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Spin segregation via dynamically induced long-range interactions in a system of ultracold fermions
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We investigate theoretically the time evolution of a one-dimensional system of spin-1/2 fermions in a harmonic
trap after, initially, a spiral spin configuration far from equilibrium is created. We predict a spin segregation
building up in time already for weak interaction under realistic experimental conditions. The effect relies on the
interplay between exchange interaction and the harmonic trap, and it is found for a wide range of parameters. It
can be understood as a consequence of an effective, dynamically induced long-range interaction that is derived
by integrating out the rapid oscillatory dynamics in the trap.

DOI: 10.1103/PhysRevA.84.063607 PACS number(s): 67.30.hj, 05.20.Dd, 67.10.Hk

I. INTRODUCTION

Ultracold atomic quantum gases have been established as
a clean and tunable test ground for many-body physics [1].
They allow us to mimic condensed matter but offer also
opportunities to study aspects of many-body physics that are
hard to address in other systems. An important example for the
latter is the broad and widely unexplored subject of many-body
dynamics. In this paper we investigate theoretically the spinor
dynamics of a Fermi gas far away from equilibrium. We
consider a one-dimensional system of repulsively interacting
spin-1/2 fermions confined in a harmonic trap. The initial state
is created out of the spin-polarized equilibrium by rotating
the spins spatially into a spiral configuration (as previously
done for a Bose condensate [2] and proposed for strongly
interacting fermions for the purpose of probing the Stoner
transition [3]). We show that already weak interaction, like
in the experiment described in Refs. [4–6], is sufficient to
induce a robust spin segregation. The effect builds up on
times that are long compared to the oscillatory motion of the
atoms in the trap. It can be explained as a consequence of
an effective, dynamically created long-range interaction that
we obtain by integrating out the rapid oscillatory dynamics in
the trap. Within the framework of a semiclassical theory, the
effective interaction is isotropic in phase space. The fact that
away from equilibrium already weak interaction can cause
a noticeable spin segregation contrasts with the equilibrium
physics of the system. For example, the spin segregation of
itinerant ferromagnetism, possible signatures of which have
recently been observed in a cold-atom system [7], requires
strong interparticle repulsion as well as higher dimensions.
The experiment [7] has inspired also theoretical work on
the dynamics of strongly interacting spin-1/2 fermions (e.g.,
Refs. [3,8]). In this paper we stick, however, to the regime
of weak interaction, where the fermionic cold-atom system
does not suffer from effects originating from the coupling to
molecular two-body bound states such as dissipative particle
losses [9] or nonuniversal scattering properties [10].

In the following two sections we will first introduce the
system and describe the semiclassical mean-field theory that
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we use to simulate its dynamics. In Sec. IV we then present
our numerical results, predicting a dynamical spin segregation.
By integrating out rapid oscillations in the trap, in Sec. V we
derive an effective description for the dynamics that explains
this finding in an intuitive fashion as a consequence of a
dynamically induced long-range interaction. Before we close
with conclusions, experimental signatures are discussed.

II. SYSTEM

We consider a gas of fermionic atoms of mass M having
two relevant internal states, m = 1

2 , − 1
2 ≡↑ , ↓. The gas is

not necessarily quantum degenerate but is sufficiently cold
and dilute to interact via low-energy s-wave scattering only.
Consequently, the interaction between two particles is captured
by a pseudopotential g′Pm′

1m1,m
′
2m2δ(r1 − r2), with (m1,m2)

and (m′
1,m

′
2) denoting the spin state before and after scattering,

respectively. Here

Pm′
1m1,m

′
2m2 = 1

2

(
em′

1m1em′
2m2 − em′

2m1em′
1m2

)
= 1

4em′
1m1em′

2m2 − sm′
1m1 · sm′

2m2 , (1)

with unity matrix em′m and vector of spin-1/2 matrices
sm′m, projects onto the antisymmetric spin singlet state that
two scattering particles have (due to Fermi statistics and
the symmetric s-wave state). The term − 1

2em′
2m1em′

1m2 =
− 1

4em′
1m1em′

2m2 − sm′
1m1 · sm′

2m2 , corresponding to the so-called
exchange interaction, gives rise to spin-spin coupling.
The coupling constant g′ = 4πh̄2as/M is proportional to
the singlet s-wave scattering length as , characterizing
the actual interatomic potential. With this, we can write
down the Hamiltonian Ĥ ′ = ∫

d r ψ̂
†
m′(r)h′

m′m(r)ψ̂m(r) +
g′
2

∫
d r ψ̂

†
m′

1
(r)ψ̂†

m′
2
(r)Pm′

1m1,m
′
2m2ψ̂m2 (r)ψ̂m1 (r). Repeated spin

indices imply summation, ψ̂m(r) is a fermionic field op-
erator, and h′

m′m(r) = − h̄2

2M
∇2

r em′m + V ′
m′m(r) denotes the

single-particle Hamiltonian containing the potential V ′
m′m(r) =

V ′(r)em′m + B(r) · sm′m, which can be decomposed into a
spin-independent term V ′(r) and an effective magnetic field
B(r) acting on the spin.

We are interested in the regime where the dynamics
is reduced to one spatial dimension and consider a
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harmonic confining potential V ′(r) ≡ V (x) + V⊥(y,z) =
1
2M[ω2x2 + ω2

⊥(y2 + z2)] with the a tight transversal confine-
ment ω⊥ being large compared to other relevant energy scales
such as the initial temperature or chemical potential. Therefore,
the particles basically occupy the transversal single-particle
ground state. Moreover, we assume that the magnetic field
varies in the x direction only, B(r) = B0ez + B(x). A possibly
present constant part B0ez of the magnetic field will be dropped
in the following; i.e., we are working in a spin frame rotating
around the z axis. Introducing a dimensionless description in
units of the longitudinal trap [energies, lengths, momenta, and
times are given from now on in multiples of h̄ω, (Mω/h̄)−1/2,
(Mh̄ω)1/2, and ω−1, respectively], we arrive at the Hamiltonian

Ĥ =
∫

dx ψ̂
†
m′(x)hm′m(x)ψ̂m(x)

+ g

2

∫
dx ψ̂

†
m′

1
(x)ψ̂†

m′
2
(x)Pm′

1m1,m
′
2m2ψ̂m2 (x)ψ̂m1 (x) (2)

for the one-dimensional problem. Here g = 2h̄ω⊥as ×
(Mω/h̄)1/2/(h̄ω),

hm′m(x) = − 1
2∂2

x em′m + Vm′m(x), (3)

and

Vm′m(x) = 1
2x2em′m + B(x) · sm′m. (4)

By swapping field operators and indices (ψ̂†
m′

1
ψ̂

†
m′

2
=

−ψ̂
†
m′

2
ψ̂

†
m′

1
→ −ψ̂

†
m′

1
ψ̂

†
m′

2
) the interaction can be simplified

to Ĥint = g
∫
dx ψ̂

†
↑(x)ψ̂↑(x)ψ̂†

↓(x)ψ̂↓(x), reflecting that by
Pauli exclusion only fermions of opposite spin interact. The
resulting spin coupling (parallel spins avoid repulsion) is
expressed more clearly, however, in Eqs. (1) and (2).

III. SEMICLASSICAL DESCRIPTION

A. Equations of motion

We study the system’s dynamics in terms of the single-
particle density matrix

nm′m(x ′,x) ≡ tr{ρ̂ψ̂
†
m′(x ′)ψ̂m(x)}, (5)

with density operator ρ̂. It evolves in time according to i ˙̂ρ =
[Ĥ ,ρ̂], giving

i ṅm′m(x ′,x) = 〈[ψ̂†
m′ (x ′)ψ̂m(x),Ĥ ]〉 (6)

using cyclic permutation under the trace. While for nonin-
teracting particles the right-hand side (rhs) of this equation
reads hmk(x)nm′k(x ′,x) − hkm′(x)nkm(x ′,x), the interaction
Ĥint leads to quartic expectation values that we decompose as

〈ψ̂†
k ψ̂

†
l ψ̂mψ̂n〉 ≈ 〈ψ̂†

k ψ̂n〉〈ψ̂†
l ψ̂m〉 − 〈ψ̂†

k ψ̂m〉〈ψ̂†
l ψ̂n〉 (7)

in order to get a closed equation for nm′m(x ′,x). By Wick’s
theorem this decomposition is exact for the initial state
considered here, being an equilibrium state of a quadratic
Hamiltonian modified only by the spiral spin rotation
generated by another quadratic Hamiltonian. At later
times it corresponds to the time-dependent Hartree-Fock
approximation that is suitable for weak interaction and leads
to the nonlinear equation of motion

iṅm′m(x ′,x) = hmf
mk(x)nm′k(x ′,x) − hmf

km′(x ′)nkm(x ′,x). (8)

The Hartree-Fock Hamiltonian hmf
m′m(x) = hm′m(x) + V mf

m′m(x)
comprises the mean-field potential V mf

m′m(x) = Vmf(x)em′m +
Bmf(x) · sm′m, where

Vmf(x) = 1
2gn0(x),

(9)
Bmf(x) = −2gn(x),

with particle density n0(x) = em′mnm′m(x,x) and spin density
n(x) = sm′mnm′m(x,x).

In a next step, we introduce the Wigner function

wm′m(x,p) = 1

2π

∫
dξ e−ipξnm′m(x − ξ/2,x + ξ/2). (10)

Using Eq. (8), this phase-space representation of the single-
particle density matrix can be shown to evolve as (e.g., [11])

ẇm′m(x,p)

= −p∂xwm′m(x,p) + 1

i

∞∑
α=0

1

α!

(
i

2
∂y∂p

)α

× [V̄mk(y)wm′k(x,p) − (−)αV̄km′(y)wkm(x,p)]
∣∣∣
y=x

,

(11)

with V̄m′m(x) ≡ Vm′m(x) + V mf
m′m(x). The relation

nm′m(x,x) =
∫

dp wm′m(x,p) (12)

connecting the spatial densities entering the mean-field poten-
tial to the Wigner function closes this equation of motion.
We employ a semiclassical approximation to the motional
degrees of freedom by truncating the infinite series after
α = 1. This is justified as long as the potential V̄m′m(x) varies
slowly compared to the single-particle wave lengths involved.
It is thus particularly suitable for sufficiently hot or dense
systems, with either the thermal or the Fermi wave length
small. Moreover, the truncation is exact for harmonic or linear
potentials V̄m′m(x). It gives

ẇm′m = −p∂xwm′m + (∂xV̄ )∂pwm′m

− i B̄ · (smkwm′k − skm′wkm)

+ 1
2 (∂x B̄) · ∂p(smkwm′k + skm′wkm), (13)

having the form of a Boltzmann equation, lacking the collision
integral, and augmented by a coherent spin dynamics (cf.,
e.g., [12] and references therein). On the rhs, the four terms
describe diffusion, spin-independent acceleration, coherent
spin rotation, and spin-dependent acceleration, respectively.
It is instructive to introduce the real-valued density and spin
Wigner functions:

w0(x,p) ≡ em′mwm′m(x,p),
(14)

w(x,p) ≡ sm′mwm′m(x,p).

Their time evolution is determined by (e.g., Ref. [12])

ẇ0 = [−p∂x+x∂p+(∂xVmf)∂p]w0 + (∂x B + ∂x Bmf) · ∂pw,

ẇ = [−p∂x + x∂p + (∂xVmf)∂p + (B + Bmf)×]w

+ 1
4 (∂x B + ∂x Bmf)∂pw0, (15)

where B = 0 only during the preparation, whereas during the
time evolution to be simulated B = 0.
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The quantum and fermionic nature of the system enters
into the equations of motion (15) in different ways: through
the initial state (w0,w), via the coherent spin dynamics, and
with the structure of the mean-field interaction (9) stemming
from the projection on spin-singlet scattering (1) for Fermi
statistics. Equations (15) describe the collisionless regime
of weak interaction (implicitly assumed when introducing
the mean-field approximation [12]). The collisionless regime
is opposed to the hydrodynamic regime where collisions
constantly restore a local equilibrium of the momentum
distribution such that the state is described by density and
velocity fields depending on x only. Both regimes can be found
in the very same system: The one-dimensional collisionless
description by the set of equations (15) is also valid when
the transversal confinement ω⊥ is not tight enough to freeze
out transversal motion completely (as assumed here) but still
tight enough to ensure quick equilibration along the transversal
directions instead [4–6]. The results presented in this paper are
therefore also valid in this quasi-one-dimensional regime. The
regime in between the collisionless and hydrodynamic limit is
captured by adding a collision integral to Eqs. (15), which tend
to restore thermal equilibrium on a time scale τcoll. Considering
the effect of collisions along the longitudinal direction x

becomes necessary when considering stronger interactions and
longer times scales as we do. For such a regime, it has been
proposed to observe the spin-wave instability predicted by
Castaing in a quantum gas [13].

B. Initial off-equilibrium state

Initially, the system is prepared in its spin-polarized
equilibrium state, with the spins pointing in the x direction,
temperature T , and chemical potential μ. One has

w0(x,p) = 1

2π

{
exp

[
1

T

(
1

2
p2 + 1

2
x2 − μ

)]
+ 1

}−1

(16)

and w = (1,0,0)tw0/2, or wm′m = w0/2. The zero-
temperature chemical potential, the Fermi energy for just one
spin state, simply reads EF = N , with total particle number
N = ∫

dx n0(x) = ∫
dx

∫
dp w0(x,p). This description of the

initial state is accurate since the spin-polarized gas is nonin-
teracting and the semiclassical approximation is exact for a
harmonic trap. In a next step, at time t = 0, during a short
preparatory pulse a z-polarized magnetic field gradient is
applied, captured by B(x) = qxδ(t)ez. A spin spiral of wave
length λs = 2π/q is created, and while w0(x,p) is still given
by Eq. (16), one has

w(x,p) = ( cos(qx), sin(qx),0)t w0(x,p)

2
, (17)

or wm′m(x,p) = exp[iqx(m − m′)]w0(x,p)/2. With a simple
spin rotation, we have prepared a state far from thermal
equilibrium. Apart from (i) having created a rather artificial
spiral spin configuration (17) (not favorable with respect to
either energy or entropy), we have also increased the number
of available single-particle states from one spin state to two.
The latter has two consequences: (ii) the phase-space density
configuration (16) is far from being thermal (for half the
number of particles per spin state having the same kinetic
energy as before, a thermal distribution is characterized by

a lower chemical potential and a higher temperature), and
(iii) we have suddenly introduced interaction to the system.
The combination of (i) and (iii) will lead to robust dynamical
spin segregation.

C. Semiclassical versus mean-field dynamics

When integrating the time evolution for many fermions,
the semiclassical phase-space equations (15) are usually much
easier to treat numerically than the Hartree-Fock mean-field
equations (8), even though the interaction is nonlocal in the
former,

Vmf(x) = g

2

∫
dp w0(x,p),

(18)
Bmf(x) = −2g

∫
dp w(x,p).

This is exemplified by our state (16) and (17): In phase
space, it has a linear extent � ∼ √

max(μ,T ) [we define
� ≡ 2 max(

√
2N,2

√
T )], while it varies on the scale δ ∼

min
(
T/�,λs

)
, which stems either from the former equilib-

rium [roughly estimating dw0
dε

dε
ds

∼ w0
T

� with ε = 1
2 (x2 + p2)

and s = x,p] or from the induced spin spiral. For a reasonable
phase-space representation one thus requires a grid of just more
than (�/δ)2 ∼ N points. On the other hand, the real-space
single-particle density matrix nm′m(x ′,x) varies on the much
shorter length δ′ ∼ �−1 in each argument, calling for more
than �4 � N2 grid points.

IV. SIMULATION OF DYNAMICS

A. System parameters

In the following we consider Li6 atoms with mass M ≈
1.0 × 10−26 kg and the scattering length tuned down to
as ≈ 2.4 × 10−10 m by using a magnetic Feshbach resonance;
the trap frequencies read ω = 2π × 60 Hz and ω⊥ = 2π ×
3.6 kHz. Returning to dimensionless units, we obtain the weak
coupling g ≈ 0.055. The initial spin-polarized equilibrium is
characterized by the particle number N = EF = 100 and by
the temperature T , which takes values of T/EF = 0.2, 1, or
5, corresponding to the degenerate, intermediate, and non-
degenerate regimes, respectively. According to these values,
one finds the chemical potentials μ/EF ≈ 1.0, 0.54, −7.2;
cloud extensions � ≈ 28, 40, 89; maximum densities n0(0) ≈
4.4, 3.3, 1.8. The maximum mean-field potential strengths
read n0(0)g ≈ 0.24,0.18,0.097, respectively; they are small
compared to the trap frequency (which is 1 in our units) and
extremely small with respect to typical single-particle energies
max(T ,μ) � 100. In addition to the temperature, we also vary
the spiral wave length λs and consider either �/λs = 1, 2,
or 5 windings of the spin spiral within the atom cloud. For
these conditions, we integrate the time evolution using the
MacCormack method [14] and trust results that coincide for
grid sizes of 3002 and 6002 for a phase-space region of linear
extension ≈2�.

B. Observation of spin segregation

On a short time scale of ∼1, the system evolves
mainly as determined by the harmonic trapping potential.
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That is, neglecting interaction completely for the moment,
(w0(x,p),w(x,p)) simply rotates in phase space at constant an-
gular velocity 1 (in units of the trap); each point of the Wigner
function follows a classical circular orbit. This behavior can
be observed clearly in the first row of Fig. 1(a), which shows
the evolution of wx during half a cycle. This simple dynamics
in phase space translates into a more involved evolution of
the spatial polarization n(x), obtained by projecting w(x,p)
onto the x axis, n(x) = ∫

dp w(x,p). Figure 1(b) shows the
averaged absolute spatial xy polarization,

σxy ≡ 1

N

∫
dx

[
n2

x(x) + n2
y(x)

]1/2
, (19)

during the first two cycles. A rapid collapse of σxy followed
by periodic revivals can be observed; the more pronounced it
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FIG. 1. (Color online) (a) Wigner functions wx(x,p) and wz(x,p)
at five times [i–v, as indicated in (b)] during the first half cycle;
T/EF = 1, λs/� = 0.5, and both x and p range from −40 to 40.
The motion in phase space is governed by an overall rotation at
the trap frequency, during which the z component of the Wigner
function slowly builds up two domains. (b) Time evolution of the
averaged spatial polarizations σz and σxy for T/EF = 0.2, 1, 5 (thick
solid, dashed, and thin solid lines, respectively) and for λs/� =
1, 0.5, 0.2 (top triple of red lines, middle triple of black lines,
and bottom triple of blue lines, respectively). While for the shorter
wave lengths λs/� the spatial xy polarization shows rapid collapses
followed by periodic revivals, the emerging spatial z polarization
undergoes smooth oscillations as a signature of the formation of only
two domains in phase space.

is, the larger the number of spiral windings �/λs in the atom
cloud is.

During a single cycle of oscillation in the trap the weak
interaction causes only small deviations from a simple rotation
in phase space. The small modification of the trap frequency
and the slight anharmonicities caused by the scalar part of the
mean-field potential Vmf(x) are hardly noticeable. However,
the effect of interaction becomes apparent in wz, which is
zero initially [Fig. 1(a); note the different color scales for
wx and wz]. Though still small, wz develops a characteristic
pattern induced by the magnetic mean field Bmf. Namely,
in wz two domains of opposite z polarization form. This
spin segregation in phase space corresponds to phase-opposed
dipole oscillations of the ↑- and the ↓-polarized domains in
the trap (see also Fig. 3). Remarkably, the spin segregation
does not reproduce the structure of the initially created spin
spiral of wave length λs . The formation of two spin domains
(and only two) is a very robust effect; we find it for all pitches
of the spin spiral considered here. The top panel of Fig. 1(b)
shows the averaged absolute spatial z polarization,

σz ≡ 1

N

∫
dx

[
n2

z(x)
]1/2

. (20)

As a consequence of spin segregation in phase space, σz

oscillates in time; however, because only two domains are
formed, it does not feature sharp collapses like σxy does for
small λs/�.

In Fig. 2 we present data for longer times for the original
temperature T/EF = 1 and for three different spiral wave
lengths λs/�: From cycle to cycle the spin segregation
becomes more and more pronounced as visible from σz and
from the snapshots on the right showing wz during the 21st
half cycle. The rotation in phase space of the two oppositely
polarized domains corresponds to a phase-opposed dipole
oscillation of ↑ and ↓ spins in the trap. This behavior is visible

 0
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FIG. 2. (Color online) Evolution on longer times for T/EF = 1
and different wave lengths λs/�. (left) Averaged spatial absolute z

polarization σz vs time. (right) Wigner functions wx and wz plotted
for five instants in time as in Fig. 1(a), but during the 21st half cycle
(arbitrary color scale). Initially, σz increases linearly in time with a
rate that is controlled by the wave length λs/�. Irrespective of the
number of windings �/λs (directly visible in wx), wz developed two
oppositely polarized domains.
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FIG. 3. (Color online) Spatial densities n↑(x) and n↓(x) as well
as z polarization nz(x) = 1

2 [n↑(x) − n↓(x)] at five instants in time
during the 21st half cycle for T/EF = 1 and λs/� = 0.2. Times and
parameters correspond to the middle row of panels on the right in
Fig. 2. Spin ↑ and ↓ particles segregate and perform phase-opposed
dipole oscillations in the trap.

in Fig. 3, which shows the spatial densities n↑(x) and n↓(x)
as well as the spatial polarization nz(x) = 1

2 [n↑(x) − n↓(x)]
during the 21st cycle. While a z polarization builds up, the
spiral spin structure in the xy plane decreases but stays
intact (cf. wx during the 21st half cycle shown in Fig. 2).
The total density Wigner function w0 hardly changes during
the time evolution also for longer times (not shown). The
spin segregation can directly be controlled by the number of
windings �/λs of the spin spiral within the cloud: the more
windings there are, the slower the segregation builds up. The
fastest segregation is observed for �/λs = 1; here, already
after ten half cycles, deviations from a linear increase are
found, and a more complex dynamics sets in (Fig. 2).

V. EXPLANATION BY DYNAMICALLY INDUCED
LONG-RANGE INTERACTION

A. Effective Description

In order to give an intuitive explanation for the spin
segregation, let us describe the system in the rotating phase-
space frame with the new coordinates x ′ = x cos(t) − p sin(t)
and p′ = p cos(t) + x sin(t) describing classical orbits in the
trap. In that frame w′(x ′,p′,t) ≡ w(x(x ′,p′,t),p(x ′,p′,t),t)
is stationary for vanishing interaction. However, interaction,
represented by the mean-field potentials (18), is now time
dependent since it is obtained by projecting onto the x axis,
which rotates with respect to the new frame. For example, the
magnetic mean field B′

mf(x
′,p′,t) = Bmf(x(x ′,p′,t),t) reads

B′
mf(x

′,p′,t)= −2g

∫ ∞

−∞
ds w′(x ′ − s sin(t),p′ + s cos(t),t).

(21)

The time dependence of the mean field B′
mf originates, on

the one hand, from the rotation of the integration axis at trap
frequency and, on the other hand, from the time dependence
of the Wigner function w′(x ′,p′,t). In the rotating frame,
the latter is solely governed by the weak interaction and is

slow compared to the oscillation in the trap. We can use this
difference in time scales to separate the dynamics on short
times from that on longer times. We assume that a single
oscillation in the trap is not affected by the weak interaction.
This allows us, in turn, to integrate out the rapid oscillations
in the trap when studying the dynamics on longer times where
interaction does play a role; we approximate

B′
mf(x

′,p′,t) ≈ Beff
mf(x

′,p′,t)

≡ −2g

2π

∫ 2π

0
dτ

∫ ∞

−∞
ds w′(x ′ − s sin(τ ),p′

+ s cos(τ ),t), (22)

giving

Beff
mf(x

′,p′,t) =
∫

dp̃

∫
dx̃

−2g/π√
x̃2 + p̃2

w′(x ′ + x̃,p′ + p̃,t).

(23)

An equivalent expression can be obtained for the mean-field
potential acting on the density,

V eff
mf (x ′,p′,t) =

∫
dp̃

∫
dx̃

g/(2π )√
x̃2 + p̃2

w′(x ′ + x̃,p′ + p̃,t).

(24)

By averaging over a cycle, we have obtained an effective
mean-field potential that corresponds to a time-independent
interaction that is isotropically long-ranged in phase space.
We can compare the effective mean-field potentials (23) and
(24) with the non-cycle-averaged mean fields (18) describing
the physics in the nonrotating phase-space frame. The latter
can be rewritten as Bmf(x,p,t) = ∫

dp̃
∫
dx̃[−2gδ(x̃)]w

(
x +

x̃,p + p̃,t
)

with a similar expression for Vmf(x,p,t). The
contact interaction Pm′

1m1,m
′
2m2gδ(x) is dynamically modified

to Pm′
1m1,m

′
2m2

g

π
(x2 + p2)−1/2 being long-ranged in space.

By oscillating in the trap, the system dynamically acquires
spatially long-range interactions.

B. Zero-order semiclassical mean-field interaction

We can simplify the description further, again arguing
that interaction is weak and the mean-field potential small
compared to the trap. For the mean-field contribution V mf

m′m
of the potential V̄m′m(x) = V mf

m′m(x) + 1
2x2, appearing in the

infinite series on the rhs of the equation of motion (11), we
truncate the series already after α = 0 instead of α = 1. In
the set of equations (15), this approximation corresponds to
neglecting the mean-field-induced acceleration by dropping
terms involving the gradients ∂x Bmf and ∂xVmf. We keep,
however, the spin-rotating term Bmf × w stemming from the
order α = 0. Together with cycle averaging, in the rotating
phase-space frame, we arrive at the effective equations of
motion

ẇ′
0(x ′,p′,t) = 0,

(25)
ẇ′(x ′,p′,t) = Beff

mf(x
′,p′,t) × w′(x ′,p′,t).
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λ  /Δ = 0.2s λ  /Δ = 0.5s λ  /Δ = 1s

FIG. 4. (Color online) Cycle-averaged rate of the creation of
z polarization computed for the initial state [Beff

mf(0) × w′(0)]z for
T/EF = 1 and different spiral wave lengths λs/� (arbitrary color
scale). This explains the formation of two oppositely polarized
domains in wz that is visible in Fig. 2.

The second equation describes the time evolution of the
polarization field w′ in the x ′p′ plane.1 At each point the
polarization w′ is rotated by the mean field Beff

mf such that |w′|
stays constant.

C. Growth of z polarization

The spin segregation observed numerically can now be
explained by first-order time-dependent perturbation theory,
predicting, according to Eqs. (25), initially a linear growth of
the z polarization,

wz(x
′,p′,t) � [

Beff
mf(x

′,p′,0) × w′(x ′,p′,0)
]
z
t, (26)

as we can observe in the left panels of Fig. 2. Deviations
from the linear growth (26) appear as soon as w′

z becomes
comparable to |w′|, which is visible in the lower left plot of
Fig. 2. Figure 4 shows the rate [Beff

mf(0) × w′(0)]z computed for
the intermediate temperature T/EF = 1 and different spiral
wave lengths λs/�. Notably, [Beff

mf(0) × w′(0)]z always shows
a pattern with two oppositely polarized domains, irrespective
of the number of windings �/λs .2 This explains the previously
observed segregation of ↑ and ↓ polarization. The formation
of two domains only can be understood as follows.

According to Eq. (23), the spin polarization w′ at a given
point (x ′,p′) in phase space feels a magnetic mean field that
mainly depends on the polarization found in phase-space areas
close by. Within the phase-space neighborhood of (x ′,p′),
in turn, phase-space areas showing the largest polarization
perpendicular to w′(x ′,p′) contribute most. Since, for the initial
state, |w′| = w′

0/2 increases toward the origin x ′ = p′ = 0,
at a given point (x ′,p′) the effective magnetic mean field
Beff

mf is dominated by the polarization found when slightly
moving along the direction of the spiral toward the origin. On
one side of the spiral this results always in the creation of
a positive z polarization; on the other side it results always
in the creation of a negative z polarization. This explains the
creation of two domains. Moreover, the strength of the local
mean field depends on the spatial variation of the spin density

1A related equation, describing the time evolution of the spin
polarization averaged over phase-space regions of equal energy
1
2 (x2 + p2), has been previously derived in Ref. [5] and was later
applied to a three-dimensional bosonic system in Ref. [15].

2Slight deviations from this behavior are found for the low
temperature T/μ = 0.2, where the phase-space density profile has
a step-like behavior.

|w′| compared to the spiral wave length λs ; the smaller λs/�

is, the slower the spin segregation is, as observed numerically
in Fig. 2. We have identified the mechanism underlying the
observed spin segregation.

VI. EXPERIMENTAL SIGNATURES

One can measure the dynamical spin segregation by state-
sensitive absorption imaging either in situ (as in the experiment
by Du et al. [4,5]) or after a time of flight. In the latter case
one can also use Stern-Gerlach separation to distinguish ↑
and ↓ particles. An in situ measurement gives the spatial
distributions nm(x) = ∫

dp wmm(x,p) of both spin states m =
↑ , ↓; the images after a time of flight reveal their momentum
distribution ñm(p) = ∫

dx wmm(x,p). One can then determine
the z polarization in space, nz(x) = 1

2 [n↑(x) − n↓(x)], and
momentum, ñz(p) = 1

2 [ñ↑(p) − ñ↓(p)]. As shown in Fig. 3,
the dynamical spin segregation corresponds to phase-opposed
dipole oscillations of ↑ and ↓ spins in space. The momentum
distributions will show the very same behavior, but shifted in
time by a quarter of a cycle (because momentum densities are
obtained by projecting the Wigner function onto the p axis).

VII. CONCLUSIONS

The two effects described in this paper, namely, the
dynamically induced long-range interaction and the result-
ing dynamical spin segregation into two counteroscillating
domains out of a spiral spin configuration, generalize to
other types of systems. Neither effect depends on the sign
of the interaction coupling. All formulas in this paper are
also valid for attractive interactions g < 0 as long as pairing
can be excluded by temperature. We have confirmed this
statement by performing simulations also for g < 0, resulting
in a spin segregation with reversed z polarization. Moreover,
both effects can equally be expected for noncondensed “spin-
1/2” bosons. Such a bosonic system is also described by
Eqs. (15), but with the exchange interaction giving rise to
a spin coupling of opposite sign and with the initial profile
w0 being determined by the distribution function of weakly
interacting spin-polarized bosons. Finally, the phenomenon of
dynamically induced long-range interaction is not restricted
to spin-1/2 systems but generalizes also to particles of higher
spins.

The phenomenon of dynamical spin segregation predicted
here is different from the effect observed by Du et al. described
in Refs. [4–6]. In their case no spin spiral is created initially;
instead, an inhomogeneous external magnetic field is present
throughout, leading eventually to an approximately spherical
symmetric spin segregation in phase space between an inner
(low-energy) core and an outer (high-energy) shell. Since
a spherically symmetric phase-space distribution does not
translate into an oscillatory dynamics in the trap, their spatial
spin pattern does not change much during a single cycle of the
trap.

Our spin segregation effect differs also from the physics of
the spin-wave instability investigated by Conduit and Altman
[3]. They consider the same spiral spin structure as the initial
state but with strong repulsive interaction. In contrast to the dy-
namical spin segregation into two counteroscillating domains
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found here, which crucially depends on the presence of the
trap, their spin-wave instability leads to spatial (nonoscillatory)
domain formation, which does not require a trap and where
the domain size is controlled by the spiral wave length.

The system’s dynamics described here can be called self-
driven. The transformation to the corotating frame in phase
space corresponds to the transformation to the Dirac picture on
the full quantum many-body level, where the quadratic Hamil-
tonian Ĥ0 = Ĥ − Ĥint constitutes the unperturbed problem.
In the Dirac picture, the time evolution is generated solely
by the time-dependent interaction Hamiltonian Ĥ d

int(t) =
exp(−iĤ0t/h̄)Ĥint exp(iĤ0t/h̄). Thanks to the equidistant
ladder spectrum of the harmonic trap, it is time periodic,
Ĥ d

int(t + T ) = Ĥ d
int(t), with T = 2π/ω, like the Hamiltonian

of a driven system. This additional symmetry has strong
consequences for the dynamics. It allows us to find a time-
independent effective description Ĥeff = 1

T
∫ T

0 dt Ĥ d
int(t) for

the dynamics on longer time scales that does not depend on the
details of the short-time dynamics. For the system described
here, the effective description, in the form of the mean-field
potential (23), contains a spatially long-range interaction
(isotropic in phase space) that the original Hamiltonian did not
possess and that explains the spin segregation observed. The

system has dynamically acquired novel properties. A similar
situation is found, for example, for interacting particles in tilted
lattice systems with the single-particle spectrum given by the
Wannier-Stark ladder [16]. The separation of time scales found
here resembles also the physics of driven many-body systems
as has been studied in lattice systems subjected to off-resonant
external driving. These systems are equally described by an
approximate effective time-independent Hamiltonian at long
times [17].

The dynamical spin segregation is, like itinerant ferromag-
netism, caused by exchange interaction. However, while the
Stoner transition to a ferromagnetic phase is an equilibrium
effect requiring fairly strong interaction (as well as spatial
dimensionalities larger than 1), the robust effect described
here happens far from equilibrium and does not need strong
interaction but, instead, sufficiently long times to build up.
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