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Vortices in spin-orbit-coupled Bose-Einstein condensates
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Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown
that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to
an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described
by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce
thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and
(ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for
spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that
induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant
regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates,
the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological
excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend
strongly on a specific laser scheme and system parameters.
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I. INTRODUCTION

Spin-orbit-coupled cold atoms represent a very new and
quickly growing area of research that promises to host an even
richer variety of exotic phenomena than solid-state spintronics
[1]. Indeed, within just a few years of experimental research in
the field, a number of exciting phenomena have already been
observed [2–5] and there are clearly many more low-lying
fruits awaiting their experimental discovery.

The key ideas underlying cold-atom spintronics—that
studies particles with a synthetic spin degree of freedom
coupled to their motion—grew out of the early theoretical
work by Juzeliūnas et al. [6–12], which showed that single-
particle physics of atom-laser dressed states, where internal
atomic states are coupled by position-dependent laser fields,
can be described in terms of a non-Abelian vector potential
acting on the dressed excitations. Later, it was demonstrated
theoretically [13] that specific realizations of such laser config-
urations, including the early-proposed tripod scheme, give rise
to spin-orbit-coupled Hamiltonians of Rashba-Dresselhaus
type, familiar from solid-state semiconductor spintronics, and
that this “spintronics” description is a convenient alternative
to the description in terms of the non-Abelian fields. Most
importantly, it was quickly realized [14] that, contrary to
solid-state spintronics, where the underlying particles are
bound to be electronic excitations, the synthetic spin-1/2
degree of freedom in cold atoms can be carried by dressed spin-
orbit-coupled bosons that were predicted to condense into a
state, dubbed in Ref. [14] a “spin-orbit-coupled Bose-Einstein
condensate (BEC).” It was also shown [14] that multiple
peaks in the time-of-flight expansion would be a smoking-
gun signature of such a new quantum state. Remarkably,
this type of behavior was observed experimentally [2] by
one of the authors shortly after. The specific laser setup
used in Ref. [2]—that gives rise to a spin-orbit coupling of
“persistent-spin-helix type” [15–21]—was later analyzed in
detail by Ho and collaborators in Ref. [22]. These experimental
and theoretical successes have motivated other interesting

theoretical proposals for realistic experimental schemes that
can be used to create spin-orbit-coupled systems [23,24].
Spin-orbit-coupled BECs have also been studied theoretically
in Refs. [25–35] for different types of spin-orbit interactions
and different internal structures of bosons (pseudospin-1/2,
spin-1, and spin-2 bosons).

Among the obvious questions about the spin-orbit BECs
is the physics of topological excitations (vortices) that play
a central role in the physics of conventional BECs. This is
subject of this paper, where we focus primarily on exploring
experimentally relevant methods that can be used to nucleate
static vortex structures in spin-orbit BECs. In contrast to
the conventional condensates, the situation here is shown to
be significantly more complicated as the vortex physics is
obscured by the interplay of external perturbations intended
to create them and the hyperfine structure underlying the
synthetic spin-orbit-coupling setup.

It is widely known, and often taken for granted, that rotating
a Bose-Einstein condensate gives rise to the formation of
vortices that arrange themselves into static vortex lattice struc-
tures. However, this picture is not, in fact, an obvious outcome
of rotation, which represents a time-dependent perturbation
due to a rotating anisotropic trap potential. The many subtleties
involved in understanding the fundamentals of the related
phenomena are discussed in detail in the reviews by Leggett
[36,37], but the main conclusion is indeed that the physics
of a one-component BEC confined to a spinning anisotropic
trap can be mapped onto a statistical-mechanical problem
of the BEC with an effective time-independent Hamiltonian,
Heff = H − ωr · L, which describes the system in a rotating
frame of reference (where L is the orbital angular momentum
operator and ωr is the frequency of rotation).

A naı̈ve expectation, therefore, is that to rotate an
anisotropic trap would be a straightforward means to cre-
ate vortex structures in spin-orbit-coupled BECs as well.
However, this paper shows that this is not so and other,
more sophisticated, methods have to be involved in order
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to create static vortex structures. We show that the problem
with rotation arises here because atoms are not influenced
by the trapping potential only but also by the lasers which
create spin-orbit coupling in the first place. Therefore, if only
the anisotropic potential rotates, it is, in general, impossible
to choose a frame of reference where the Hamiltonian is
time independent, because the “spin-orbit coupling” lasers,
stationary in the laboratory frame, are rotating in the rotating
frame, generally resulting in nontrivial dynamics in any
rotating frame. While there do exist rare degenerate cases,
where a unitary transformation can be found that eliminates
time dependence from the noninteracting Hamiltonian, the
interaction terms generally become time dependent under the
unitary transformation, resulting, again, in a nonequilibrium
problem. Hence, we argue that the residual time dependence
appears to be an essential and unwelcome property of a
spin-orbit-coupled BEC with rotating anisotropic potential (at
least for the realistic laser schemes currently known to us).
We believe that while the specifics of the time evolution of
rotating spin-orbit BECs are sensitive to details of both the
laser setup used and interactions, the typical scenario will
involve nonuniversal dynamics that would inevitably lead to
heating and destruction of the coherent state in contrast to the
conventional BECs.

It is, therefore, desirable to develop other experimentally
relevant methods to create vortices, like rotation or a magnetic
field, for spin-orbit-coupled BECs. Two other ways suggested
here and examined in detail are as follows: (i) to rotate
both the lasers creating spin-orbit coupling and the trap, if
the latter is anisotropic, or just the lasers for an isotropic
trap (note that to rotate an isotropic trap has no meaning);
and (ii) to combine synthetic spin-orbit couplings with a
synthetic Abelian magnetic field. Theoretically, both methods
are shown to give rise to interesting phenomena, including the
appearance of sought-after static vortices and vortex lattices,
parity effects in vortex nucleation, and real-space splitting of
the spin-orbit BEC where the left- and right-moving parts are
physically separated (an effect, which bears some similarity to
the spin-Hall effect known in condensed matter spintronics).

Our paper is structured as follows: Section II derives
effective Hamiltonians corresponding to a rotating trapping
potential and/or rotating “spin-orbit lasers” for various spin-
orbit-coupled laser schemes. In Sec. III, we solve the Gross-
Pitaevskii equation to describe individual vortices and col-
lective vortex structures for the laser scheme described in
Ref. [4] with a rotating trap and Raman lasers. In Sec. IV,
we investigate vortex nucleation and other effects associated
with a synthetic magnetic field that can be imposed on top of
the spin-orbit coupled system used in Ref. [4] by applying a
spatially dependent Zeeman field.

II. ROTATION IN SYSTEMS WITH ENGINEERED
SPIN-ORBIT COUPLING

In this section, we investigate the effect of rotation of an
anisotropic trapping potential and/or spin-orbit lasers in three
different laser schemes that have been proposed to create
effective spin-orbit couplings. To distinguish between the
different schemes, we will refer to the setup used in Ref. [4]
as an “M scheme,” the proposal described in Refs. [8,13] as

“tripod scheme,” and the recent proposal of Ref. [24] as a
“four-level scheme.”

A. M scheme

We, first, focus on the scheme used in recent experiment [4]
and investigate the Hamiltonian for the case in which both
trap and spin-orbit coupling lasers are rotating about the z

axis. The atoms in Ref. [4] are under the influence of three
external sources: the trapping potential, Raman lasers which
create spin-orbit coupling, and the magnetic field which creates
Zeeman splitting (aligned along ŷ direction). If we wanted to
get a time-independent Hamiltonian in the rotating frame we
would have to rotate trapping potential, Raman lasers, and the
magnetic field. To make things easier it is possible to change
direction of the magnetic field to be along the z axis, which
makes rotation of magnetic field about the z axis unnecessary.
If the change of the direction of magnetic field is accompanied
by change in polarization of Raman lasers (the direction of
lasers stays the same), the system is described by the same
effective equations as in Ref. [4]. It is also important to note
that, in the case of an isotropic trap, rotation of the trap has
no effect and, in that case, rotating only the Raman lasers
suffices. The stationary system is described by the following
Hamiltonian (see methods in Ref. [4]):

Ĥ0 =
[
h̄2k̂2

2m
+ V (r)

]
1̌ +

⎛
⎜⎝

h̄(−ωz + ωq) 0 0

0 0 0

0 0 h̄ωz

⎞
⎟⎠

+
√

2�σ̌3,x cos(2kLx + �ωLt), (1)

where k̂ = −i∇, V (r) is the trapping potential, 1̌ is the 3 ×
3 identity matrix, σ̌3,x,y,z are the 3 × 3 spin matrices, kL =√

2π/λ, � is the Raman coupling strength, ωz and ωq are
the linear and quadratic Zeeman shifts, respectively. Here λ

is the wavelength and �ωL is the frequency difference of the
two Raman beams used in the M scheme. The Hamiltonian
is written in the basis of hyperfine states {|mF = +1〉,|mF =
0〉,|mF = −1〉} which are quantized in ẑ direction (direction
of the external magnetic field).

When the trap and Raman lasers rotate with a constant
frequency ωr about the z axis, the Hamiltonian Ĥrot in the
laboratory frame can be obtained from Eq. (1) using the
following substitutions:

V (x,y,z) → V (x(t),y(t),z),
(2)

σ̌3,x cos(2kLx + �ωLt) → σ̌3,x(t) cos[2kLx(t) + �ωLt],

where

x(t) = x cos(ωrt) + y sin(ωrt),

y(t) = y cos(ωrt) − x sin(ωrt), (3)

σ̌3,x(t) = σ̌3,x cos(ωrt) + σ̌3,y sin(ωrt).

The Hamiltonian Ĥrot can be also written in a more compact
form:

Ĥrot = e−iωr t(L̂z+Ŝz)/h̄Ĥ0e
iωr t(L̂z+Ŝz)/h̄, (4)
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where L̂ is the orbital angular momentum operator and Ŝ
is the spin operator and L̂z and Ŝz are their z components:
L̂z = h̄(xk̂y − yk̂x)1̌, Ŝz = h̄σ̌3,z.

The Hamiltonian (4) is time dependent in the laboratory
frame, but we show below that this time dependence can be
eliminated by a unitary transform. Recall that an arbitrary
unitary transform, Û (t), of the Hamiltonian Ĥ produces a new
Hamiltonian, Ĥ ′, as follows:

Ĥ ′ = ÛĤ Û † − ih̄Û
∂Û †

∂t
. (5)

We, first, go to the rotating frame of reference (rotating
together with both the trap and the lasers) [38]: |ψRF〉 =
Û (t)|ψ〉, where Û (t) = exp[iωr t(L̂z + Ŝz)/h̄]. Equation (5)
yields

ĤRF = Ĥ0 − ωr (L̂z + Ŝz), (6)

where ĤRF denotes the Hamiltonian in the rotating frame.
The remaining time dependence, arising from the oscillating
Raman laser fields in Ĥ0, can be removed in the framework
of the rotating-wave approximation. To obtain an effective
description of the system in terms of two internal pseudospin
states, we follow Ref. [4] and choose the quadratic Zeeman
shift h̄ωq to be large enough, so the state |mz = 1〉 can
be neglected. Using the pseudospin-1/2 labels for internal
states, we get |↑〉 ≡ |mz = 0〉 and |↓〉 ≡ |mz = −1〉. The final
Hamiltonian can be expressed in the form used in Ref. [4] (a
detailed derivation is analogous to Ref. [4] and is presented in
Appendix A) as follows:

ĤRF,2 =
[
h̄2k̂2

2m
+ V (r) − ωrL̂z

]
1̌ + h̄2kL

m
k̂xσ̌z

+ �

2
σ̌x + h̄ωrkLyσ̌z +

(
0 0

0 h̄ωr − δ

)
, (7)

where 1̌ is 2 × 2 unit matrix, σ̌x,y,z are 2 × 2 Pauli matrices, and
δ = h̄(�ωL − ωz) is a detuning from the Raman resonance.
Since the resulting Hamiltonian is time independent in the
rotating frame, it leads to the appearance of stationary vortex
structures studied below in Sec. III.

In the case where only the anisotropic trap is rotating,
the Hamiltonian in the laboratory frame is given by Eq. (1),
with V (x,y,z) → V (x(t),y(t),z). Importantly, if we go to the
rotating frame and make the rotating-wave approximation
(exactly as in the above), we are still left with a time
dependence (for details see Appendix B):

Ĥ ′
RF,2 =

[
h̄2k̂2

2m
+ V (r) − ωrL̂z

]
1̌

+ h̄2kL

m
k̂x(t)σ̌z + �

2
σ̌x + δ

2
σ̌z, (8)

where k̂x(t) = k̂x cos(ωrt) − k̂y sin(ωrt).

B. Tripod scheme

We now concentrate on the proposal described in Refs. [8,
13], which uses a so-called tripod scheme, which consists of
three degenerate ground states of an atom coupled to an excited
state. The resulting energy spectrum includes two degenerate

“dark” states and two “bright” states (one of the bright states
is higher and the other is lower in energy with respect to
degenerate dark states). In the strong coupling regime and
within the adiabatic approximation, the energy difference
between the dark and bright states is very large compared
to other characteristic energies of the system. In this case,
a coupling between the dark and bright states is negligible,
and, consequently, if the atoms initially exist within the dark
states subspace, they are expected to stay there for a long time.
From now on, we use pseudospin-1/2 notations for the two
degenerate dark states.

The effective stationary Hamiltonian (projected onto the
dark-state subspace) reads:

Ĥ =
[

p̂2

2m
+ w(r)

]
1̌ − v0p̂x σ̌y − v1p̂y σ̌z + δ0σ̌z, (9)

where p = −ih̄∇, w(r) is a spin-independent part of the
trapping potential (see Appendix C for details), v0 and v1

characterize the strength and type of spin-orbit coupling, δ0 is
the effective Zeeman splitting, 1̌ is a 2 × 2 unit matrix, and
σ̌x,y,z are 2 × 2 Pauli matrices.

We, first, investigate the case with both the trap and the spin-
orbit lasers rotating. The derivation, presented in Appendix C,
leads to the following Hamiltonian in the rotating frame:

ĤRF,2 =
[

p̂2

2m
+ w(r) − ωrL̂z

]
1̌ − v0p̂x σ̌y − v1p̂y σ̌z

+ δ0σ̌z + mh̄ωr (v1xσ̌z − v0yσ̌y)

− h̄ωr

(
sin2 φ sin φ cos φ cos θ

sin φ cos φ cos θ cos2 θ cos2 φ − sin2 θ

)
,

(10)

where φ = mv0x/ cos θ , δ0 = sin2 θ{δ − [( v0
cos θ

)2 +
( v1

sin2(θ/2) )
2]/2}/2, and θ is a constant. Let us note here

that Ref. [39] previously considered the tripod scheme under
rotation but obtained slightly different results (the spin angular
momentum part (−ωrŜz) was ignored in Ref. [39]).

Our result [Eq. (10)], together with Eq. (7) for the M
scheme, clearly shows that the effect of rotation in systems
with synthetic spin-orbit interaction does not reduce to just
adding the −ωrLz term for the Hamiltonian in the rotating
frame but also produces other position-dependent terms, which
depend on a particular scheme.

We now consider the tripod scheme with only the trap
rotating. We, first, address the following question: If the
trapping potential is time dependent, can we get the effective
pseudospin Hamiltonian in the laboratory frame just by
changing V → V (t) in Eq. (9); or, in other words, are we still
allowed to restrict to the dark-state subspace if the external
potential is time dependent? The answer is certainly yes, if the
trapping potential is the same for all three degenerate ground
states (which is most often the case for optical trapping),
because this kind of time-dependent potential does not couple
the dark and bright states.

In a general tripod scheme, however, the trapping potential
is not spin independent [V̂ (r) = ∑

j Vj (r)|j 〉〈j |, V1 = V2 =
w(r), and V3 = w(r) + δ]. To better understand this case, let us
choose states {|1〉,|2〉,|3〉} to be eigenstates of Ŝz (z component
of the total spin operator). The rotation of the trapping potential

063604-3
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about the z axis then is described by V1 = V2 = w′(r,t) and
V3 = w′(r,t) + δ, where w′(r,t) = e−iωr tL̂z/h̄w(r)eiωr tL̂z/h̄. We
can therefore separate V̂ (r) into a stationary spin-dependent
term and a time dependent but spin-independent term as
follows: V̂ (r,t) = δ|3〉〈3| + w′(r,t)(|1〉〈1| + |2〉〈2| + |3〉〈3|).
Therefore, the time-dependent part of the trapping potential is
spin independent and it will not couple dark and bright states.
With this, the tripod system with a trap rotating about the z
axis is described by

Ĥ =
[

p̂2

2m
+ w′(r,t)

]
1̌ − v0p̂x σ̌y − v1p̂y σ̌z + δ0σ̌z. (11)

We now make the transformation Û (t) = exp[iωr t(L̂z/h̄ +
σ̌x/2)], which gives

Ĥ ′ =
[

p̂2

2m
+ w(r) − ωrL̂z

]
1̌ − v0p̂x(t)σ̌y(t)

− v1p̂y(t)σ̌z(t) + δ0σ̌z(t) − h̄ωr

2
σ̌x, (12)

where

p̂x(t) = p̂x cos(ωrt) − p̂y sin(ωrt),

p̂y(t) = p̂y cos(ωrt) + p̂x sin(ωrt),
(13)

σ̌y(t) = σ̌y cos(ωrt) − σ̌z sin(ωrt),

σ̌z(t) = σ̌z cos(ωrt) + σ̌y sin(ωrt).

The Hamiltonian (12) is generally time dependent. However,
in the case of Rashba coupling (v0 = v1 = v) and δ0 = 0, this
noninteracting part of the Hamiltonian becomes static and
reads

Ĥ ′ =
[

p̂2

2m
+ w(r) − ωrL̂z

]
1̌

− v(p̂x σ̌y + p̂y σ̌z) − h̄ωr

2
σ̌x . (14)

C. Four-level scheme

Here we study the four-level scheme [24] for the case
where only the trap is rotating. The stationary effective
Hamiltonian (projected to the lowest energy states) is given by
Ref. [24]

Ĥ =
[
h̄2k̂2

2m
+ V (r)

]
1̌ + α(σ̌x k̂y − σ̌y k̂x)

+β(σ̌x k̂y + σ̌y k̂x) + �z

2
σ̌z, (15)

where α and β denote strengths of Rashba and Dresselhaus
couplings, respectively (in this scheme, α is fixed and β can
be tuned), and �z is an effective Zeeman field. Per the same
arguments as in the tripod scheme, we are allowed to simply
replace V → V (t) in Eq. (15) (if an external potential is
time dependent; note also that the trapping potential here is
spin independent). The rotating trap potential reads V (r,t) =
e−iωr tL̂z/h̄V (r)eiωr tL̂z/h̄. We now make the transformation
Û (t) = exp[iωr t(L̂z/h̄ + σ̌z/2)], which gives

Ĥ ′ =
[
h̄2k̂2

2m
+ V (r) − ωrL̂z

]
1̌ + α(σ̌x k̂y − σ̌y k̂x)

+β{[σ̌y cos(2ωrt) + σ̌x sin(2ωrt)]k̂x

+ [σ̌x cos(2ωrt) − σ̌y sin(2ωrt)]k̂y}

+
(

�z

2
− h̄ωr

2

)
σ̌z. (16)

Again, this noninteracting part of the Hamiltonian is, in
general, time dependent; however, for pure Rashba coupling
(β = 0), it becomes time independent.

Note that to get the full Hamiltonian in the rotating frame,
we must also include interactions between the bosons and
apply to them the same transformations as in the noninteracting
part above. If both the trap and spin-orbit lasers rotate,
the corresponding unitary operator, Û (t) = exp[iωr t(L̂z +
Ŝz)/h̄], describes a spatial rotation about the z axis. If the
bare interactions are rotationally invariant, the interaction part
of the Hamiltonian does not change in the rotating frame. In
contrast to this result, however, if only the trap is rotating,
the interactions will generally acquire time dependence as
well (we have found a few very special cases—with serious
constraints on the parameters of the system—where a unitary
transform can be found that makes both the pure Rashba
noninteracting part and interactions time independent, but
whether these degenerate cases can be realized experimentally
remains unclear at this stage).

III. CREATING VORTICES BY ROTATION

In the previous section, we have shown that the Hamiltonian
for the M scheme in the presence of a rotating trap and
Raman lasers becomes time independent in the rotating frame.
Analogously with the physics of “ordinary” BEC under
rotation, there will be thermal equilibration in the system and
vortices will form in the condensate.

Let us assume that the trapping frequency in the ẑ direction
ωz is so large that the system is an effective 2D system, where
the motion in the ẑ direction is effectively frozen (this can be
achieved by applying a 1D optical lattice in the ẑ direction).
We also assume the interaction part of the Hamiltonian to have
the form:

Ĥint =
∫

d2r

(
1

2
G1ρ̂

2
↑ + 1

2
G2ρ̂

2
↓ + G12ρ̂↑ρ̂↓

)
, (17)

where G1, G2, and G12 are effective 2D interac-
tion strengths and are related to the 3D interac-
tion strengths G1 = G3D

1 /(
√

2πlz), G2 = G3D
2 /(

√
2πlz), and

G12 = G3D
12 /(

√
2πlz), where lz = √

h̄/(mωz). ρ̂↑ and ρ̂↓ are
density operators for the |↑〉 and |↓〉 states (normal ordering of
the corresponding creation/annihilation operators is implied).

We are interested in finding the ground-state configuration
of bosons in a rotating system described by Eqs. (7) and (17).
First, we have to make an assumption about the ground state
and we assume below that (at the mean-field level) all atoms
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occupy the same single-particle state described by the spinor
wave function, (ψ↑(r),ψ↓(r)) (we also call it condensate wave

function). The condensate wave function satisfies the Gross-
Pitaevskii (GP) equations below:

μψ↑ =
[
− h̄2

2m
∇2 − i

h̄2kL

m

∂

∂x
+ V (r) − ωr (L̂z − h̄kLy) + NG1|ψ↑|2 + NG12|ψ↓|2

]
ψ↑ + �

2
ψ↓

(18)

μψ↓ =
[
− h̄2

2m
∇2 + i

h̄2kL

m

∂

∂x
+ V (r) − ωr (L̂z+h̄kLy−h̄) − δ + NG2|ψ↓|2 + NG12|ψ↑|2

]
ψ↓ + �

2
ψ↑,

where N is the total number of particles and μ is the Lagrange multiplier associated with the constraint
∫

d2r(|ψ↑|2 + |ψ↓|2) = 1
(it can be shown that μ has a physical meaning of chemical potential [36]). We solve the GP equations by using a norm-preserving
imaginary time propagation method (see, for example, Refs. [38,40]).

We consider a trapping potential of the following form: V = 1
2mω2(x2 + γ 2y2), where ω and γω are trapping frequencies

in the x̂ and ŷ direction. It is convenient to measure lengths in the units of the harmonic oscillator length, a0 = √
h̄/(mω),

and energy in terms of h̄ω. We introduce the dimensionless position variable r′ = r/a0. The corresponding “dimensionless GP
equations” read

μ′ψ↑ =
[
−1

2
∇′2 − ik′

L

∂

∂x ′ + 1

2
(x ′2 + γ 2y ′2) − ω′

r (L̂′
z − k′

Ly ′) + g1|ψ↑|2 + g12|ψ↓|2
]
ψ↑ + �′

2
ψ↓

(19)

μ′ψ↓ =
[
−1

2
∇′ 2 + ik′

L

∂

∂x ′ + 1

2
(x ′2 + γ 2y ′2) − δ′ − ω′

r (L̂′
z + k′

Ly ′ − 1) + g2|ψ↓|2 + g12|ψ↑|2
]
ψ↓ + �′

2
ψ↑,

where k′
L = kLa0, �′ = �/(h̄ω), δ′ = δ/(h̄ω), μ′ = μ/(h̄ω),

ω′
r = ωr/ω, L̂z = −i(x ′∂y ′ − y ′∂x ′ ), g1 = NG1/(h̄ωa2

0), g2 =
NG2/(h̄ωa2

0), and g12 = NG12/(h̄ωa2
0).

In simulations for the rotating system we consider 87Rb
atoms and we use the following experimentally relevant
parameters: λ = 804.1 nm, ω = 2π × 50 Hz, and γ = 1.
These parameters give a0 = √

h̄/mω = 1.52 μm, k′
L = 8.42.

From now on we express position and momentum in terms of
dimensionless variables r′ = r/a0 and k′ = ka0 [coordinates
(x,y) and (kx,ky) in figures are also dimensionless].

We performed simulations specifically for the rotation fre-
quency ωr = 0.7 ω and for three different coupling strengths:
no coupling (� = 0), weak coupling (� = 2EL), and strong
coupling (� = 10EL), where EL = h̄2k2

L/2m is the recoil
energy (EL = 35.4h̄ω). In simulations we choose g1 = 1000,
g2 = 995, and g12 = 995. The ratio among g1, g2, and g12

corresponds to interaction coefficients in 87Rb (the interaction
coefficients for 87Rb in states {|F = 1,m = 0〉,|F = 1,m =
−1〉} are given in Ref. [4]). If we assume ωz = 2π × 2 kHz,
the number of particles corresponding to chosen interaction
coefficients is N ≈ 104. In the case without Raman coupling,
rotation and with zero detuning (δ = 0) the chemical potential
is μ/h = 900 Hz. In our simulations we set δ − h̄ωr = 0.

Without rotation and spin-orbit coupling, |↑〉 and |↓〉 com-
ponents are miscible for our choice of interaction parameters.
In the case of rotation and no spin-orbit coupling there
are several different phases depending on ωr and ratio of
interaction coefficients [41]: triangular lattice, square lattice,
stripe or double-core vortex lattice, and vortex sheet. Since
our Hamiltonian is almost equivalent to the Hamiltonian in
Ref. [41] for � = 0 and δ − h̄ωr = 0 [there is a very small
difference in the interaction coefficients; the equivalence of the

noninteraction part of the two systems is clear from Eq. (A3)],
we reproduced the results of Ref. [41].

The results for � = 0 are shown in Fig. 1(a), which
displays the densities of the |↑〉 and |↓〉 components forming
spatially separated density stripes with lines of vortices
along the minima of the density. As expected, our results
reproduce the stripe vortex lattice phase described in Ref. [41].
Note that for � = 0, the Hamiltonian (7) conserves number of
the |↑〉 and |↓〉 particles separately. We have chosen N↑ = N↓
(Ni = ∫

d2r|ψi |2). A weak spin-orbit coupling (� = 2EL)
[Fig. 1(b)] does not appear to lead to significant qualitative
changes in the observed behavior: The densities of the |↑〉
and |↓〉 components are still spatially separated and there
are lines of vortices along the density minima of each
component.

A significant change comes in the strong-coupling regime:
see the � = 10EL data shown in Fig. 1(c). The vortices
arrange themselves in a lattice in the |↑〉 and |↓〉 components
and densities of both components are almost identical. This
behavior can be understood from the following part of the
Hamiltonian (7):

Ĥ ′ = h̄2k̂2
x

2m
1̌ + h̄2kLk̂x

m
σ̌z + �

2
σ̌x . (20)

The spectrum of Eq. (20) for different �s is shown in
Fig. 2(a). For large �, it consists of two bands with an
energy separation much larger than all other characteristic
energies of the system. Therefore, our system is “con-
fined” to the lower band with a single minimum, which
effectively makes it a single-component system. This ex-
plains almost identical densities of the two components in
Fig. 1(c).

063604-5
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FIG. 1. (Color online) The density profiles for the rotating
spin-orbit-coupled BEC are shown. The first, second, and third
columns show density of the |↑〉 component (|ψ↑|2), density of the
|↓〉 component (|ψ↓|2), and the total density (ρT = |ψ↑|2 + |ψ↓|2),
respectively. (a) Results for � = 0 which are characterized by density
stripes and lines of vortices in both components. The results for
� = 2EL (b) are qualitatively similar to the � = 0 case. (c) Results
for � = 10EL; a vortex lattice is formed in both components and
densities of the two components are almost identical.

IV. CREATING VORTICES BY SPATIALLY
DEPENDENT DETUNING

A. The model

Vortices in spin-orbit systems like Ref. [4] can be created
without any rotation but by imposing an additional synthetic
magnetic field. In Ref. [42], it has been shown that a spatially
dependent detuning, δ, in the M scheme results in a synthetic
magnetic field, which creates vortices in the strong Raman
coupling (�) regime. Our goal is to investigate the same system
for a wide range of � (from weak to strong Raman coupling)
and to see what kind of vortex structures it yields.

The setup is described by the effective Hamiltonian (see
Refs. [4,42])

Ĥ =
[

h̄2k̂2

2m
+ V (r)

]
1̌ + h̄2kLk̂x

m
σ̌z + �

2
σ̌x + δ(y)

2
σ̌z, (21)

where a spatially dependent δ(y) can be created in a laboratory
by applying a spatially dependent magnetic field (see Ref. [3])
or by using the vector light shift.

We, again, assume strong confinement in the ẑ direction and
describe interactions by Eq. (17). We are looking for the ground
state in the same way as in the rotating case and, following
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FIG. 2. (Color online) The energy spectrum of Ĥ ′ [Eq. (23)].
(a) Spectra for different � (from � = 0 to � = 6EL) and δ = 0
(spectrum for � = 0 is at the top while spectrum for � = 6EL is at
the bottom). (b) The effect of δ in small � regime is shown [� = 1EL,
δ = 0.5EL (solid blue line), δ = 1EL (dashed red line), and δ = 2EL

(dotted black line)]. (c) The effect of δ in the large � regime is shown
[� = 16EL, δ = 0EL (solid blue line), δ = 1EL (dashed red line),
and δ = 2EL (dotted black line)]. δ changes position and energy of the
minimum.

the same steps, we get the “dimensionless GP equations” as
follows:

μ′ψ↑ =
[
−1

2
∇′2 − ik′

L

∂

∂x ′ + 1

2
(x ′2 + γ 2y ′2)

+ δ′(y ′)
2

+ g1|ψ↑|2 + g12|ψ↓|2
]
ψ↑ + �′

2
ψ↓

(22)

μ′ψ↓ =
[
− h̄2

2m
∇′2 + ik′

L

∂

∂x ′ + 1

2
(x ′2 + γ 2y ′2)

− δ′(y ′)
2

+ g2|ψ↓|2 + g12|ψ↑|2
]
ψ↓ + �′

2
ψ↑.

Parameters �′, δ′, k′
L, g1, g2, g12 are defined in the same way as

in Eq. (19). Equations (22) are solved using the same method
as in Sec. III.

B. Qualitative discussion

To get a better understanding of the model, we investigate
Hamiltonian (21) in more detail. It is instructive to first focus
on the following part of Eq. (21):

Ĥ ′ = h̄2k̂2
x

2m
1̌ + h̄2kLk̂x

m
σ̌z + �

2
σ̌x + δ

2
σ̌z. (23)

We first assume that δ is constant in space. In that case, Hamil-
tonian (23) can be easily diagonalized in the momentum basis,
U †(kx)H ′(kx)U (kx) = ( E+(kx ) 0

0 E−(kx ) ). The resulting spectrum
consists of an upper(+) and lower(−) band, as shown in

063604-6



VORTICES IN SPIN-ORBIT-COUPLED BOSE-EINSTEIN . . . PHYSICAL REVIEW A 84, 063604 (2011)

Fig. 2. The gap separating the bands is large compared to other
characteristic energies of the system and it is safe to assume
that the condensate occupies only the states in the lower band.
In Fig. 2(a), spectra for different coupling strengths � and
δ = 0 are shown. For � < 4EL, the spectrum has two minima
and BEC will involve states near both left and right minima.
At � = 4EL, there is a transition from a spectrum with two
minima to a spectrum with one minimum, which changes the
structure of the condensate wave function, i.e., for � > 4EL,
the BEC is expected to occupy only states with momentum
around kx = 0.

The effect of detuning δ in the low-� regime is shown in
Fig. 2(b). We see that δ shifts the energies and positions of
the left and right minima. In the case of constant δ, the BEC
would occupy only the states around the global minimum [for
example, the right minimum in Fig. 2(b)]. Those cases have
been tested experimentally in Ref. [4].

We now consider a spatially dependent δ(y). We consider
it to be a linear function of y: δ(y) = δ0 + βy, which is the
simplest and the most experimentally relevant regime. The
interesting physics is evident from the following arguments:
For constant detuning, the spectrum around a minimum can
be simply described by [we use dimensionless variables,
see Eq. (19)] (kx − kmin)2/(2meff) + Emin, where meff , kmin,
and Emin are the effective mass, position of the minimum,
and the energy at the minimum, respectively. Note that
all these quantities depend on δ. If δ is y dependent, the
values of meff , kmin, and Emin will also become spatially
dependent. Hence, the spectrum around the minimum can
now be written as [kx − kmin(y)]2/(2meff(y)) + Emin(y), which
describes particles moving in an effective gauge field (A,�) =
(kmin(y),0,0,Emin(y)) with a spatially varying effective mass
meff(y) [42]. The spatially dependent vector potential A
induces an effective magnetic field (Beff = ∇ × A), which
may lead to creation of vortices if strong enough. This
approximation provides a good description of the system only
if the particles at some point y have the momentum kx near
the minimum. Our numerical simulations presented below
indicate that this approximation in fact gives a very good
qualitative description in a wide parameter range.

We calculate parameters meff(y), kmin(y), and Emin(y)
by diagonalizing (23) for different y’s since δ = δ(y). The
procedure of deriving effective equations for the lower band
for Hamiltonian (21) in the high � (single minimum) regime is
described in Ref. [42]. Let us note, however, that the method we
use to find the ground state, i.e., numerically solving Eqs. (22),
is exact (in particular, we do not limit our system to the lower
band and we do not simplify interaction terms).

C. Results

In simulations for a system with a spatially dependent
detuning δ we use the same experimental parameters as
in the simulations of a rotating system, which gives a0 =√

h̄/(mω) = 1.52 μm and k′
L = 8.42. We choose the interac-

tion parameters to be g1 = 1600, g2 = 1593, and g12 = 1593
and the constant part of detuning δ0 = 0.

The results for � = 0, β = 4h̄ω/a0, and γ = 1 are shown
in Fig. 3. Here we have chosen N↑ = N↓ since for � = 0
the Hamiltonian conserves the number of |↑〉 and |↓〉 particles

FIG. 3. (Color online) The figure shows results for � = 0, β =
4h̄ω/a0, and γ = 1. (a) The total density is shown. The shape of the
density is determined by spatially dependent detuning, which shifts
the densities of |↑〉 and |↓〉 particles (b). Momentum distribution of
the |↑〉 and |↓〉 components is shown in (c).

separately. The results are straightforward, i.e., in this case, we
may write the Hamiltonian (21) as

Ĥ =
(

H↑ 0

0 H↓

)
,

where H↑ = h̄2

2m
(k̂2 + 2kLk̂x) + V↑(r), H↓ = h̄2

2m
(k̂2 −

2kLk̂x) + V↓(r), and V↑(r) = V (r) + δ(y)/2, V↓(r) =
V (r) − δ(y)/2. We see that the motion of the |↑〉 and |↓〉
particles is decoupled in Ĥ and that they experience different
potentials V↑(r), V↓(r). Detuning gradient β shifts the
minima of V↑(r) [V↓(r)] for y0 = β/(2mω2γ 2) in the positive
[negative] ŷ direction and, therefore, the centers of the |↑〉 and
|↓〉 densities are shifted from the origin by ±y0 [the origin
is located in the minimum of V (r)]; see Fig. 3(b). Also, it is
clear from Ĥ and Fig. 2(a) that the momentum distribution of
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the |↑〉 [|↓〉] particles will be centered around k = (−kL,0)
[k = (kL,0)]; see Fig. 3(c) (in dimensionless units kL is
simply replaced by k′

L). The effect of repulsive interactions
between the particles with different spins is clearly seen (the
overlap between |↑〉 and |↓〉 densities is quite small).

If we introduce a finite �, the Hamiltonian becomes
Ĥ = ( H↑ �/2

�/2 H↓ ), and the corresponding � term creates coupling
between the |↑〉 and |↓〉 particles. If δ = const = 0 and �

is small, the states around the left [right] minimum in the
spectrum in Fig. 2(a) still consist mainly of the |↑〉 [|↓〉]
particles, but there is also some admixture of the component
with the opposite spin, which grows with �. It means that
ψ↑(r) [ψ↓(r)] will mainly consist of states with momentum
around the left [right] minimum but also of states around the
right [left] minimum. We can therefore write:

(
ψ↑(r)

ψ↓(r)

)
=

(
ψ↑L(r)

ψ↓L(r)

)
+

(
ψ↑R(r)

ψ↓R(r)

)
, (24)

where ψ↑L(r) and ψ↓L(r) consist only of states with momenta
around left peak, while ψ↑R(r) and ψ↓R(r) consist only of the
states with momenta around right peak of momentum distribu-
tion. We therefore call (ψ↑L(r),ψ↓L(r)) and (ψ↑R(r),ψ↓R(r))
the left and right wave functions. In the spatially dependent
detuning case it may happen that the momentum distribution
is separated into two peaks (i.e., there exist “left movers” and
“right movers”) even for � > 4EL. In that case also the notion
of the left and right wave functions applies.

To investigate the effect of �, which couples the |↑〉 and |↓〉
states, we consider the regime with � = 3 EL and β = 8h̄ω/a0

(Fig. 4). The total density ρT (r) is shown in Fig. 4(a) and there
is a characteristic series of minima along the x̂ direction at
y = 0, which come from vortices in the ψ↑ and ψ↓ wave
functions, see Fig. 4(b), which are positioned along x and near
y = 0. We have checked that the phase winding around the
zero density points of ψ↑ and ψ↓ is −2π . Since the vortices in
the |↓〉 and |↑〉 components are slightly displaced from y = 0,
the density at minima in ρT is close to, but not exactly equal
to zero.

To explain the existence of the line of vortices in the
|↑〉 and |↓〉 components, we examine the left and right
wave functions. Figure 5(a) displays |ψ↑L|2 and |ψ↑R|2 (note
that the amplitude of ψ↑R is considerably smaller than the am-
plitude of ψ↑L:

∫
d2r|ψ↑R|2 = 0.05 and

∫
d2r|ψ↑L|2 = 0.45).

The momentum distribution in Fig. 4(c) shows that the wave
packet, ψ↑L, has an average momentum of kleft = −0.8k′

L and
ψ↑R has an average momentum of kright = 0.8k′

L. Since ψ↑ is a
superposition of the left and right movers, ψ↑ = ψ↑L + ψ↑R ,
the appearance of the line of vortices at overlapping region is
expected. The separation of vortices d is then simply given by
(kright − kleft)d = 2π or d = 2π/(kright − kleft). The analytical
expression for d fits our numerical data perfectly well.

To explain the density profile and momentum distribution,
it is useful to consider an effective gauge-field picture. The
effective gauge field, (A,�) = (kmin(y),0,0,Emin(y)), can be
calculated by diagonalizing H ′, and we adopt the following
corresponding notation: A(y) = kmin(y) and �(y) = Emin(y).
As discussed earlier, we may approximate the low-energy
band physics by the following Hamiltonian (we use again

FIG. 4. (Color online) The figure shows results for � = 3EL,
β = 8h̄ω/a0, and γ = 1. (a) The total density is shown. The series
of minima at y = 0 comes from vortices in the |↑〉 and |↓〉 wave
functions (b). Momentum distribution of |↑〉 and |↓〉 components is
shown in (c).

the dimensionless variables, where the lengths are measured
in terms of a0 and the wave vectors, k, in terms of 1/a0):

ĤEGF = 1

2meff(y)
[kx − A(y)]2 + 1

2
k2
y + �(y) + V (r), (25)

where V (r) = 1
2 (x2 + γ 2y2). For � � 4EL there is a single

local minimum in lower band of the Hamiltonian (23)
spectrum for any δ. For � < 4EL the spectrum has two
minima for δ = 0; however, when δ becomes large enough
the spectrum has a single local minimum [Fig. 2(b)]. The
spectrum around each local minimum can be approximated by
the form given in Eq. (25), and, therefore, there will be AL(y),
�L(y), meff,L(y) corresponding to the left minimum and
AR(y), �R(y), meff,R(y) corresponding to the right minimum
of the spectrum. Left-movers feel the “left gauge field”
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FIG. 5. (Color online) (a) Diagrams of |ψ↑L|2 and |ψ↑R|2, the
relative amplitude of which is given by

∫
d2r|ψ↑L|2 = 0.45 and∫

d2r|ψ↑R|2 = 0.05 for the parameters � = 3EL, β = 8h̄ω/a0,
and γ = 1. The superposition of ψ↑L and ψ↑R , ψ↑ = ψ↑L + ψ↑R ,
produces vortices in ψ↑. (b) The density of left- and right-
moving particles (ρL = |ψ↑L|2 + |ψ↓L|2, ρR = |ψ↑R|2 + |ψ↓R|2)
particles.

(AL(y),0,0,�L(y)) while right-movers feel the “right gauge
field” (AR(y),0,0,�R(y)).

To get the effective potential in the ŷ direction acting on
left and right movers we define Veff,L(y) = �L(y) + 1

2γ 2y2

and Veff,R(y) = �R(y) + 1
2γ 2y2. In Fig. 6 we show �L|R(y),

Veff,L|R(y), AL|R(y), and 1/meff,L|R(y) for � = 3EL and β =
8h̄ω/a0. Veff,L|R have minima at y0,R|L = ±3.2 which explains
the total density profile [Fig. 4(a)] which has maxima at y =
±3.2. The position of two peaks in momentum distribution in
Fig. 4(c) can be understood as follows: for particles positioned
near the minimum of Veff,L in Fig. 6(b), it is energetically
favorable to have the x̂ component of momentum approx-
imately equal to AL(y0,L) and the ŷ component near zero
[see Eq. (25)]. Figure 6(c) shows that AL(y0,L) ≈ −0.79k′

L,
while from Fig. 4(c), we see that the momentum distribution is
centered around kx = −0.80k′

L. The same explanation applies
for the momentum distribution of right movers.

To investigate the regime with a single minimum in the
spectrum (� � 4EL) we did calculations for the following
parameters: � = 5EL, β = 12h̄ω/a0, and γ = 1 (Fig. 7). In
this “single-minimum” case one might expect the momentum
distribution to be concentrated around a single point as was
observed in Ref. [4]. However, in the spatially dependent
detuning case, this is not necessarily true: The momentum
distribution [Fig. 7(c)] shows two peaks around kx = ±0.55k′

L.
Also, the total density [Fig. 7(a)] has a characteristic series
of minima along the y = 0 line which come from vortices
in the ψ↑ and ψ↓ wave functions [Fig. 7(b)] created in the
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FIG. 6. (Color online) The scalar potential �(y) (a), the effective
trapping potential in the ŷ direction Veff (y) (b), the vector potential
A(y) (c), and the inverse of the effective mass (d) for � = 3EL,
β = 8h̄ω/a0, and γ = 1. Values corresponding to the left minimum
of the spectrum are represented by a solid red line while the values
corresponding to the right minimum of the spectrum are represented
by a dashed blue line (see the text for details).

overlapping region of the left and right movers. The results
can, again, be explained by the effective gauge field. The
effective potential in the ŷ direction Veff(y) = �(y) + 1

2γ 2y2

[Fig. 8(a)] has two minima at y0,R|L = ±3.4 which explains the
density distribution which has maxima at y = ±3.3. Moreover,
Eq. (25) tells us it is energetically favorable for particles
near the left (right) minimum of Veff(y) to have momentum
around A(y0,L) = −0.56k′

L [A(y0,R) = 0.56k′
L] [Fig. 8(c)]

which explains momentum distribution. We also note that in
Fig. 8(c) A(y) has a large gradient and, therefore, the magnetic
field (Beff ∼ ∂A/∂y) is strong around y = 0 which may serve
as an alternative explanation of line of vortices appearing in
Fig. 7(a).

We now study the system with strong Raman coupling �

and weak detuning gradient β (i.e., β is not large enough to
produce spatial separation of a cloud along ŷ as in previous
cases). Results for � = 10EL and β = 12h̄ω/a0 are shown in
Fig. 9 and can be explained by the associated effective gauge
field shown in Fig. 10. The total density [Fig. 9(a)] and |ψ↑|2,
|ψ↓|2 [Fig. 9(b)] show the existence of a vortex in the center of
the cloud. The vortex appears only for strong-enough effective
magnetic field which is tuned by changing β. We define the
effective magnetic field Beff = ∇ × A(y) and in our case, A =
(A(y),0,0), Beff = − ∂A(y)

∂y
ẑ. The magnetic field points in the

ẑ direction, depends on y, and is constant along x. We also
note that since meff(y) = 1 [Fig. 10(d)], the effective equations
will differ from those for an ordinary charged particle in a
magnetic field Beff(y) ẑ. The vector potential A(y) and the
effective magnetic field Beff(y) are shown in Figs. 10(b) and
10(c).

It is useful to know the critical field needed for vortex
creation and we may get a crude estimate by using the equation
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FIG. 7. (Color online) The figure shows results for � = 5EL,
β = 12h̄ω/a0, and γ = 1. (a) The total density is shown. The series
of minima at y = 0 comes from vortices in the |↑〉 and |↓〉 wave
functions (b). Momentum distribution of the |↑〉 and |↓〉 components
is shown in (c).

for critical magnetic field of a single-component 2D gas in the
Thomas-Fermi limit: Bc = 4(a0/R)2 ln[0.888(R/a0)2], where
R is the Thomas-Fermi radius of the cloud [43]. We take
R = 6.5 a0 (the size of our cloud), which gives Bc ≈ 0.35. It is
important to notice that larger number of particles or stronger
interactions increase R, which lowers the critical field (Bc

decreases with increasing R). To find Bc, we did simulations
for � = 10EL, γ = 1, and for different values of β (which
controls the strength of the effective magnetic field). We found
that the vortices start to appear for a critical effective magnetic
field Bc ≈ 0.34, which is very close to our estimate presented
above.

If the effective field is strong enough, a vortex “lattice” is
formed, as shown in Fig. 11, which corresponds to � = 10EL,
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FIG. 8. (Color online) (a) The scalar potential �(y), (b) the
effective trapping potential in ŷ direction Veff (y), (c) vector potential
A(y), and (d) inverse of the effective mass for � = 5EL, β =
12h̄ω/a0, and γ = 1.

β = 40h̄ω/a0, and γ = 1.85. From the figure, we see that
vortices are concentrated along the x axis and around y = 0.
This is because Beff(y) is not homogeneous, i.e., the field is
strongest at y = 0 and it weakens with increasing |y|. We had
to increase trapping strength in the ŷ direction (γ = 1.85)
because the scalar potential �(y) separates the clouds [e.g.,
see Fig. 8(a)] and for a weaker trapping strength, the effective
potential would have two minima [it would look like effective
potential in Fig. 8(b)].

The most interesting regime is the one in which left and
right moving phases (ψ↑L(r), ψ↓L(r)) and (ψ↑R(r), ψ↓R(r))

FIG. 9. (Color online) The figure shows results for � = 10EL,
β = 12h̄ω/a0, and γ = 1. In (a) the total density is shown, while
(b) and (c) show densities of the |↑〉 and |↓〉 components. The vortex
in the center appears for a strong-enough effective magnetic field.
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FIG. 10. (Color online) (a) The effective trapping potential in the
ŷ direction Veff (y), (b) the vector potential A(y), (c) the effective
magnetic field Beff , and (d) the inverse of the effective mass for
� = 10EL, β = 12h̄ω/a0, and γ = 1.

are spatially separated along the ŷ direction and there is a
vortex (or vortices) in each phase in addition to a vortex line.
This requires a double minimum structure of the effective
potential in the ŷ direction Veff(y), which separates the phases
and strong enough effective magnetic field in each phase
to create additional vortices, which tend to appear in pairs
(i.e., the number of vortices is equal in both phases which
is a consequence of the fact that in our simulations the
effective gauge field is symmetric with respect to reflec-
tion about the y = 0 line and interactions are almost spin
independent).

In Fig. 12(a), we show results for ω = 2π × 10 Hz,
� = 4EL, β = 20h̄ω/a0 [a0 = √

h̄/(mω)]. By choosing ω =
2π × 10 Hz, parameter k′

L in dimensionless GP equations (22)
becomes k′

L = 18.83, while interaction coefficients stay the
same (g1 = 1600, g2 = 1593, and g12 = 1593). Having larger
k′
L means we can create a stronger effective magnetic field. We

increased the trapping frequency in the ŷ direction (γ = 1.3) to
bring two phases closer to y = 0, where the effective magnetic
field is stronger [to counter the effective scalar potential �(y),
which separates the phases]. In Fig. 12(b) we show results for

FIG. 11. (Color online) The total density for � = 10EL, β =
40h̄ω/a0, and γ = 1.85.

FIG. 12. (Color online) Figures show separated left and right
phases with vortices in each phase. Trapping frequency is ω =
2π × 10 Hz. (a) Total density for � = 4EL, β = 20h̄ω/a0, and
γ = 1.3. (b) Total density for � = 10EL, β = 150h̄ω/a0, and
γ = 2.75.

ω = 2π × 10 Hz, � = 10EL, β = 150h̄ω/a0, and γ = 2.75.
Here the left and right phases are completely separated in
space and the effective magnetic field is strong enough to
produce multiple vortices in each phase. Also, it is clear that
the vortices are not located in the centers of the two phases but
are positioned closer to y = 0, which is expected because the
field is stronger near y = 0.

It is important to discuss the means of experimentally
observing results we presented. We concentrate on the time-
of-flight imaging, which is widely used to probe cold-atoms
systems. The time-of-flight picture here will be determined
by the underlying momentum distribution of particles. If this
momentum distribution consists of two separated peaks, the
initial cloud will strongly separate during expansion (see, for
example, Refs. [3,4]). We note that, due to the transformation
ψ ′

↑(r) = ψ↑(r)e−ikLx , ψ ′
↓(r) = ψ↓(r)eikLx used when deriving

Hamiltonian (21), the real momentum distribution of |↑〉
particles will, in fact, be shifted by kL with respect to the
momentum distribution shown in figures and the momentum
distribution of |↓〉 particles is shifted by −kL (see Ref. [4]).
In the case of � = 0, both |↑〉 and |↓〉 particles will have
zero average momentum, which means both components of
the condensate will expand, while the position of the center
of mass will be stationary during time of flight. For � = 3EL

and β = 8h̄ω/a0, we expect four separated clouds to be seen
in the time of flight: Since the real momentum distributions of
the |↑〉 and |↓〉 particles are shifted by kL and −kL, there will
be two clouds of |↑〉 particles with average momenta of 0.2kL

(larger cloud) and 1.8kL (smaller cloud) and two clouds of |↓〉
particles with average momenta of −0.2kL (larger cloud) and
−1.8kL (smaller cloud). It is important to notice that the vortex
line will not be easily visible in those images, because it exists
only due to the the overlap of the wave packets with different
average momenta. During the time of flight, two wave packets
(ψ↑L,ψ↑R) or (ψ↓L,ψ↓R) separate, which means that they no
longer overlap and there is no clear vortex line present. For the
case in Fig. 12, the vortices in each phase will be visible since
they are not a result of overlapping the left- and right-moving
condensates.
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V. CONCLUSION

In this paper, we have investigated realistic experimen-
tal methods that can be used to create vortex excitations
in spin-orbit-coupled Bose-Einstein condensates. The main
conclusion of the work is that, due to a complicated interplay
between effects associated with the applied laser fields and
rotation, the resulting state of the spin-orbit BEC under
additional perturbations is highly nonuniversal and depends
strongly on the system parameters and specific laser schemes.
In particular, we argued that a spin-orbit BEC under rotation
of the trap alone does not achieve a thermodynamically
stable state at all but acquires a complicated nonequilibrium
dynamics that eventually leads to heating and the destruction
of the condensate.

We have also suggested two alternative experimental
methods to mimic an Abelian “orbital” magnetic field that
involve either rotation of the entire experimental setup or
a spatially dependent detuning. We performed numerical
simulations of the resulting thermodynamically stable density
distributions, focusing mostly on the M scheme that has
already been realized experimentally. This scheme gives rise
to an “Abelian” spin-orbit coupling with a well-understood
ground state that we used as a basis of our numerical simu-
lations that showed topological excitations above the ground
state. We expect that the predicted vortex configurations, in
particular, vortices appearing in pairs in the spatially separated
left- and right-moving regions, would be straightforward
to observe experimentally, as all necessary ingredients are
already experimentally available.

Finally, we mention that to this point only an “Abelian”
spin-orbit-coupling scheme has been actually realized in
experiment [4] and we mostly focused here on vortex topo-
logical excitations in such systems with a well-understood
ground state. What remains of great interest, of course, is an
expermiental realization of a truly “non-Abelian” spin-orbit
interaction (either of pure Rashba or Dresselhaus type or a
nonequal mixture of those), which can be achieved using laser
schemes described in Secs. IIB and IIC and Refs. [13,24].
Note that it was argued theoretically [14] that in the Rashba-
Dresselhaus system with single-particle dispersion of the
double-well type, a fragmented condensed state [44,45] can
be selected by energetics for repulsive interactions that do
not break the underlying Kramers symmetry. It arises because
repulsive interactions in the real space tend to localize particles
in the dual momentum space per the fundamental Heisenberg
uncertainty principle. This robust argument together with the
protection provided by Kramers symmetry and momentum
conservation (modulo finite-size effects due to the trap) suggest
that the long-sought-after fragmented BEC or, equivalently,
a many-body Schrödinger’s cat state is more stable in spin-
orbit-coupled systems than in BECs in real-space double-
well potentials and, hence, can be observed experimentally.
Topological excitations above this exotic ground state are
expected to be of an exotic nature and may potentially realize
much of the exciting physics discussed in the context of
two-component superconductors [46,47]. Finally, the nature
of the ground state and topological excitations above it in
the pure bosonic Rashba model remains of great interest as
well. Depending on the interaction parameters, this model

with a continuous ring of minima on a circle in momentum
space, may potentially host topological BECs, a spontaneous
symmetry-broken state [33], and exotic Bose-liquid states [48]
where strong quantum fluctuations would prohibit order even
at zero temperature.

Note added. Recently, we became aware of two papers
that study spin-orbit-coupled BECs under rotation [49,50].
The fundamental assumptions in these papers qualitatively
differ from our theory in that Refs. [49,50] start with an
effective spin-orbit-coupled Hamiltonian and assume that
it remains stationary under rotation. This is in contrast
to our theory, where we consider realistic experimental
schemes, where rotation is shown to lead to a different
description.
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APPENDIX A: M SCHEME WITH ROTATING TRAP AND
SPIN-ORBIT LASERS

The Hamiltonian in the rotating frame (6) is:

ĤRF =
[
h̄2k̂2

2m
+ V (r) − ωrL̂z

]
1̌

+

⎛
⎜⎝

h̄(−ωz + ωq) 0 0

0 0 0

0 0 h̄ωz

⎞
⎟⎠

+
√

2�σ̌3,x cos(2kLx + �ωLt) − ωrσ̌3,z. (A1)

The Hamiltonian becomes time independent if we transfer
to the rotating-wave frame and if we do the rotating-wave
approximation:

ĤRF =
[
h̄2k̂2

2m
+ V (r) − ωrL̂z

]
1̌ +

⎛
⎜⎝

δ + h̄ωq 0 0

0 0 0

0 0 −δ

⎞
⎟⎠

+ �√
2
σ̌3,x cos(2kLx) − �√

2
σ̌3,y sin(2kLx) − h̄ωr σ̌3,z,

(A2)

where δ = h̄(�ωL − ωz). We set quadratic Zeeman shift h̄ωq

to be much greater than � and δ so we may restrict to the
subspace spanned by {|mz = 0〉,|mz = −1〉}:

ĤRF,2 =
[

h̄2k̂2

2m
+ V (r) − ωrL̂z

]
1̌ + �

2
σ̌x cos(2kLx)

− �

2
σ̌y sin(2kLx) +

(
0 0

0 h̄ωr − δ

)
, (A3)

where 1̌ is 2 × 2 unit matrix and σ̌x,y,z are 2 × 2 Pauli matrices.
Since there are effectively two internal degrees of freedom

063604-12



VORTICES IN SPIN-ORBIT-COUPLED BOSE-EINSTEIN . . . PHYSICAL REVIEW A 84, 063604 (2011)

we introduce pseudospin-1/2 notation, i.e., we define |↑〉 ≡
|mz = 0〉, |↓〉 ≡ |mz = −1〉. We follow the steps in Ref. [4]
and make the following transformation: ψ ′

↑(r) = ψ↑(r)e−ikLx ,
ψ ′

↓(r) = ψ↓(r)eikLx , where (ψ↑(r),ψ↓(r)) is a spinor wave
function on which Hamiltonian (A3) acts. The Hamiltonian
then becomes

ĤRF,2 =
[

h̄2k̂2

2m
+ V (r) − ωrL̂z + EL

]
1̌ + h̄2kLk̂x

m
σ̌z

+ �

2
σ̌x + h̄ωrkLyσ̌z +

(
0 0

0 h̄ωr − δ

)
, (A4)

where EL = h̄2k2
L/2m. We can drop the EL1̌ term by simply

renormalizing the energy.

APPENDIX B: M SCHEME WITH ROTATING TRAP

The Hamiltonian Ĥ ′
rot describing the M scheme with the

rotating trap in the laboratory frame is

Ĥ ′
rot =

[
h̄2k̂2

2m
+ V (x(t),y(t),z) − ωrL̂z

]
1̌

+

⎛
⎜⎝

h̄(−ωz + ωq) 0 0

0 0 0

0 0 h̄ωz

⎞
⎟⎠

+
√

2�σ̌3,x cos(2kLx + �ωLt), (B1)

where x(t) is defined in Eq. (3). After transferring to the
rotating frame (Û (t) = exp[iωr t(L̂z + Ŝz)/h̄]) and making the
rotating-wave approximation, the Hamiltonian is

Ĥ ′
RF =

[
h̄2k̂2

2m
+ V (r) − ωrL̂z

]
1̌ − h̄ωr σ̌3,z

+

⎛
⎜⎝

3δ/2 + h̄ωq 0 0

0 δ/2 0

0 0 −δ/2

⎞
⎟⎠

+ �√
2
σ̌3,x cos[2kLx ′(t) + ωrt]

− �√
2
σ̌3,y sin[2kLx ′(t) + ωrt], (B2)

where x ′(t) = x cos(ωrt) − y sin(ωrt). We may, again, neglect
state |mz = 1〉 assuming ωq �. To get the Hamiltonian
in a more familiar spin-orbit-coupling form we make the
following transformation: ψ ′

↑(r) = ψ↑(r)e−ikLx ′(t),ψ ′
↓(r) =

ψ↓(r)eikLx ′(t)+iωr t , which gives

Ĥ ′
RF,2 =

[
h̄2k̂2

2m
+ V (r) − ωrL̂z + EL

]
1̌

+ h̄2kL

m
k̂x(t)σ̌z + �

2
σ̌x + δ

2
σ̌z, (B3)

where k̂x(t) = k̂x cos(ωrt) − k̂y sin(ωrt). We can drop the EL1̌
term by renormalizing the energy.

APPENDIX C: TRIPOD SCHEME WITH ROTATING TRAP
AND SPIN-ORBIT LASERS

The original Hamiltonian for the tripod scheme (stationary
system) is (see Ref. [13]):

Ĥ0 = p̂2

2m
1̌ + V̂ (r) + Ĥa−l , (C1)

where V̂ (r) = ∑
j Vj (r)|j 〉〈j | is the spin-dependent trap-

ping potential, the atom-laser interaction Ĥa−l = �|0〉〈0| −
(�1|0〉〈1| + �2|0〉〈2| + �3|0〉〈3| + H.c.), and 1̌ is the 4 × 4
unit matrix. Additionally, � is the detuning from resonance and
�1,2,3 are Rabi frequencies, �1(r) = � sin θ cos(mvax)eimvby ,
�2(r) = � sin θ sin(mvax)eimvby , and �1(r) = � cos θ , where
�, θ , va , and vb are constants (see Refs. [13,14] for de-
tails). If we start rotating spin-orbit lasers in the laboratory,
the atom-laser interaction part of the Hamiltonian becomes
e−iωr t(L̂z+Ŝz)/h̄Ĥa−le

iωr t(L̂z+Ŝz)/h̄. If the trap rotates, the trapping
potential becomes e−iωr t(L̂z+Ŝz)/h̄V̂ eiωr t(L̂z+Ŝz)/h̄. Therefore, we
can write the Hamiltonian of the rotating system as

Ĥrot = e−iωr t(L̂z+Ŝz)/h̄Ĥ0e
iωr t(L̂z+Ŝz)/h̄. (C2)

The Hamiltonian in the rotating frame is then ĤRF = Ĥ0 −
ωr (L̂z + Ŝz). Since ĤRF is time independent we can use exactly
the same procedure for getting the effective spin-orbit coupling
described in Refs. [8,13], i.e. we project the Hamiltonian to
the dark states subspace. Here we assume that three degenerate
hyperfine ground states are part of the F = 1 manifold
(for example, the ground state of 87Rb) and that they are
eigenstates of Ŝz. This gives us the precise form of Ŝz operator.
As in Ref. [13] we take V1 = V2 = w(r) and V3 = w(r) + δ.
After projecting to the dark states we get:

ĤRF,2 =
[

p̂2

2m
+ w(r) − ωrL̂z

]
1̌ − v0p̂x σ̌y − v1p̂y σ̌z

+ δ0σ̌z + mh̄ωr (v1xσ̌z − v0yσ̌y)

− h̄ωr

(
sin2 φ sin φ cos φ cos θ

sin φ cos φ cos θ cos2 θ cos2 φ − sin2 θ

)
,

(C3)

where φ = mv0x/ cos θ and δ0 = sin2 θ{δ − [( v0
cos θ

)2 +
( v1

sin2(θ/2) )
2]/2}/2.
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