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Theory of ac Stark splitting in core-resonant Auger decay in strong x-ray fields
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In this work we report the modification of the normal Auger line shape under the action of an intense x-ray
radiation. Under strong Rabi-type coupling of the core, the Auger line profile develops into a doublet structure
with an energy separation mainly determined by the relative strength of the Rabi coupling. In addition, we find
that the charge resolved ion yields can be controlled by judicious choice of the x-ray frequency.
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I. INTRODUCTION

The interaction of an atomic system with a radiation field
in the regime of x rays will lead to its ionization. The most
dominant process will be, first, the ejection of an inner-shell
electron (photoelectron) with the absorption of a photon
followed either by an intra-atomic Auger and/or a fluorescence
transition. For relatively light atomic systems, the dominant
decay channel of the single-hole singly charged system is
through an (radiationless) Auger transition, designated as
“normal Auger” which is a manifestation of electron-electron
interaction. One variation on this scenario is to promote an
inner-shell electron to an excited bound state, often denoted as
resonant Auger state (RAS), which can decay either through
an Auger transition or by the emission of an x-ray photon.
This process was first reported by Brown [1] and since then
a large number of investigations have taken place (see, for
example, [2] and references there in).

Under excitation by the strong radiation fields, now avail-
able from free electron laser (FEL) sources [3–7], the situation
becomes considerably different. Relevant studies in the context
of strong laser fields have been reported quite early [8] and
in response to recent developments in the x-ray wavelength
regime a number of theoretical and experimental works have
already appeared [7,9–13]. In the simplest situation, Rohringer
and Santra in Ref. [9] have studied the single-photon excitation
of a neon K-shell electron to a RAS by an x-ray field and a
multipeak Auger electron spectrum (AES) is obtained for the
fields they considered.

In this work, we examine the AES and the ionic yields
in the case where a normal Auger process takes place (as
opposed to the RAS process) which involves photoionization
of the neutral from the K shell, followed by an Auger decay of
the singly charged hole system to the doubly charged ion. We
demonstrate the emergence of ac-Stark splitting (also known as
Autler-Townes splitting [14]) of the Auger resonance, resulting
from strong Rabi coupling of the apposite states in the resulting
Ne2+ ion. In contrast to RAS line-shape modification [9],
the unusual phenomenon here is that the ac-Stark splitting is
manifested in the kinetic spectrum of the Auger electron, while
strong Rabi coupling occurs to one of the K-shell electrons of
the doubly charged ion. This effect requires an explanation on
the basis of a two-electron representation of the Auger-electron
ejection, instead of an ambiguous one-electron picture implied
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by the Rabi-type oscillation of an inner electron. A detailed
study of the two-electron representation, in a different context
and formalism but similar physical background, can be found
in Ref. [15].

We have chosen as the target of our study neutral neon
in its ground state |G〉 = |Ne(1s22s22p6, 1S0)〉 and consider
radiation with a photon energy of approximately ω = 908 eV
(see Fig. 1). The ionization potential for the creation of a
K-shell hole |i〉 = |Ne+(1s2s22p6, 1P )〉 is E(i) = 870 eV. Note
that all the energies of the neon states are given relative to the
neutral neon ground state. Thus, the x-ray radiation will eject a
K-shell photoelectron with a kinetic energy of approximately
εi = 38 eV. Ionization from the outer shells is also possible
but with much lower probability [16]. The generated K-shell
hole Ne+ will decay by filling the 1s vacancy, predominantly
to the doubly charged neon state |a〉 = |Ne2+(1s22s22p4,
1D2)〉 with energy E(a) = 65.35 eV, and Auger decay width
�ia = 0.27 eV [16]. In addition, the Ne+ ion with one K-shell
hole can also decay through fluorescence by emitting x-ray
radiation [16]. This channel is about 55 times weaker than
the Auger decay rate. Let us designate the sum of all decay
channels of the |i〉 state as �i . Normally this Auger transition
of the singly charged ion to the doubly charged ground state is
accompanied by the ejection of an electron (Auger electron)
with a kinetic energy ε(0)

a = E(i) − E(a) ∼ 804.65 eV and a
Lorentzian line profile. In the present case we have chosen
the photon energy to match the Ne2+(1s−1–3p) transition
energy. Around this energy there is a manifold of excited
states which we denote collectively as |a′〉. We show in
Table I those states which lie within a 1 eV band around
the excitation photon energy. While the Auger state |i〉 decays
with a lifetime of about �−1

ia ∼ 2.44 fs, the field through a
Rabi-type transition creates a coherent superposition of the
ionic ground state |a〉 and all accessible excited states |a′〉.
This Rabi oscillation of the K-shell electron between the
bound states of the Ne2+ ion will induce an ac-Stark splitting
manifested in the kinetic energy of the ejected Auger electron.
We should note that no post-collision interaction with the
photoelectron is taken into account, as the energy of the
photoelectron is too large for such an effect to contribute in
the Auger’s electron spectrum (and vice versa). To complete
the picture, the excited states |a′〉 decay either through an
additional Auger process (�a′) or through further ionization by
absorbing one more photon (γa′). Finally, direct creation of a
double core-hole Ne2+ of the neutral through photoabsorption
is not considered since the double K-shell ionization energy is
1863 eV [17].
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FIG. 1. (Color online) Schematic figure of the dominant channels
involved in the interaction of neon with an x-ray field of frequency
approximately 908.06 eV, chosen to match the Ne2+(1s−1–3p)
transition energy.

We discuss below the manner in which the AES is modified
due to the Rabi coupling of the Ne2+(1s−1–3p) states and
study its behavior in a quantitative manner. To facilitate
the interpretation of the results, we note at this point that
for a modification of the Auger line to appear, many Rabi
oscillations should occur within the relevant Auger lifetime.
Equivalently, in the energy domain, it is required that the
energy separation of the Auger-line splitting (roughly equal
to Rabi coupling strength) should be larger than the Auger
decay width or the x-ray bandwidth, whichever is larger. Of
course the detailed properties of the system and the field will
matter as well; however, the rule of thumb, as expressed above,
will be in general true.

The structure of the paper is as follows. In Sec. II we present
the theoretical formulation and develop the description of the
processes in terms of a time-dependent density matrix system
of equations. In Sec. III we show some of the results of our
present study in the case of a single-mode coherent field. In the
final section (Sec. IV) we summarize our findings and discuss,
very briefly, two aspects of the problem that are necessary

TABLE I. Transitions from the |a〉 = Ne2+(1D2) ground state
to its excited states Ne2+(1s−1–3p) around the photon frequency
ω = 908 eV. The fourth column shows the corresponding oscillator
strengths. The data are calculated using the Cowan suites of
codes [21].

|a′〉 Ea′ (eV) Ne2+(1s12s2) 10−2gfaa′

1 907.75 (2p4,1D)2D(3p1)1P1 2.3338
2 907.90 (2p4,3P )2P (3p1)3P1 0.20991
3 908.06 (2p4,1D)2D(3p1)1F3 8.1881
4 908.48 (2p4,3P )2P (3p1)3D3 0.13141
5 908.51 (2p4,1D)2D(3p1)3D2 0.23322
6 908.49 (2p4,3P )2P (3p1)1D2 4.4888
7 908.78 (2p4,1D)2D(3p1)1D2 1.2714

to put the description of the problem closer to the actual
experimental conditions; namely, the fluctuations present in
a FEL field and the field’s spatial dependence.

II. THEORETICAL FORMULATION OF THE DENSITY
MATRIX EQUATIONS

The density operator of the system is obtained on the
basis of |G〉,|I 〉,|A〉,|A′〉,|R〉,|Fi〉,i = 1,2 states. The state
|G〉, with energy E(g), represents the neon ground state.
The state |I 〉 = |i; εi〉, with energy Ei = E(i) + εi , represents
the K-shell hole Ne+ (state |i〉 with energy E(i)) and the
photoejected electron |εi〉 having kinetic energy εi . The
state |A〉 = |a; εa,εia〉, with energy Ea = E(a) + εa + εia ,
represents the Ne2+ ion in its ground state (state |a〉 with energy
E(a)) with an ejected Auger electron of kinetic energy εa and
the photoelectron having now kinetic energy εia . Similarly, the
state |A′〉 = |a′; εa′ ,εia′ 〉, with energy Ea′ = E(a′) + εa′ + εia′ ,
represents the excited state of Ne2+ (state |a′〉 with energy
E(a′)) with the Auger electron having kinetic energy εa′

and the photoelectron having now kinetic energy εia′ . It
should be noted that in the definition of the photoelectron
and Auger-electron states the appropriate angular momentum
quantum numbers, as they result from electric dipole and
Auger transition rules, are included. In addition, we also take
into account the possibility of the involvement of further decay
modes. In the present case, the K-shell hole Ne+ |i〉 can decay
through fluorescence to Ne+(1s22s22p5), denoted here as |R〉.
Moreover, the excited states |A′〉 may further decay either
through an Auger transition to Ne3+(1s22s22p3) denoted as
|F1〉 or through further photoionization to hollow K-shell
Ne3+(1s12s22p4), denoted as |F2〉. The equations of motion
for the density matrix elements are obtained from the Liouville
equation iρ̇(t) = [H (t),ρ(t)] with Ĥ (t) = Ĥ 0 + V̂ + D̂(t),
Ĥ 0 being the field-free Hamiltonian of neon, V̂ is the electron-
electron interaction operator, and D̂(t) is the x-ray field-atomic
dipole interaction operator. Inserting the above states into the
Liouville equation we obtain

ρ̇GG(t) = 2Im
∑

I

∫
DGIρIG,

ρ̇II (t) = 2Im[DIGρGI ] + 2Im
∑
A

∫
VIAρAI

+ 2Im
∑
R

∫
DIRρRI ,

ρ̇AA(t) = 2Im[VAIρIA] + 2Im[DAA′ρA′A],

ρ̇A′A′(t) = −2Im[DAA′ρA′A] + 2Im
∑
F1

∫
VA′F1ρF1A′

+ 2Im
∑
F2

∫
DA′F2ρF2A′,

iρ̇AA′(t) = EAA′ρAA′ + DAA′(ρA′A′ − ρAA) + VAIρIA′

−
∑
F1

∫
ρAF1VF1A′ −

∑
F2

∫
ρAF2DF2A′ ,

iρ̇GI (t) = . . . ,

. . . .
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In the above expressions ρKL,K,L = G,I,A,A′,R,F1,F2 are
the density matrix elements of the involved states while
DKL and VKL represent electric dipole and Auger (intra-
atomic) transitions between the states K,L, respectively. More
specifically, the quantities DGI , VIA, DIR, DAA′, VA′F1 , DA′F2

represent multielectron electric dipole (D) and Auger (V )
transition matrix elements. Within the present context we do
not take into account any post-collision effects between the
photo and Auger electrons as their contribution are expected to
be negligible for the considered kinetic energies as discussed
in Ref. [18]. This assumption allows for a simplification of
the transition matrix elements as, for example, for VIA =
〈i,εi |V̂ |a,εa,εia〉, which reduces to VIA = 〈i|V̂ |a〉〈εia|εi〉 =
Viaδ(εia − εi). Along the same lines the dipole transition
DAA′ = 〈a,εa,εia|D̂|a′,ε′

a,εia′ 〉 is approximated as DAA′ =
〈a|D̂|a′〉〈εa|εa′ 〉〈εia|εia′ 〉 = daa′δ(εa − εa′ )δ(εia − εia′ ). A de-
tailed discussion of the dimensional reduction of these special
kind of continuum-continuum matrix elements can be found
in the Appendix of Ref. [15]. The summations involved here
imply integration over the appropriate continua. As the total
number of independent equations is 28, we do not present the
explicit expressions for the evolution of the remaining density
matrix elements as they are not essential at this stage.

The density matrix equations are a system of coupled
integrodifferential equations which are not amenable to an easy
solution even by numerical means, as it includes integration
over multidimensional continua. It is thus our purpose here
to transform the above system of equations into a more
tractable form. To this end, we adiabatically eliminate the
density matrix elements which are involved in the integrations
over the respective continua of the states. The procedure
for adiabatically eliminating these continua is a standard
technique applied to describe the influence of a system with
infinite degrees of freedom onto a system with a small
number of degrees and appears in many different contexts
(see, e.g., [19]). Here the reduced system is the one described
by |G〉,|I 〉,|A〉 and |A′〉 while |R〉,|Fi〉,i = 1, 2 represent
the dissipative environment. Within the present context of
atomic continua, some of the details can also be found in
Ref. [20]. To proceed further, the radiation field is expressed
as E(t) = ê[E(t)eiωt + E�(t)e−iωt ]/2 with ê its polarization
vector and we transform to slowly varying variables by
defining σkl = ρKLe−inωt ,n = 0, ±1, ±2, ±3, where n is
chosen so that nω has the closest possible value to EK − EL.
With the latter transformation we remove from the coherences
the fast oscillation part of their evolution due to the frequency
of the field (this is justified since for a frequency of 1 keV
the field period is of the order of 4 as and all other
time scales set by photoionization and Auger widths are of
the order of 1 fs–1000 as). Given that the radiation is in the
form of a pulse, we have kept the slowly varying envelope
E(t) which in addition may describe the stochastic properties
of the field under consideration. This is however a problem
which requires special care and postpone its discussion for
now. In the present case we assume a fully coherent single-
mode, Fourier transform-limited, field. Then, by employing
the rotating wave approximation (RWA) and keeping only
the terms proportional to the first order of the electric field,
after tedious but straightforward manipulation we end up to
the following set of equations for the reduced density matrix

elements:

σ̇gg(t) = −γgσgg, (1a)

σ̇ii(εi,t) = −�iσii + Im[
�
igσgi], (1b)

σ̇aa(εi,εa,t) = −Im[
�
a′aσaa′ ] + 2Im[Vaiσia], (1c)

σ̇a′a′(εi,εa,t) = −γ̄a′σa′a′ + Im[
�
a′aσaa′ ], (1d)

iσ̇aa′ (εi,εa,t) =
(

Eaa′ + ω − i
γ̄a′

2

)
σaa′

+ 
aa′

2
(σa′a′ − σaa) + Vaiσia′ , (1e)

iσ̇gi(εi,t) =
(

Egi + ω − i
γg + �i

2

)
σgi − 1

2

giσgg,

(1f)

iσ̇ia(εi,εa,t) =
(

Eia − i
�i

2

)
σia + 1

2

∗

igσga

− 1

2

∗

a′aσia′ − Viaσii , (1g)

iσ̇ia′ (εi,εa,t) =
(

Eia′ + ω − i
�i + γ̄a′

2

)
σia′

+ 1

2

∗

igσga′ − 1

2

aa′σia, (1h)

iσ̇ga(εi,εa,t) =
(
Ega + ω − i

γg

2

)
σga − 1

2

∗

a′aσga′ − Viaσgi,

(1i)

iσ̇ga′ (εi,εa,t) =
(

Ega′ + 2ω − i
γg + γ̄a′

2

)
σga′ − 1

2

aa′σga,

(1j)

where 
gi(εi,t) = 〈g|D̂|i,εi〉E(t) and 
aa′ (t) = daa′E(t).
With γg(t) = 2π

∫
dεi |
gi(εi,t)|2 we denote the photoioniza-

tion width of the neon ground states relative to the Ne+ K-shell
hole state |i〉, while γ̄a′ = �a′ + γa′(t) is the sum of the Auger
decay width to states |F1〉 (�a′) and the photoionization width
to states |F2〉 (γa′) of the excited states |a′〉. In addition, �i =
�ia + γr is the sum of the decay width of the ionic state |i〉
through Auger decay to states |a〉 and through fluorescence to
states |R〉. The quantity Via represents the strength of the Auger
transition of the hole state |i〉 to the particular ionic ground
state |a〉. Therefore, the quantity �ia is expressed as �ia =
2π |Via|2. Finally, the energy differences in the above equations
now include all the shifts associated with the Auger and
dipole couplings of the relevant states with continuum states
Ekl ≡ Ek + Sk − (El + Sl), k,l = g, i, a′ with Si = Sia + Sir

and Sa′ = Sa′f1 + Sa′f2 . The exact definition of the shifts and
widths are as below:

Sg − i
γg

2
= lim

η→0

∫
dEI

|DGI |2
EG + ω − EI + iη

,

Sia − i
�ia

2
= lim

η→0

∫
dEA

|VIA|2
EI − EA + iη

,

Sir − i
�ir

2
= lim

η→0

∫
dER

|DIR|2
EI − ER + iη

,

Sa′f1 − i
�a′

2
= lim

η→0

∫
dEF1

∣∣VA′F1

∣∣2

EA′ − EF1 + iη
,

Sa′f2 − i
γa′

2
= lim

η→0

∫
dEF2

∣∣DA′F2

∣∣2

EA′ + ω − EF2 + iη
,
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where use of the well-known formula limη→0 1/(x + iη) =
P(1/x) − iπδ(x) must be made to split up the integrals into
their real and imaginary parts.

At this stage, a working set of equations is established
and their numerical solution is feasible, provided that all the
dynamical parameters of the problem have been calculated
beforehand. The approximations leading to this set of equa-
tions require careful examination of the appropriate range of
radiation intensities. One approximation is to assume that the
relevant continua are smooth around the energies of the dressed
bound states within an energy range comparable with the Rabi-
coupling matrix element. This requires that transitions close to
ionization thresholds should not be considered. In addition, in
the derivation procedure we have ignored terms proportional
to the second order of the field, such that 
aa′ < 1. The latter
approximation, given the matrix element daa′ ∼ 0.06 a.u., will
restrict the range of the intensities where the working equations
are applicable below to 4 × 1018 W/cm2.

The system of equations that have been derived must,
simultaneously, be numerically integrated for all different
photoelectron and Auger-electron kinetic energies, so as to
provide the populations for σii(εi), σaa(εa,εi), σa′a′(εa,εi) at
infinite times. Since in our case we are only interested in the
Auger-kinetic energy spectrum and ionization yields regard-
less of the state of the photoelectron, we must integrate the final
populations over the photoelectron kinetic energies and deter-
mine the following probabilities: σii = ∫

dεiσii(εi), σaa(εa) =∫
dεiσaa(εa,εi), σa′a′ (εa) = ∫

dεiσa′a′ (εa,εi). An alternative
and more economical way of obtaining the same results is
to derive a coarse-grained version of the present equations
for these reduced, averaged over the photoelectron energies,
density matrix elements. In addition, the reduced set of the
density matrix equations is amenable to further manipulation
as it allows for the derivation of analytical expressions for
long pulses or their averaging for stochastic pulses. Thus,
the new reduced set of equations is obtained by first setting
all the derivatives of the coherences equal to zero [except
σ̇aa′(εa,εi,t)] and then integrating over the photoelectron en-
ergy εi . To demonstrate the reasoning of setting the derivatives
of the coherences to zero, we work out the evolution equation
of σgi(εi,t) coherence [Eq. (1f)]. We integrate Eq. (1f) in an
interval t,t + τ with τ 	 
−1

aa′ ,γ −1
g ,�−1

i and we obtain

i[σgi(εi,t + τ ) − σgi(εi,t)]

=
[
Egi(τ ) + ω − i

γg(τ ) + �i

2

] ∫ t+τ

t

dt ′σgi(εi,t
′)

− 
gi(εi,τ )

2

∫ t+τ

t

dt ′σgg(t ′).

The ionization width γg(τ ), the dipole 
gi(εi,τ ), and the
Sg(τ ),Si(τ ) ac-Stark shifts that are included in the definition
of Egi(τ ) were removed from the integral as their value does
not change much between t and t + τ as a result of the slowly
varying transformation of the variables. Since it will always
be |σgi(εi,t)| 	 σgg(t), we can neglect the left-hand side and
obtain the “coarse-grained” time average of σgi(εi,t) as

σ̄gi(εi,τ ) = 
gi(εi,τ )/2

Egi(τ ) + ω − i[γg(τ ) + �i]/2
σ̄gg(τ ), (2)

where σ̄gi(εi,τ ) ≡ ∫ t+τ

t
dt ′σgi(εi,t

′)/τ and σ̄gg(τ ) ≡∫ t+τ

t
dt ′σgg(t ′)/τ . Thus, by setting the derivative of the

coherence to zero, effectively leads to a coarse-grained value
for the coherence which follows adiabatically the ground state
population. At this stage, integrating Eq. (1b) over time (in an
interval [t,t + τ ]) and the photoelectron energy εi we obtain

σ̇ii(τ ) = −�iσii(τ )

+ Im
∫

dεi

|
gi(εi,τ )|2/2

Egi(τ ) + ω − i[γg(τ ) + �i]/2
σgg(τ )

= −�iσii(τ ) + γg(τ )σgg(τ ), (3)

where σii(τ ) = ∫
dεi σ̄ii(εi,τ ) and σ̄ii(εi ,τ ) = ∫ t+τ

t
dt ′σii(εi,t

′).
To evaluate the integral we have assumed that 
gi(εi,τ )
is smooth over an energy range equal to the radia-
tion’s bandwidth (far from resonance structures in the
continuum or ionization thresholds). Then by express-
ing Egi as Egi(τ ) = E(g) + Sg(τ ) − E(i) − Si(τ ) − εi we
have Im

∫
dεi |
gi(εi,τ )|2/{Egi(τ ) + ω − i[γg(τ ) + �i]/2} ∼

π |
gi(εi = E(i) + Si − E(g) − Sg,τ )|2 = 2γg(τ ).
As the derivation is quite long and detailed for the

remaining coherences, we give here only the final result for
the reduced (coarse-grained) set of density matrix equations.
These reduced equations are obtained working along similar
lines as for the derivation of Eq. (3). In this derivation we
ignore the photoionization of the excited |a′〉 (γa′ = 0), the
photon energies and the intensities considered is expected to
be much less than the Auger decay transition represented by
�a′ . Therefore, after setting all the derivatives of the coherences
equal to zero [Eqs. (1f), (1g), (1h), (1i), and (1j)], we solve
for the coherences and substitute their values into Eqs. (1c),
(1d), and (1e). Then we integrate our equations over the
photoelectron’s kinetic energy and obtain the coarse-grained
(also changing τ → t) set of density matrix equations,

σ̇gg(t) = −γgσgg, (4a)

σ̇ii(t) = −�iσii + γgσgg, (4b)

σ̇aa(εa,t) = −Im[
�
a′σaa′ ]

+ Im

[(
�a+δa′−i

�i+�a′

2

)
(
+

a′ − 
−
a′ )

]
σii,

(4c)

σ̇a′a′(εa,t) = −�a′σa′a′ + Im[
�
a′σaa′], (4d)

iσ̇aa′ (εa,t) =
(

δa′ − i
�a′

2

)
σaa′ − 
a′

2
(σa′a′ − σaa)

+ 
a′

4
(
+

a′ − 
−
a′ )σii . (4e)

The dynamics of the process are governed by the ion-
ization width of the neutral target γg(t), the core Rabi-
coupling 
a′ (t), the intra-atomic decay rates �i,�a′ , the
Auger-field induced couplings 
±

a′ (t), and the Auger �a(t) =
Ei − (Ea + εa) and field δa′(t) = (Ea + ω) − Ea′ detunings.
Note that for notational simplicity we denote the core Rabi
coupling as 
a′ = 
aa′ = 
a′a . We have defined 
±

a′ (t) =
2|Via|2/(�±

a′
̄a′ ) with �±
a′ (t) = εa − ε±

a + iγ ±
a (t)/2, ε±

a (t) =
ε(0)
a + [δa′ ∓ 
̄

(r)
a′ (t)]/2, and γ ±

a (t) = �i + [�a′ ± 
̄
(i)
a′ (t)]/2.
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The real quantities 
̄
(r)
a′ and 
̄

(i)
a′ are defined in terms of the

generalized Rabi frequency:


̄a′ (t) = 
̄
(r)
a′ + i


̄
(i)
a′

2
=

√(
δa′ − i

�a′

2

)2

+ 4|
a′ |2. (5)

The AES, at detection time, is obtained by adding the
contributions from the ground |a〉 and excited |a′〉 states of
the doubly ionized neon: S(εa) = ∑

j=a,a′
∫ +∞
−∞ dt ′σ̇jj (εa,t

′).
The populations of the states |a〉 and |a′〉 are obtained
as pjj (t) = ∫ +∞

−∞ dt
∫

dεi σ̇jj (εa,t
′), j = a, a′. Although we

numerically integrate the above system of density matrix
equations (4), the Auger spectra can also be cast in analytical
form to a very good approximation. For example, for a
nondecaying excited states (�a′ = 0) the generalized Rabi
frequency becomes a purely real quantity 
̄a′ =

√
δ2
a′ + 4|
a′ |2,

while the AES become independent on the coherence evolution
σaa′ . The analytical approximation consists of considering
a pulse of constant amplitude E(t) which turns the coarse-
grained system to a system of ordinary differential equations
with constant coefficients. Then the Rabi frequency, ac-Stark
level shifts, and the ionization widths become independent in
time and in the expression for the AES only the population of
|i〉 is time dependent:

S(εa) =
∫ +∞

−∞
dt[σ̇aa(εa,t) + σ̇a′a′(εa,t)]

= Im

[(
�a + δa′ − i

�i

2

)
(
+

a′ − 
−
a′ )

] ∫ +∞

−∞
dtσii(t).

Solving Eqs. (4a) and (4b) for σii(t) we find that∫ +∞
−∞ dtσii(t) = 1/�i and after some algebra we end up to

the following analytical expression for the AES:

S(εa) = �ia

4π

[
1 − δa′/
̄a′(

εa − ε
(0)
a − δa′−
̄a′

2

)2 + �2
i

4

+ 1 + δa′/
̄a′(
εa − ε

(0)
a − δa′+
̄a′

2

)2 + �2
i

4

]
. (6)

We should note here that the predictions of the analytical
expression differ from the numerical solution in that it does
not include the transient effects of the physical process which
are expected to occur at times of the order of 1/�i .

III. RESULTS

In Fig. 2 we show the effect of the field strength in
the Auger spectra for ω = 908.06 eV and assume a pulse
envelope E(t) = sin2(πt/T ), with T being the total pulse
duration equal to about 20 times the Auger lifetime ∼48.8 fs
(FWHM = 24.4 fs). More specifically, in all the following
calculations the field included 10 754 cycles. The ionization
width of the neutral is given by γg(t) = 4.375 × 10−4E2(t) a.u.
In the calculation we only include the |a′〉 = |Ne2+(1s−1–3p),
1F 〉 excited state (state 3 of Table I) and assume its decay
width to be zero (�a′ = 0). For this on-resonance process
(δa′ = 0), the Rabi interaction energy is found to be 
a′ =
0.061E(t) a.u. According to Eq. (6), for peak intensities
of I0 = 1.0 × 1015, 1.0 × 1016, 3.51 × 1016, 1.0 × 1017, and
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FIG. 2. (Color online) Variation in the AES as the peak intensity
of the pulse increases. The field has total duration about 48.8 fs
(FWHM = 24.4 fs) and the photon frequency chosen equal to
908.06 eV, while �a′ = 0. The inset label give the peak intensity
values in units of W/cm2.

3.51 × 1017 W/cm2 peak separations (of equal height) of
about 0.28, 0.88, 1.66, 2.79, and 5.25 eV, respectively, should
be expected for the AES. Particularly for the lowest intensity
of I0 = 1.0 × 1015 the peak separation is comparable to the
Auger decay width (0.27 eV), thus the separation is hardly
seen. The latter values coincide with the full numerical
solutions, shown in Fig 2. In general, according to the
above formula, for on-resonance conditions and long pulses
(compared to 1/�i) a change of the splitting by a factor around
3.2 should be expected for a change of the peak intensity by
one order of magnitude. For off-resonance conditions we have
two unequal peaks with energy separation again determined
from the generalized Rabi-frequency 
̄a′ and relative height
determined from the field detuning �a′ .

Next we turn to the case where the decay channels of
the excited core states |a′〉 are present. We have found that
for the intensities and photon energy considered, further
photoionization of |a′〉 is a much weaker channel compared
with a RAS transition to Ne3+ [21,22]. We take the RAS width
to be a large fraction of Ne3+(1s2p22p4) → Ne3+(1s22p22p3)
decay width and assume �a′ = 0.156 eV [22]. In this case the
lifetime of these excited ionic states |a′〉 is about 4.12 fs,
comparable to the Auger decay lifetime of interest here
(∼2.45 fs) but still much shorter than the pulse duration.
Given that the Rabi coupling saturates the Ne2+(1s−1–3p)
transition very quickly (in the sense that their populations are
almost equalized) it can be expected that a large portion of
the population will very quickly decay to the Ne3+ ion. This
behavior is shown in Fig. 3 where the final populations in Ne2+
and Ne3+ are plotted as a function of the peak intensity of the
applied x-ray field. Thus for on-resonance cases (solid lines)
we see that the majority of the population goes into Ne3+ ion
for all intensities considered. On the other hand, if we choose to
detune the FEL to a photon energy of 904.06 eV (dashed lines),
efficient population of the excited ionic state |a′〉 is prohibited.
This also causes an effective increase in the magnitude of the
generalized Rabi frequency according to Eq. (5). In that case,
the situation changes dramatically. The relative population
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FIG. 3. (Color online) Ionization yields vs the peak intensity of
the x-ray field. Field parameters as in Fig. 2 and �a′ = 0.156 eV.
Solid curves refer to ω = 908.06 eV, while the dashed ones to ω =
904.06 eV.

ratio is reversed for low intensity fields (<1017 W/cm2), with
the Ne2+ dominating up to higher intensities where the ratio
starts to decline in favor of the Ne3+ yield. Thus, it appears that
a careful combination of the intensity and the photon energy
of the field can control the relative populations of the triply
and doubly ionic species of neon.

It is worth noting here that for the present long pulses and
for relatively strong fields (>3.5 × 1016 W/cm2), the depletion
of the neutral neon might be significant. For example, for I0 =
3.5 × 1016 W/cm2 the remaining neutral neon is 0.718, while
for ten times stronger field I0 = 3.5 × 1017 W/cm2 decreases
to 0.036. Furthermore, it should also be noted that ionic species
higher than triply and doubly ionized neon are not expected to
contribute significantly as two- or multiphoton absorption is an
unlikely ionization channel, given their ionization potentials
and the large photon energy. Finally, a small fraction of Ne+ is
produced through the fluorescence of the metastable K-shell
hole Ne+ ion.

In Fig. 4 we show the populations of the Ne2+ and
Ne2+(1s−1–3p) excited states as a function of time for a field
of peak intensity 1.0 × 1017 W/cm2. We have considered two
different frequencies as in the case of Fig. 3, which represent
the on-resonance (908.06 eV, solid lines) and off-resonance
(904.06, dashed lines) conditions. From this figure we can see
that the populations of Ne2+ and Ne2+(1s−1–3p) are quickly
(almost) equalized, thus allowing for the efficient production
of the Ne3+ ion through the Auger decay of the excited
Ne2+(1s−1–3p) state with the ejection of one more electron
(�a′ = 0.156 eV). With off-resonance conditions we see that
the same populations evolve differently with the amount of
Ne3+ that is produced being significantly smaller than the
Ne2+ yield for a broad range of intensities. Of course, even
in the detuned case, when the intensity becomes higher, the
Rabi amplitude will increase accordingly and again the quick
transfer from the ground Ne2+ to the excited Ne2+(1s−1–3p)
state will allow the efficient production of the Ne3+ ion. In
that case Ne3+ yield will surpass Ne2+ yield. By inspection of
Fig. 3, the intensities that this overtaking of Ne3+ takes place
are beyond 3.5 × 1017 W/cm2.
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FIG. 4. (Color online) Populations of the Ne2+ and
Ne2+(1s−1–3p) states as a function of time peak intensity
I0 = 5.0 × 1017 W/cm2. All other parameters as in Fig. 3.

IV. CONCLUSION

We have presented a theory of the Auger kinetic spectra
and ionization yields based on the time-dependent density
matrix theory which encapsulates all the essential dynamical
parameters of the physical processes that are involved such
as photoionization, photoexcitation, and Auger transitions.
We have examined the AES and the ionic yields in the case
where an inner-shell photoionization takes place followed by
an Auger decay of the singly charged hole system. We have
demonstrated the emergence of ac-Stark splitting of the Auger
resonance, resulting from strong Rabi couplings. In addition,
ionization yields have been calculated for a range of intensities.
We show how to control the branching ratios of various ionic
species by varying dynamical parameters of the system, such
as Rabi coupling and detunings. The theory was applied to the
case of K-shell ionization of neon with the photon frequency
chosen to match the energy differences between ionic Ne2+
ground and excited states.

In the present study we have put aside the issue of a field
undergoing fluctuations suitable for the description of more
realistic situations. A more realistic approach is to assume
a field with an amplitude undergoing random fluctuations
[9]. In general, the fluctuations of the field give rise to
a nonzero bandwidth (beyond the Fourier bandwidth) and
intensity fluctuations [23,24]. The main differences are that
the field will excite a number of (nearby) excited states (see,
for example, the most important ones in Table I), basically
those that lie within the x-ray field bandwidth and that the
width of the Auger spectrum will be effectively increased
with the x-ray bandwidth. The development of the appropriate
theory, capable of describing the field fluctuations, requires
a detailed formulation which is beyond the purposes of the
present study and it will be the subject of a future work.
The essential outcome of the present work; namely, the
emergence of the ac-Stark splitting in the Auger spectra under
the presence of strong ionic Rabi couplings, will remain and the
stochastic nature of the field will mainly affect its observability.

Finally, keeping the focus on the essence of the issue
of experimental observability, we refrain from showing the
influence of the volume integration in the final results, but its
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precise contribution needs to be evaluated when it comes to
the actual experimental conditions.
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