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I. INTRODUCTION

The original motivation for this work came from develop-
ments in the general area of optical filamentation in high-power
femtosecond pulses. The models which underlie the theory
and simulation of light-matter interactions at femtosecond
time scales [1] evolved from approaches that worked well
for longer time scales, and are based on a great deal of phe-
nomenological description. In particular, what can be termed
as the standard model in optical filamentation is actually a
collection of independent components which parametrize Kerr
nonlinearity, ionization in strong fields, ionization losses in
the optical field, defocusing by free electrons, and possibly
higher-order nonlinear effects [2]. In reality, these processes
are intimately connected, and recent debates have made it
evident that light-matter interactions at very short time scales
require renewed attention. For example, observations of strong
third-harmonic generation increasing in preformed plasmas [3]
strongly suggest that plasma can contribute significantly to
the nonlinear response. However, an alternative explanation
was also proposed [4]. Another example is the discussion and
controversy following experiments on higher-order Kerr-type
nonlinearity [5] in femtosecond filaments. The fact alone that
the basic filamentation physics could be questioned after years
of research speaks to the weak foundations of the underlying
theoretical models. What is needed is a self-consistent, first-
principles-based approach, but the practical realization of such
a program remains very difficult. That is why learning from
exactly solvable models is a promising way to improve the
current state of the art in the area; this paper aims to provide a
useful tool for such investigations.

We study arguably the simplest possible system to describe
light-matter interaction in which continuum-energy states play
a crucial role. It is the well-known one-dimensional “atom”
with a δ potential exposed to a time-dependent external field.

There are two sides to the results we present. First, we
calculate exact formulas for the evolution of the current and/or
dipole moment in an arbitrary time-dependent field. Despite
the fact that the system has been studied for a long time in many
different contexts, our results will greatly extend the utility of
the model as a testbed system. Second, we have developed
an efficient implementation for the induced current formulas.
To help an interested reader in their practical application, we
devote significant room to the numerical algorithm.

We envision two main areas in which our results will
find practical application. In the simulation of femtosecond
filaments, they will allow qualitative-level studies in which
the weakest links in the standard model will be replaced by a
self-consistent quantum model. For high-harmonic generation
(HHG) modeling, we present an exactly solvable alternative
to the strong-field approximation. Both the strong-field ap-
proximation and the model in this paper have only a single
bound state plus a continuum of free states, therefore the range
of physics that they capture is similar. The advantage of the
present approach is that it is an exact solution valid throughout
the full frequency bandwidth, including the fundamental as
well as the highest harmonic frequencies.

II. MODEL

The quantum model we study in this paper describes a
single particle subjected to a homogeneous external field
and a short-range contact potential. The time-dependent
Schrödinger equation for this “one-dimensional atom” can be
written as

[
i∂t + 1

2∂2
x + Bδ(x) − xF (t)

]
ψ(x,t) = 0. (1)

Here, B is the strength of the Dirac δ interaction, and F (t)
stands for the intensity of a time-dependent electric field.
Atomic units have been chosen to simplify the notation.

The above equation is merely symbolic unless a proper
meaning is given to the δ potential. The precise Hamiltonian
definition (see, e.g., [6,7]) of this system specifies the contact
interaction as a condition which all functions that belong to
the Hamiltonian domain must fulfill, namely,

2Bψ(0) = dψ(0−)

dx
− dψ(0+)

dx
, (2)

which means that wave functions are continuous but exhibit a
discontinuity in their derivative. For positive B, this gives rise
to a single bound (ground) state,

ψG(x) =
√

Be−B|x|. (3)

Explicit expressions are known for all continuum (positive-
energy) states, as well as for the Hamiltonian resolvent in the
static field (see, e.g., [8,9]).
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This toy model has often been utilized as a testbed in
the area of strong light-matter interaction. As one would
expect for an exactly solvable system, it has been studied for
its mathematical properties and physical applications alike.
For the mathematical aspects, we refer the reader to books
on Schrödinger operators [10] and singular perturbations
in differential operators [11]. For its physical implications,
Geltman [12] investigated time-dependent ionization in strong
electrostatic fields. Explicit results for the time dependence
of the survival probability of the decaying ground state were
given by Arrighini and Gavarini in [13], and also by Elberfeld
and Kleber [14], who used this system to model tunneling
from a quantum well and derived useful analytic results for an
arbitrary time-dependent external field. Cavalcanti et al. [9]
described generalizations to higher dimensions and made a
connection between deviations from the exponential decay and
long-lived resonances. Two short-range attractive potentials
were used to describe molecular ionization in a static field [15],
and a double δ potential was also studied by Álvarez and
Sundaram [16]. A generalization to an arbitrary finite number
of δ-potential interactions was given by Uncu et al. [17] as
a model for impurities in GaAs/GaAlAs junctions. Villalba
and González-Dı́az introduced a δ potential into the Dirac
equation [18]. Recently, we took advantage of the exact
solvability of this system to gain insight into the possible
manifestation of higher-order nonlinearity in strong optical
fields [19].

There are numerous works in previously published liter-
ature which either investigate one-dimensional atom models
themselves, or use them as tools to test and study numerical
techniques and theories. Much of this work was done in
the context of stabilization in strong fields [20]. Numerical
and eigenstate expansions have been applied [21], and the
Floquet method was also used [22] with the system discussed
here. Approximate ionization rates were calculated in [23],
and numerical simulations of photoionization were performed
in [24]. More recently, there have been a number of papers in
which various approximate and numerical methods are applied
to one-dimensional systems, such as state-specific expansion
[25], Kramers-Henneberger frame transformation [26], and
least-squares fitting of time evolution [27]. This model also
served as a testbed for numerical simulation techniques [28]
and analytic theories [29,30].

Collectively, the works referenced above illustrate an inter-
esting point, which perhaps remains valid in a wider context.
Although the model including a short-range δ potential is
formally exactly solvable, it is still far from trivial to extract
useful information from it. Therefore, approximate approaches
are often utilized, which unfortunately goes against the spirit
of studying a model system in an exact setting. It is this
fact that provides the motivation for this paper. Although
this concrete system has been studied for a long time, exact
solutions for arbitrary time-dependent external fields have not
been published. We present such solutions together with a
method to implement them in software.

The next section is devoted to the derivation of the
probability current evolution for an arbitrary time-dependent
field. The main result is stated for the current observable,
while analogous expressions for the time-dependent dipole
moment are summarized in the Appendix. In our final results,

we exactly eliminate the component that is linear in the driving
field F (t). The rationale for doing so is that this model will be
used to describe the nonlinear response, while linear medium
properties can be efficiently incorporated using standard
approaches. Next we discuss how to efficiently implement
the nonlinear current formulas. Since this work mainly aims
to present results concerning the δ-function atom model,
we devote relatively small room to illustrations. These will
verify that the results based on the analytic solution coincide
with the direct numerical solution of the time-dependent
Schrödinger equation (which requires orders of magnitude
of more numerical effort), and that the implementation is
robust, stable, and works accurately even in extreme regimes,
such as for high-harmonic generation with long-wavelength
driving pulses. In the last section, we briefly discuss various
options that our results open for applications in the computer
simulation of light-matter interactions.

III. INDUCED CURRENT: AN EXACT SOLUTION

One of the main difficulties when integrating the time-
dependent Schrödinger equation and Maxwell equations is
that the history of a quantum system must be calculated
at each spatial point resolved by the Maxwell solver. This
is necessary to extract time-dependent observables, and it
requires resolution of the wave function in space. Our goal is
to eliminate the spatial dimension from the quantum system,
and derive expressions directly for the dipole moment and
current observables. Elberfeld et al. [14] achieved this for the
probability that the system remains in the ground state. We
follow the same strategy and extend it for current and dipole
calculations.

The solution for the wave function ψ(x,t) can be cast in the
form [14]

ψ(x,t) = ψF (x,t) + ψS(x,t),

ψF (x,t) =
∫

dx ′ KF (x,t |x ′,0)ψG(x ′),
(4)

ψS(x,t) = iB

∫ t

0
dt ′ KF (x,t |0,t ′)ψ(0,t ′),

ψG(x) = B1/2e−B|x|.

The first term ψF (x,t) represents the wave-packet evolution
under the influence of the external field F (t), but without
the short-range potential. The second term ψS(x,t) describes
scattering from the δ potential followed by propagation in the
field F (t). In these equations, KF is the Volkov propagator
and ψG is the ground state (3). The Volkov propagator can
be conveniently expressed through quantities related to the
motion of a classical electron driven by F (t), namely, classical
position xcl(t), momentum pcl(t), and action Scl(t). Explicitly,

KF (x,t |x ′,t ′) = eiφ(x,t,x ′,t ′)K0(x−xcl(t),t |x ′−xcl(t
′),t ′),

K0(x,t |x ′,t ′) = 1√
2πi(t − t ′)

e
− (x−x′ )2

2i(t−t ′ ) , (5)

φ(x,t,x ′,t ′) = xpcl(t) − x ′pcl(t
′) − [Scl(t) − Scl(t

′)],
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and the classical quantities are obtained from F (t) as

pcl(t) = −
∫ t

0
F (τ )dτ,

xcl(t) =
∫ t

0
pcl(τ )dτ, (6)

Scl(t) = 1

2

∫ t

0
p2

cl(τ )dτ.

Before beginning the derivation, we would like to point
out an important issue regarding practical implementation. It
is obvious that for an initial condition given by the ground
state, ψF and ψS do not have characteristics representative
of the full solution. This means that significant cancellations
occur between the two, which is dangerous numerically. It
is therefore imperative to identify these cancellations and
eliminate them before the numerical evaluation.

The observable of interest, which gives rise to current
density in Maxwell’s equations, is the total current contribution
from one atom,

J (t) =
∫ +∞

−∞
J (x,t)dx, (7)

where the probability current density

J (x,t) = Im{ψ∗(x,t)∇ψ(x,t)} (8)

can be given as a sum of the contributions originating in the
two components of the wave function,

J (x,t) = Im{ψ∗
F ∇ψF + ψ∗

F ∇ψS + ψ∗
S∇ψF + ψ∗

S∇ψS}. (9)

A. Integral equation for ψ(0,t)

The full current (9) will be evaluated with the wave function
expressed as in Eq. (4), which in turn requires knowledge
of ψ(x = 0,t). This satisfies an integral equation obtained
directly from (4),

ψ(0,t) =
∫ +∞

−∞
dyKF (0,t |y,0)ψG(y,0)

+ iB

∫ t

0
dt ′KF (0,t |0,t ′)ψ(0,t ′). (10)

It is convenient to use the following ansatz to eliminate, at
least partially, rapid phase changes:

ψ(0,t) =
√

BA(t)e−iScl (t)+i B2

2 t . (11)

The equation for the envelope A then reads

A(t) = ψR( − xcl(t),t) + iB√
2πi∫ t

0
dt ′W (t,t ′) exp

{
i[xcl(t) − xcl(t ′)]2

2(t − t ′)

}
A(t ′), (12)

where W represents a singular integration weight

W (t,t ′) = e+i B2

2 (t ′−t)

√
t − t ′

, (13)

and the right-hand side can be expressed using complementary
error functions,

ψR(x,t) ≡ e+Bx

2
erfc

(
iBt + x√

2it

)
+ e−Bx

2
erfc

(
iBt − x√

2it

)
.

(14)

Equations (11)–(14) constitute the first step toward the evalu-
ation of physical observables for an arbitrary time-dependent
field. This integral equation has a singular kernel and is, in
fact, closely related to the Abel integral equation [31]. A
numerical solution of such equations requires care, but it can
be done efficiently. We defer the implementation details to a
later section in which we address numerical issues.

B. Elimination of classical current contributions

Since the transformation of (9) to an explicit form is rather
lengthy, it is desirable to simplify this procedure. Importantly,
the following reduction also eliminates, to a large degree,
the mutual cancellation between different contributions in the
final result. Let us consider the derivative terms in (9) and
see that they receive contribution from two sources. The first
is the argument of the free-particle propagator K0 and the
second is the phase φ of the Volkov propagator KF . The latter
results in multiplication by the classical momentum pcl(t).
After factoring this out, we obtain

pcl(t)
∫

dx{ψ∗
F ψF + ψ∗

F ψS + ψ∗
SψF + ψ∗

SψS}, (15)

where the integral gives unity since it is the conserved norm
of the full wave function. Thus, all contributions that originate
from ∂xe

iφ(x,t,x ′,t ′) will collectively yield pcl(t) and do not need
to be evaluated explicitly. Moreover, they are linear in F and
therefore not interesting for our purposes.

An alternative view of this reduction is to realize that norm
conservation implies an identity that A(t) must satisfy. Because
ψF alone is a product of unitary evolution, its norm is equal
to one at all times. Consequently, other contributions to the
wave-function norm must mutually cancel,

〈ψF |ψS〉 + 〈ψS |ψF 〉 + 〈ψS |ψS〉 = 0,

which can be evaluated explicitly to

Re

[
− iB−1

∫ t

0
dt1A

∗(t1)

×
(

e−Bxcl (t1)erfc

{
(1 + i)[Bt1 + ixcl(t1)]

2
√

t1

}

+ e+Bxcl (t1)erfc

{
(1 + i)[Bt1 − ixcl(t1)]

2
√

t1

})]

= (−1)
3
4√

2π

∫ ∫ t

0
dt1dt2W (t1,t2)e

i[xcl (t1)−xcl (t2)]2

2(t1−t2) A(t2)A∗(t1).

(16)

This identity can be used to simplify expressions which are
proportional to pcl(t). In what follows, we assume that either
of the two reduction methods was used in the calculation,
allowing us to omit all corresponding contributions. This
amounts to ignoring ∂xφ(x,t,x ′,t ′) whenever ∂x acts on KF .
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Next, we split the calculation of the induced current into
terms corresponding to Eq. (9). We are only interested in
extracting the part of the current which is nonlinear in the
driving field F (t), and we will show how this can be done
exactly.

C. Current contribution JF F

The simplest term to evaluate is the current due to ψF ,

JFF = Im
∫

dxψ∗
F ∇ψF .

The result can be deduced from the fact that ψF represents the
movement of a free particle under an influence of an external
force. Initially, this particle is in the ground state of the field-
free Hamiltonian and has zero net momentum. Because the
Volkov propagator action can be decomposed into free wave-
packet spreading, followed by a classical shift in space by xcl(t)
and and an increase in the particle’s momentum by pcl(t), we
can see that JFF is equal to the following classical momentum:

JFF = pcl(t). (17)

Naturally, the same result can be obtained by direct calculation,
as shown in the Appendix. Because JFF is linear in the driving
field intensity F (t), it does not contribute to the nonlinear
current, which we aim to calculate.

D. Current contribution JSS

Next, let us evaluate

JSS = Im
∫

dxψ∗
S∇ψS, (18)

and extract its nonlinear part J
(nl)
SS . After inserting the expres-

sion for the scattered wave-function component, and using the
explicit form of the Volkov propagator, we can write

JSS = Im

[
B3

∫ t

0

∫ t

0
dt1dt2A(t2)A∗(t1)I (t1,t2)

]
, (19)

where the quantity I represents the result of integration over
the spatial variable x:

I (t1,t2) =
∫

dx
[x − xcl(t) + xcl(t2)]

2πi(t − t1)
1
2 (t − t2)

3
2

ei B2

2 (t2−t1) (20)

× e
i[x−xcl (t)+xcl (t2)]2

2(t−t2) − i[x−xcl (t)+xcl (t1)]2

2(t−t1) .

Note that the classical action phase from the propagator has
been absorbed by the ansatz for ψ(0,t). The integration order
was exchanged between (18) and (19), which is justified when
a small imaginary part is added to the time variable to make
the integral over x convergent for fixed t1,2. The integral is
Gaussian, and can be evaluated directly as

I (t1,t2) = (−i)
3
2√

2π
W (t1,t2)

xcl(t1) − xcl(t2)

t1 − t2
e

i[xcl (t1)−xcl (t2)]2

2(t1−t2) . (21)

It becomes evident that I is a function of t1,2 but does not
depend on t .

To further simplify the numerical evaluation, the double
integral over the rectangle, (0,t) × (0,t), is split into integration
over triangles,

∫ t

0 dt1
∫ t

0 dt2 = ∫ t

0 dt1
∫ t1

0 dt2 + ∫ t

0 dt2
∫ t2

0 dt1.

In the latter term, we rename t1 ↔ t2 and verify that the two
integrals have complex-conjugate integrands.

At this point, we can eliminate the linear part of this
current contribution. The classical position xcl(t) is linear in
F , therefore, we must remove the zero-order part from the rest
of the integrand in (19). The first field-dependent contribution
from the exponential in I (t1,t2) is of the second order, and A(t)
reduces to one for zero field. In order to remove the linear part
of their product, we subtract unity from this expression, which
appears when (21) is inserted in (19):

e
i[xcl (t1)−xcl (t2)]2

2(t1−t2) A∗(t1)A(t2) → e
i[xcl (t1)−xcl (t2)]2

2(t1−t2) A∗(t1)A(t2) − 1.

The final result for the nonlinear current contribution from
the scattering part of the wave function becomes

J
(nl)
SS = 2Im

{∫ t

0
dt1

∫ t1

0
dt2

(−i)
3
2 B3W (t1,t2)√

2π

× [
e

i[xcl (t1)−xcl (t2)]2

2(t1−t2) A∗(t1)A(t2) − 1
]xcl(t1) − xcl(t2)

t1 − t2

}
.

(22)

Similar to the integral equation for ψ(0,t), the integrand
is singular when t2 → t1. Fortunately, the singularity is
not stronger, since the classical position difference vanishes
and the corresponding fraction converges to the classical
momentum. The discussion of the numerical aspects that
are important in evaluating this expression is postponed to
a dedicated section.

E. Current contribution JFS

The mixed current contribution

JFS = Im
∫

dx(ψ∗
F ∇ψS + ψ∗

S∇ψF ) (23)

is more difficult to calculate, but it simplifies to a rather
compact final expression. Just as with JSS , we will also
systematically drop all contribution arising from ∂xφ, since
we have established that their contribution is irrelevant for our
purposes.

In this derivation, there are two spatial variables of integra-
tion. One is x and the other is the auxiliary variable originating
in the initial state ψG(z). Integration over z should be executed
first; however, integrating first over x gives the same result
with less work. When we insert explicit expressions for
the wave-function components ψF,S , the integration order is
changed such that

∫
dx is done first. Again, the change of

integration order is permissible if we assume a small imaginary
part in the time variable, which makes the integrals convergent.
At this stage, we obtain

JFS = Im
∫

dz

∫ t

0
dt1

√
2

π

(−1)
3
4 B2

t
3
2

1

× e−i B2

2 t1e−B|z|e
i[z+xcl (t)]2

2t1 A∗(t1)[z + xcl(t1)], (24)

where we have added two expressions coming from ψ∗
F ∇ψS

and ψ∗
S∇ψF , respectively, with each contributing the same

imaginary part.

063424-4



EXACTLY SOLVABLE MODEL FOR NONLINEAR LIGHT- . . . PHYSICAL REVIEW A 84, 063424 (2011)

Next, we perform integration over the variable z. This is
done separately for z < 0 and z > 0, with each integration
resulting in a number of terms containing error functions of
complex arguments. Fortunately, considerable simplification
occurs when the two parts are joined. Since multiple equivalent
ways exist to represent the result, the most appropriate should
be chosen with future calculations in mind. In particular,
subtracting order-of-one quantities at large negative and
positive times should be avoided. A compact form suitable
for numerical evaluation can be given using complementary
error functions,

JFS = Im

[
iB3

∫ t

0
dt1A

∗(t1)

(
e+Bxcl (t1)

× erfc

{
(1 + i)[Bt1 − ixcl(t1)]

2
√

t1

}
− e−Bxcl (t1)

× erfc

{
(1 + i)[Bt1 + ixcl(t1)]

2
√

t1

})]
. (25)

This is not our final result, since JFS still contains contributions
linear in F (t). Note that the expression in square brackets is an
odd function of xcl(t) and, by the same token, an odd function
of F . Thus, the first-order term of the Taylor expansion in
xcl will be subtracted in order to cancel the unwanted linear
response,

J
(nl)
FS = JFS − Im

(
2B3

∫ t

0
dt1xcl(t1)

×
{
iB erfc

[
(1 + i)B

√
t1

2

]
− 1 + i√

πt1
e−i B2

2 t1

})
,

(26)

where we have again used that as F → 0, A(t) → 1. Ex-
pressions (25) and (26) together with (22) constitute our final
result. They allow us to calculate the exact nonlinear current
induced by an arbitrary time-dependent field F (t). An accurate
evaluation of these formulas requires care, therefore, we will
address ways to implement them in the form of efficient, robust
algorithms in the next section.

IV. IMPLEMENTATION AND VERIFICATION

In summary, the procedure used to calculate the current
induced by an optical-frequency pulse characterized by the
field strength F (t) consists of

(1) calculating the quantities related to the classical electron
trajectory, i.e., pcl(t), xcl(t), and Scl(t),

(2) solving the integral equation for A(t) as specified in
Eqs. (11)–(14), and

(3) evaluating the nonlinear current contributions from
Eqs. (22), (25), and (26).

If the time-dependent quantities are represented on a grid
with Nt sampling points, the computational complexity of this
procedure scales as N2

t . Therefore, it is important to design
an algorithm which can be accurate even with a long temporal
step.

Integrals with the singular integration weight (13) must be
calculated both in the integral equation for A(t) and in JSS .
To achieve an acceptable accuracy for time steps as long as
one-tenth of the atomic unit of time, the singularity must be

treated analytically. To do this, we calculate an integral of the
form ∫ t

0
W (t,τ )f (τ ),

with a representation of f sampled on a discrete set {τi}. This
allows the approximation

∫ τi+1

τi

W (t,τ )f (τ ) =
∫ τi+1

τi

W (t,τ )P (τ ),

where P (τ ) is an interpolating polynomial of {f (τi)} spanning
a vicinity of the interval (τi,τi+1). We have tested linear and
second-order methods, and have concluded that the first-order
method is accurate enough to not warrant restricting the time
step. With the locally linear approximation to f , the integral
over a subinterval is then given by pre-calculated weights,

∫ τi+1

τi

W (t,τ )f (τ ) = w(t,i)f (τi) + w(t,i + 1)f (τi+1).

Note that for a regular temporal grid, only a single weight
vector w(i − j ) needs to be stored. The same is true for an
order-n method, which requires n integration weight vectors
w(n)(k). Explicit expressions for these integration weights
depend on the ground-state energy B2/2, and can be readily
calculated in terms of error functions with complex arguments.
The resulting integration algorithm is fast, as it only requires
several multiplications per grid point.

When solving the integral equation for A(t), we evolve the
solution along the temporal axis as the formula suggests. At
each point tc, integration over its past,

∫ tc−�t

0 , is performed
using the above scheme. This is why the method scales as
N2

t . The same scheme is also applied to the last subinterval,∫ tc
tc−�t

, with the current endpoint carrying the unknown A(tc).
The endpoint value then appears on both sides and can be
expressed.

The singular integration scheme is also applied to the inner
integral in J

(nl)
SS . For the outer integral, we have used integration

rules of various orders, and found that a simple first-order
scheme is satisfactory.

The numerical evaluation of J
(nl)
FS requires the calculation

of complex complementary error functions. Because they are
dependent on the classical position xcl , these quantities cannot
be precalculated. Consequently, an implementation for erf(z)
that works in the entire complex plane is required. We have
chosen the algorithm implemented in the open-source IT++
library.

To verify that our implementation of the nonlinear current
produces correct results, we performed comparisons with
solutions obtained from direct numerical simulations of the
time-dependent Schrödinger equation (1). The δ-function
potential was implemented as a condition specifying the value
at the cusp of the derivative located at the origin as stated
by (2). The time-stepping scheme was taken from [32], and
reflecting boundary conditions were used at the edges of the
computational domain.

We choose to show an illustration for the time-dependent
dipole moment instead of the current because dipole-moment
plots are more intuitive, as their low-frequency components
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are more prominent and resemble the temporal shape of the
driving pulse.

In order to facilitate a comparison with the nonlinear
component of the induced dipole moment, the latter was
extracted from two simulations that used the same temporal
shape of the driving pulse:

P (nl) = lim
S→∞

[P ({F (t)}) − SP ({F (t)/S})].

Here, the second simulation occurs at a very low intensity
and represents the linear (in F ) contribution to the total
polarization P . The scaling factor S reduces the driving
field amplitude to where observed nonlinear effects become
negligible. Subtracting the linear part leaves us with the
nonlinear response, which can be compared to our calculations
using analytic formulas.

A rather fine grid resolution and short integration step was
required for the time-domain Schrödinger equation (TDSE)
simulation, which generated the comparison data sets shown
here. We used a numerical grid with the spacing of 0.025 (in
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FIG. 1. (Color online) Verification of the implementation of
analytic formulas for nonlinear response. The lower panel shows
a comparison with TDSE simulations of nonlinear dipole-moment
response to the driving pulse shown in the upper panel. The black
curve is based on the formulas we have derived. The blue curve
(dashed arrow) represents the TDSE simulation on a smaller grid.
The barely visible red curve (full arrow indicates its end) is the TDSE
result for a larger grid. This shows that deviations between analytic
results and direct numerics occur solely due to finite-size effects in
the latter. Note that these calculations do not contain the linear part
of the response.

atomic units) and 50 000 points, and the time step was only
0.00025 (in atomic units).

Figure 1 shows our analytic calculation compared to
the TDSE simulations performed with two different domain
sizes. Perfect agreement is achieved for a sufficiently large
TDSE domain, verifying that our implementation of the
analytic expressions for the nonlinear current is indeed correct.
Deviations only occur when the TDSE numerical grid is too
small to accommodate the spreading wave function in the later
stages of evolution. Analytic solutions do not suffer from such
finite-size artifacts thanks to the fact that the spatial variable
has been integrated out.

Having verified the correctness of the implementation, the
question of stability of our method must be addressed. Because
the algorithm mimics the evolution of the current components
along the time axis, instability could prevent its practical
application. While we have no formal proof that the method
is stable, we have observed no indications of the opposite,
even when using extremely long temporal grids containing
a few-hundred-thousand points. We take this as a strong
indication that the numerical implementation as described in
this section is indeed stable.

To complete this section, we want to illustrate the utility
of our results for the field of high-harmonic generation
(HHG) driven by ultraintense, femtosecond-duration optical
pulses. Figure 2 shows an example of the spectrum of high
harmonics in the nonlinear current driven by an infrared
optical pulse. Such nonlinear response can be integrated
into a carrier-resolving pulse propagation solver, such as the
unidirectional pulse propagation equation (UPPE) [33], to
model the generation, buildup, and subsequent propagation
of harmonic radiation.
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FIG. 2. High-harmonic spectrum of the nonlinear current induced
by a λ = 1.3 μm pulse. The intensity of the driving field was
1018 Wm−2, constant during 13 optical cycles, and with leading and
trailing ramps of four-cycle duration. The inset shows the detail of the
spectrum for low harmonics. Unlike in the strong-field approximation,
low-frequency current and dipole-moment components are exact, and
can be included in the Maxwell equation solver as a source which
affects the propagation of the pump pulse.
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Importantly, the present quantum model takes on several
model “functions” that are normally implemented as inde-
pendent components in such simulations. Namely, it provides
a mechanism for ionization, describes the current due to
free electrons, and also contributes the Kerr-type nonlinearity
originating in bound-to-continuum transitions. Moreover, it
generates the lower harmonics, including fundamental, and
thus significantly contributes to reshaping of the pump pulse.
Because ours is an exact solution, there is no question about all
of these effects being mutually consistent, which can hardly
be said about the present models used in the simulations of
optical filamentation and harmonic generation.

We want to emphasize that while the model requires
significant computation, the numerical effort to evaluate the
current formulas is acceptable, even for fully spatially resolved
Maxwell-Schrödinger systems. To give at least a rough idea,
a simple filament simulation may currently take 50 hours.
This may be 10 times longer than one using the standard
model, but qualitative studies are indeed feasible. However,
the description of how this quantum calculation for the atomic
nonlinear response can be integrated with a pulse propagation
simulator is far beyond the scope of this paper, and will be
discussed in a dedicated work.

V. CONCLUSION

We have extended the range of exact results for the quantum
model of a one-dimensional particle with a short-range
contact potential, moving under the influence of an arbitrary
time-dependent external field. Specifically, we have derived
expressions for both the current and dipole moment, and
extracted their components that are nonlinear with respect to
the driving field. With applications in mind, we also described
an algorithm for numerical evaluation, and demonstrated its
robust implementation. Typically, a temporal grid will contain
up to 10 000 points, and a single solution will take a few
seconds. This is indeed a significant effort, but an acceptable
price for an exact solution of a quantum system.

Our results will be useful in the general area of high-
intensity light-matter interactions, where they can be used as a
testbed system for theories and simulation methods, which de-
scribe strongly nonlinear evolution on an extremely short time
scale. In particular, in the field of optical filamentation, they
can serve as a tool to study possible improvements to current
models, especially the parts concerning ionization and free
electrons. Because the present model, having only one bound
state, does not contribute Kerr nonlinearity originating in the
bound-to-bound transitions, one can combine the standard
instantaneous Kerr effect, frequency-dependent linear suscep-
tibility, and this one-dimensional quantum system into a self-
consistent, qualitative model for femtosecond filamentation.
For the area of high-harmonic generation, the derived current
and dipole formulas represent an exactly solvable alternative
to the widely used strong-field approximation. Moreover, they
unify treatment of the pump and harmonic radiation.

Obviously, one limitation of the presented results lies in the
one-dimensional nature of the underlying model. However,
many works have been published on higher-dimensional
exactly solvable models related to the system studied here.
In particular, it will be interesting to investigate the possibility

of generalizing our results for models with the so-called δ-shell
potentials (see, e.g., [34]) in three dimensions.
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APPENDIX

1. Explicit calculation of JF F

To evaluate current JFF , we first calculate the spatial
integral within ψF (x,t) in order to appreciate its symmetry
with respect to the classical electron position xcl . The direct
integration of a Gaussian integral yields

ψF (x,t) = 1

2

√
Beixpcl (t)−iScl (t)e

1
2 iB2t

×
{
eB[+x−xcl (t)]erfc

[+x − xcl(t) + iBt√
2it

]

+ eB[−x+xcl (t)]erfc

[−x + xcl(t) + iBt√
2it

] }
(A1)

(see Elberfeld et al. [14]). With the help of ψR (14), we separate
the phase term,

ψF (x,t) =
√

Beixpcl (t)−iScl (t)e
1
2 iB2tψR[x − xcl(t)]. (A2)

The only property we need to use is that ψR is a symmetric
function. We insert ψF (x,t) and its conjugate into JFF , and
substitute y = x − xcl(t), to obtain

JFF =
∫ +∞

−∞
dy ψ∗

R(y,t)
d

dy
ψR(y,t)

+pcl(t)
∫ +∞

−∞
dy ψ∗

F (y,t)ψF (y,t). (A3)

The first integrand is an odd function, so the first term vanishes
upon integration. The second integral multiplied by pcl(t) is
equal to one, since ψF (y,t) is normalized. The result is as in
(17): JFF = pcl(t).

2. Summary of results for the time-dependent dipole moment

Evolution of the dipole moment induced by an external
field can be calculated in the same manner as the current.
The calculation is somewhat more involved, and the structure
of the final result is also less suitable for numerical evaluation.
Since the current and dipole observables can be converted from
one to the other by integration with respect to time, in practical
applications, users will likely choose the former. However, we
chose to complete the picture with explicit expressions of exact
time-dependent dipole-moment formulas.

The full dipole moment is decomposed into components
analogous to those we used for the current,

P = PFF + PFS + PSS. (A4)

In order to make the relationship between dipole and current
derivations more apparent, we will not eliminate the linear
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part. The first contribution is obtained utilizing a symmetry
argument,

PFF = xcl(t), (A5)

and the PSS component can be written in the following
form, which makes it easy to verify that its time derivative
corresponds to JSS as expected:

PSS = 2Re

{∫ t

0
dt1

∫ t1

0
dt2

(−1)
3
4 B3W (t1,t2)√

2π
e

i[xcl (t1)−xcl (t2)]2

2(t1−t2) A∗(t1)A(t2)
xcl(t)(t1 − t2) + xcl(t1)(t2 − t) + xcl(t2)(t − t1)

t1 − t2

}
. (A6)

The derivative with respect to the upper integration bound vanishes due to the symmetry of the integrand. If one takes the
derivative of the integrand with respect to t , it gives the expression we have found for JSS . Similarly, PFS can be put in a form
which makes it evident that ∂tPFS = JFS . This term evaluates to

PFS = Re

[
iB2

∫ t

0
dt1A

∗(t1)

(
e−Bxcl (t1)erfc

{
(1 + i)[Bt1 + ixcl(t1)]

2
√

t1

}
[xcl(t1) − xcl(t) + iB(t − t1)]

+ e+Bxcl (t1)erfc

{
(1 + i)[Bt1 − ixcl(t1)]

2
√

t1

}
[xcl(t1) − xcl(t) − iB(t − t1)]

)]
. (A7)

Note that both PSS and PFS contain terms proportional to
xcl(t). If these are collected, the identity (16) is obtained, which
means that their sum is zero and they can be ignored.

Even with this cancellation, the dipole representation is
more difficult to evaluate when compared to the current.
This is mainly due to the fact that time t appears inside
both integrands. If coded as written, this method’s complexity
would scale as N3

t . This unfavorable behavior can be reduced
to N2

t with clever programming, but the resulting algorithm
is still more complex than that of the current. This is why

in applications it will be more effective to calculate time-
dependent current. If the dipole moment is required, it can
be obtained by integrating along the time axis. To convert
the dipole moment from atomic units to medium polarization,
we simply multiply by ea0N , the product of electron charge,
atomic unit of length, and the number density of atoms per
unit of volume. Regardless of the calculation method, either
the current or dipole moment can be used in a pulse propagation
simulator, since they produce equivalent driving terms in the
optical evolution equations.
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