) cos 2	, (16)

where P and 	 are canonically conjugate. This Hamiltonian is
integrable since J =const. J is the first action variable of our
effective Hamiltonian, the second one we find by calculating
K = 1

2π

∫
Pd	. This integral can be calculated analytically,

which provides us with an expression for K(h). Inverting it,
we finally find that

h = 2�J + cJ 2 − e[K2 − 2KJ ], (17)

where

c = 2C = − g

A2
(6 + g)(18 + g),

(18)
e = 2D = − g

4A2
(−54 + 24g + g2), � =

√
A.

The above expression (17) together with the constants (18)
constitute the main result of this paper. The quantization of the
actions J ,K should reproduce the low-lying energy levels of
the system. We use the following quantization of the actions

2J = n + 1

Ns

, n = 0,1, . . . , N, (19)

2K = m + 1/2

Ns

, m = 0, . . . ,n. (20)

The resulting semiclassical energy-levels Enm are shown
in Figs. 1 and 2, in comparison with the results from the
exact numerical diagonalization for N = 24 and N = 6. It is
observed that for moderate values of the interaction strength
|g| the exact spectrum is reproduced very well. To be more
specific, there are two phenomena occurring for the spectrum
with increasing |g|. At zero interaction the exact spectrum
coincides with the Bogoliubov one, and the energy levels are
organized in (degenerate) Bogoliubov bands. As g is increased,
these energy bands decrease and their degeneracy is lifted.

The first phenomenon is reproduced by the semiclassical
approach remarkably well. That is, we see from Figs. 1 and 2
that the energetical distance between the exact solutions and
the semiclassical prediction is much less than the distance be-
tween the exact and the linearized solutions (i.e., the deviation
of the exact spectrum from the Bogoliubov frequencies is much
larger than its deviation from the semiclassical prediction).
At the same time, the spreading of the energy levels within
the Bogoliubov band is reproduced not very well. For large
g values the deviation is considerable. As g is increased,
fluctuations with respect to the phase grow and an expansion

FIG. 1. (Color online) Energy levels of the three-site BHM (red
solid lines) and semiclassical levels given by Eq. (17) (black dashed
lines) as a function of the interaction strength g for N = 24 atoms.
The energy levels are rescaled to the Bogoliubov frequencies [i.e.,
we show (E − E0)/�, where E0 is the energy of the ground state,
and � = √

A = √
9 + 2g]. The Bogoliubov levels are denoted by the

(blue) dotted lines.

FIG. 2. (Color online) Energy levels of the three-site BHM (solid
red lines) and semiclassical levels given by Eq. (17) (dashed black
line) as a function of the interaction strength g for N = 6. The energy
levels are rescaled to the Bogoliubov frequencies. The corresponding
Bogoliubov levels are denoted by dotted (blue) lines.
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around the classical ground state becomes inapplicable: the
phase is not confined to the vicinity of 0 anymore. The case of
large g is analyzed in the next section.

B. Low-energy spectrum for strong interactions

At strong interactions, even though the classical ground
state remains unchanged (uniform in density and phase), the
semiclassical ground state becomes qualitatively different.
The semiclassical ground state includes zero-point oscilla-
tions (i.e., the corresponding classical trajectories possess
certain nonzero classical actions). With increasing interaction
strength, the area of the phase space filled with trajectories
oscillating around the classical ground state shrinks. At a
certain value of g the oscillatory area cannot accommodate
trajectories with these minimal actions. As a result, the nature
of the classical motion changes from oscillatory to rotational.
In other words, the zero-point oscillations destroy the phase
coherence. This is most easily illustrated for the double-well
case (see the Appendix and Fig. 5 there). One can consider it as
a (semi)classical counterpart of the Mott-insulator transition.
To be more precise, in finite quantum chains the Mott-insulator
transition becomes a smooth crossover, and the change of the
classical motion described above is the classical counterpart
of this crossover.

From a technical point of view, this qualitative change
in classical trajectories corresponding to the ground and
low-lying states leads to the inapplicability of the fourth-
order expansion of the classical Hamiltonian around the
origin: phases now cover the interval [−π,π ) and are not
restricted to the vicinity of zero. An adequate effective
Hamiltonian will consequently change severely. To derive it,
one can use classical perturbation theory such as Lindstedt’s
method [24].

Similar to the case of weak interactions, we introduce

P1 = I1 − I2

2
, P2 = 1

6
(I1 + I2 − 2I3), P3 =

3∑
i=1

Ii = 1.

(21)

Expanding the Hamiltonian in powers of P1,P2, and 1/g,
one obtains

H = g

[
1

6
+ P 2

1 + 3P 2
2 − 2

3g

(
cos 	1

+ 2 cos
	1

2
cos

	2

2

)
+ O(Pi/g)

]
. (22)

We assume that the interaction strength g is large enough
such that Pi >

√
1/g holds. This holds if 1/N � √

1/g.
Then, the classical dynamics takes place outside the resonance
zones (i.e., it becomes a rotational motion). Then, in the
first approximation of Lindstedt’s method, one introduces new
actions P1 → J1,P2 → J2, and the averaged Hamiltonian in
the new actions J1,J2 coincides with the unperturbed initial
Hamiltonian (this result can be obtained by other methods as
well [28])

H = g
[

1
6 + J 2

1 + 3J 2
2

]
. (23)

FIG. 3. (Color online) Energy levels of the three-site BHM (black
squares) and semiclassical energy levels given by Eq. (24) (red circles)
as a function of the interaction strength g, for N = 12. The levels are
almost indistinguishable on the scale of (a). Panel (b) represents an
enlarged view of a part of (a).

The semiclassical energy levels are obtained by quantizing
J1,J2:

En1,n2 = gNs

(
1

6
+ j 2

1 + 3j 2
2

)
, j1 = n1 − n2

2Ns

,

(24)

j2 = n1 + n2

2Ns

− 1

3
, n1 = 0, . . . ,N, n2 = 0, . . . ,N − n1.

Figure 3 shows a comparison of the semiclassical and exact
results.

III. CONCLUDING REMARKS

We have shown that by performing a proper analysis of
the classical counterpart of a few-site Bose-Hubbard model
one can gain valuable insights into the dynamics of the
system.

The classical system possesses two degrees of freedom and
its small-amplitude oscillations around the ground (equilib-
rium) state can be brought into the form of two decoupled
linear oscillators. An important feature of the system is that
the oscillators are in resonance 1:1 to each other. As a
subsequent approximation, considering excitations on top of
the ground state with larger amplitude, one should therefore
apply resonance normal form theory. This allows us to bring
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the system to the form of an integrable nonlinear Hamiltonian
depending on two classical actions. The quantum spectrum
can then be reproduced by quantizing these actions. From the
point of view of the physics of Bose-Einstein condensates,
this procedure can be seen as an extension of the Bogoliubov
transformations to the realm of nonlinear oscillations.

For strong interactions, the properties of the system change
drastically. Here perturbation theory with respect to the
inverse interaction strength leads to a system of uncoupled
rotators.

An interesting dynamics occurs if one dynamically sweeps
the interaction from strong to weak values (or vice versa),
passing through the crossover region. Depending on the
sweeping rate of the interaction, the crossover region is
passed adiabatically or nonadiabatically and correspondingly
different amounts of excitations are produced at the end
of the sweep. This problem for the triple-well is left for
future research. However, we solved it for the double-well.
This allows to construct a mathematical theory of slow
decoupling of two superfluids, extending the results of the
authors of Ref. [7] on abrupt decoupling of superfluids
to the case of slow sweeps. This question is presented
elsewhere [29].

The results can be generalized to the case of longer chains.
While it is understood that normal form theory is useful for
weakly interacting wave dynamics [30], we are not aware of
corresponding explicit calculations in BHM.
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APPENDIX: QUANTIZATION OF THE TWO-SITE CHAIN

For comparison, we consider here the quantization in
case of the double-well problem. The two-site Bose-Hubbard
Hamiltonian reads

Ĥ = −J (â†
2â1 + â

†
1â2) + U

2
[n̂1(n̂1 − 1) + n̂2(n̂2 − 1)].

(A1)

The symmetrized form of the interaction term is

U

2

[(
n̂1 + 1

2

)2

+
(

n̂2 + 1

2

)2

− 1

2
− 2(n̂1 + n̂2)

]
, (A2)

therefore we will consider below the slightly modified form of
the BHM, additionally assuming J = 1:

Ĥ = −
(

â
†
2â1 + â

†
1â2

)
+ U

2

[(
n̂1 + 1

2

)2

+
(

n̂2 + 1

2

)2]
.

(A3)

The semiclassical limit is given by the Hamiltonian

H = −(ψ∗
2 ψ1 + ψ∗

1 ψ2) + U

2
[|ψ1|4 + |ψ2|4], (A4)

FIG. 4. (Color online) Energy levels of the two-site BHM (red
solid lines) and the first five semiclassical levels (A15) (black dashed
lines) for N = 9 atoms.

with the corresponding equations of motion

i
dψj

dt
= ∂H

∂ψ∗
j

, i
dψ∗

j

dt
= − ∂H

∂ψj

. (A5)

The normalization of the semiclassical variables is [21]

|ψ1|2 + |ψ2|2 = N + 1 = NS. (A6)

Introducing ψi = xi+yi√
2

, the equations of motion for xi,yi are
determined by the classical Hamiltonian

H = U

8

[(
x2

1 + y2
1

)2 + (
x2

2 + y2
2

)2] − (x1x2 + y1y2), (A7)

which after transforming xi = √
2Ii cos φi,yi = √

2Ii sin φi ,
becomes

H = U

2

(
I 2

1 + I 2
2

) − 2
√

I1I2 cos (φ1 − φ2) (A8)

FIG. 5. Phase portraits of the Hamiltonian (A10). Left: g = 1.

Right: g = 100; the separatrix divides the phase space into domains
of oscillatory and rotational motion. The size of the separatrix loop
diminishes with increasing g, so at large enough values of g the
area of the oscillatory domain divided by 2π becomes smaller than
the minimal action of the semiclassical system. Even before that,
the phase trajectory with the minimal classical action becomes so
elongated along the φ axis that an expansion around the origin
becomes inaccurate.
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with the integral of motion I1 + I2 = Ns . Employing the gen-
erating function W = P

2 (φ1 − φ2) + Ns

2 (φ1 + φ2) to canoni-
cally transform the above Hamiltonian we arrive at

H = U

4

(
P 2 + N2

s

) −
√

N2
s − P 2 cos 2φ. (A9)

Subsequently the transformation P = Nsp, H = Nsh, and
gives us

h = gp2

4
−

√
1 − p2 cos 2φ, (A10)

where g = UNs . For weak interactions, a phase point os-
cillates around the ground state. For strong interactions,
separatrix h = 1 shrinks to the vicinity of p = 0, and when
the area within the separatrix divided by 2π becomes less than
the minimal action 1

2Ns
, the nature of motion of the phase point

corresponding to the semiclassical ground state changes: it is
a rotation, with φ covering the full interval (0,2π ).

While it is not difficult to calculate the classical action
here, we would like to follow a general scheme which could
be generalized to a M-site Bose-Hubbard chain. Therefore
for weak interactions we proceed with an expansion of the
Hamiltonian around its equilibrium, keeping terms of up to the
fourth order. Expanding the Hamiltonian close to the origin,
one gets

h = −1 + 2φ2 + p2(1 + g/2)/2 + p4

8
− p2φ2 − 2φ4

3
.

(A11)

The quadratic part can be transformed to action-angle
variables easily

p =
√

2I/ω cos x, φ =
√

2Iω sin x, ω = 1
2

√
1 + g/2.

(A12)

Then we obtain

h = −1 + �I − g(8 + g)

4�2
I 2 + I 2F (x), (A13)

where
∫ 2π

x=0 F (x) = 0, � = 4ω = √
2(2 + g). Averaging over

x, we get the effective Hamiltonian

h = −1 + �I − g(8 + g)

4�2
I 2. (A14)

The quantization of the action leads to In = n+1/2
Ns

, n =
0, . . . ,N and finally gives us the semiclassical energy levels

E = Ns

(
g

4
− 1 + �In − g(g + 8)I 2

n

4�2

)
, (A15)

which reproduce the low-energy spectrum of the dimer BHM
remarkably well even for N ∼ 10 (see Fig. 4).

With increasing values of g, the phase trajectories near
the origin become elongated along the φ direction and
the expansion around the origin becomes inaccurate (see
Fig. 5). The nature of motion of trajectories corresponding
to the ground and low-lying excited state switch from an
oscillatory to rotational behavior.
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