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Laser-driven Sisyphus cooling in an optical dipole trap
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We propose a laser-driven Sisyphus-cooling scheme for atoms confined in a far-off resonance optical dipole
trap. Utilizing the differential trap-induced ac Stark shift, two electronic levels of the atom are resonantly coupled
by a cooling laser preferentially near the trap bottom. After absorption of a cooling photon, the atom loses energy
by climbing the steeper potential, and then spontaneously decays preferentially away from the trap bottom. The
proposed method is particularly suited to cooling alkaline-earth-metal-like atoms where two-level systems with
narrow electronic transitions are present. Numerical simulations for the cases of ®¥Sr and '"*Yb demonstrate
the expected recoil and Doppler temperature limits. The method requires a relatively small number of scattered
photons and can potentially lead to phase-space densities approaching quantum degeneracy in subsecond time

scales.
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I. INTRODUCTION

Ultracold atomic gases are now routinely used for a broad
range of science including precision measurements [1-3],
quantum degeneracy studies [4—6], and quantum-information
applications [7,8]. The standard procedure to produce such
gases relies critically on laser cooling where the fundamental
energy loss unit corresponds to the momentum recoil from
photon absorption. The magneto-optical trap (MOT) arrange-
ment for laser cooling can produce temperatures of hundreds
of microKelvins or even lower. Here, the combination of
weak confinement and density-dependent losses from photon-
assisted collisions and radiation trapping restricts atomic
densities to less than about 10'' cm™3 [9]. For applications
requiring higher phase-space densities, evaporative cooling
in magnetic or optical dipole traps (ODTs) is used. While
successful, evaporative cooling suffers from inherent atom
loss and demands long trap lifetimes usually on the order of a
minute. Most measurements with ultracold atoms can benefit
from larger atom numbers and phase-space densities, as well
as reduced experimental cycling times.

In this paper we propose a method of Sisyphus cooling
of atoms confined in an ODT that exploits differential ac
Stark shifts of two electronic states. Our method promises
phase-space densities which are much higher than those
typically achievable with conventional laser cooling and in
time scales which are much shorter than those typical of
evaporative cooling. In particular, our scheme is well suited
for rapid cooling of optically trapped spin-zero atoms which
possess narrow electronic intercombination transitions.

In Sisyphus cooling, the fundamental energy loss unit is the
energy difference between two coupled atomic states at the
positions of excitation and deexcitation, and can in principle
be very large. Under suitable conditions, the atom is forced
to repeatedly “climb uphill” and thus lose kinetic energy. The

*vladivanov78 @ gmail.com
fwww.phys.washington.edu/users/deepg/

1050-2947/2011/84(6)/063417(8)

063417-1

PACS number(s): 37.10.De, 37.10.Gh

first such proposal by Pritchard [10] involved two rf-coupled
hyperfine states in a magnetic trap. Since then this idea has
been investigated for a number of atom trap configurations.

The original Pritchard scheme was theoretically studied
for the case of loffe-Pritchard traps [11] and modified to
incorporate different magnetic energies of two electronic levels
[12]. Gravitational Sisyphus cooling in a magnetic trap [13]
and Sisyphus cooling in a blue detuned evanescent wave
trap [14] have been demonstrated. rf-induced Sisyphus cooling
in an ODT was demonstrated [15] and a variant which exploits
the second-order Zeeman effect and spin-exchange collisions
has been proposed [16]. Recently a three-level cooling scheme
applicable to magnetically trapped hydrogen has also been
proposed [17]. All of these schemes rely on transitions between
internal magnetic sublevels of the atom. None of these schemes
is applicable to atoms with a spin-zero ground state such as
strontium or ytterbium.

The rest of this paper is organized as follows. In Sec. II
we discuss the general requirements for our cooling scheme
and determine suitable ranges of ODT wavelengths for the
application of our scheme to Sr and Yb atoms. In Sec. III we
develop a simple theoretical model to determine the efficiency
of our cooling method and discuss its limitations. In Sec. IV
we develop a numerical model that properly addresses the
stochastic nature of the process. We use this model to compute
the expected value of final temperatures for Sr and Yb. In
Sec. V we discuss possible applications of our cooling scheme
and draw our concluding remarks in Sec. VI.

II. COOLING SCHEME

Our basic cooling scheme is shown in Fig. 1. A two-state
atom confined in the optical dipole potential of the trapping
laser interacts with cooling laser light that resonantly couples
the internal states near the trap bottom. A moving atom
initially in the ground state absorbs a cooling photon at the
bottom of the ODT. The atom in the excited state climbs
a steeper potential, thus spending additional energy. Then
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FIG. 1. (Color online) Cooling scheme for a two-state atom in
an ODT. An additional cooling beam, near resonant with the atomic
transition, is also directed at the atoms. The solid upper red (lower
blue) curve shows the spatially varying ac Stark shift potential U, (U,)
of the excited (ground) atomic state induced by the trapping beam.
The excited-state polarizability is greater than that of the ground state.
The dashed blue curve is the ground-state potential shifted up by the
cooling photon energy. The frequency of the cooling beam is set to
be resonant with the atom at ODT bottom. The cooling proceeds
via the following cycle: (1) a moving atom absorbs a photon at the
bottom of the ODT; (2) it climbs a steeper potential (solid upper
red curve); (3) it spontaneously decays into the ground state with the
shallower potential (solid lower blue curve), and the atom loses energy
¢ due to this process; (4) after a number of oscillations, the atom
absorbs another photon near the bottom of the ODT; and the cycle
repeats.

it spontaneously decays into the ground state far from the
minimum of the potential. After a number of oscillations
the atom absorbs another cooling photon and the cycle
repeats.

Far-off resonant optical dipole traps are essentially conser-
vative and atoms will scatter photons only from the cooling
laser beam. Elastic collisions between atoms in the ground
state are not required for our cooling method but are also
not harmful unless the atomic sample is in the hydrodynamic
regime. Even though the dynamics of our proposed cooling
process are very different from that of a conventional MOT,
the two share the same density limiting mechanisms: inelastic
light-assisted collisions [18] and reabsorption of scattered
photons. Crucially, we expect larger equilibrium densities
than those achievable in MOTs due to the small excited-state
fraction as well as the fast cooling time scale. Together with
the stronger spatial confinement, the scheme potentially allows
far greater phase-space densities than those achievable by
conventional laser cooling.

A. General requirements

To implement the proposed scheme, one needs to satisfy the
following conditions: (1) the ODT wavelength has to provide
a higher polarizability for the atom in the excited state than
in the ground state, (2) absorption of the cooling light should
occur only near the trap bottom, and (3) atoms in the excited
state should have enough time to move substantially far from
the minimum of the ODT potential (ideally until the turning
point) to make the cooling process efficient, i.e., the natural
decay time should be comparable to the trap oscillation period
for the excited state.
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We consider the common case of loading of an optical
trap directly from a MOT. Condition (1) can be satisfied by
proper choice of the ODT wavelength. Condition (2) places
a stronger restriction on the ODT wavelength, requiring that
the relative ac Stark shift of the two states arising from their
unequal polarizabilities is much larger than the linewidth of
the cooling transition. This allows the cooling laser to be tuned
to the atomic resonance only at particular locations in the trap,
such as the bottom. Condition (3) implies an ideal natural decay
rate comparable to typical ODT trapping frequencies of less
than 100 kHz. For a particular choice of atom, conditions (1)
and (2) may be satisfied with an appropriate choice of ODT
wavelength. Condition (3), however, mandates the availability
of a narrow cooling transition.

Our scheme is therefore well matched to the case of
alkaline-earth-metal-like atoms (such as Ca, Sr, and YD) that
possess closed, spin-forbidden intercombination transitions
with narrow linewidths. Ultracold samples of such atoms are
of great interest in the context of optical clocks [19-21],
precise tests of fundamental physics [19,22,23], quantum
computing [24,25], and quantum simulation [26]. We focus
on applying our scheme to the cases of 38Sr and '7*Yb
and perform relevant calculations for the 'Sy — 3P; transi-
tion [wavelength Agyyp) = 689 (556) nm, linewidth ys;yn) =
2 x 7.4 (182) kHz]. Laser cooling of these atoms on this
transition is well developed. We first identify suitable ODT
wavelength ranges that meet the requirements of our proposed
scheme.
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FIG. 2. (Color online) ac Stark shift of the 'Sy (blue solid line)
and 3P, (red dashed line) levels vs wavelength for ¥ Sr and '"#Yb. For
concreteness, the calculation is performed for the maximum intensity
in a single 1 W beam focused to a waist of 10 pm.
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B. Suitable ODT for Sr and Yb

To determine ODT wavelengths that satisfy the above
criteria for Sr and Yb, we calculate the ac Stark shift (see
Fig. 2) of the 'Sy and P, levels for a large range of frequencies
detuned to the red of the strong ISy — 1P, transition.

The calculation of the polarizability is performed by
summing up the light shift contributions with electronic states
up to n = & principal quantum number for both Sr and Yb,
using the spectroscopic data presented in Ref. [27]. We have
neglected the effect of hyperpolarizability and considered a
linearly polarized ODT. For the excited state, we assume that
atoms are in magnetic sublevels m = %1 [28]. The range 700—
800 nm appears to be suitable for Sr, since the polarizability of
the excited state is substantially higher than that of the ground
state. The ranges 690—-800 nm and 1700-2500 nm are suitable
for Yb. In these regimes, the differential ac Stark shift can be
made much larger than the natural linewidth for either atom
using modest ODT powers. Hence the cooling beam can be
frequency tuned to address atoms only at the minimum of the
ODT potential.

III. ANALYTICAL MODEL

To gain insight into the dynamics of the proposed cooling
process and understand its limitations, we first develop a
one-dimensional (1D) analytic model in which we neglect
the Doppler shift and assume photon absorption strictly at the
bottom of the ODT (x = 0). These assumptions will be relaxed
in subsequent discussions.

In our simple picture, we first estimate the cooling effect
from a single photon scattering event. If an atom initially in the
ground state absorbs a cooling photon at time t = 0 and goes
into the excited state, the probability it will still be in the excited
state attime ¢ is P(t) = exp (—yt). Here y is the natural decay
rate of the excited state or equivalently the linewidth of the
cooling transition. The average energy reduction £ due to a
single scattering event within time #, is then expressible as

g = /t[Ue(t) — Uy (0)]y exp(—yt)dt, (1)
0

where U,g)(?) is the potential energy in the excited (ground)
state.

Assuming a harmonic potential Uy = mcug(g)x2 /2, the
atom’s position before spontaneous emission varies as x(¢) =
[(2kgT)/(mw?)]'/? sin(w,1). Here w,(y) is the trap frequency in
the excited (ground) state, m is the atomic mass, and E = kgT
is the initial energy (kinetic + potential) of the atom. We will
be interested in time scales that are much larger than 1/y. For
t; — oo in Eq. (1), we obtain

sty (1- %) ] ! )
o e ) 21+ (y/2w0)?

where o, ) is the polarizability of the excited (ground) state.
This is the average energy reduction from scattering a single
cooling photon. Here o, /o, = w; /w7 < 1.

We can now draw simple conclusions from this intermediate
result. The cooling efficiency, i.e., the energy reduction per
scattered photon, strongly benefits from high trap frequencies
with & = 0.5k3T(1 — g /c,) in the limit w, > y. How-
ever, already at w, =y, we have an energy reduction of
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g€ =0.4kpT (1 — atg/a.). The energy reduction per transition
is proportional to kT, i.e., the full energy of the atom, in
contrast to more conventional laser-cooling schemes where
the energy change per photon absorption is determined by the
photon momentum. The proposed cooling scheme demands
only a small number of scattered photons, and thus allows the
use of transitions with a moderate branching ratio. As will be
shown later, substantial cooling can be achieved with few tens
of photon scattering events within a fraction of a second.

We now consider two intrinsic heating sources for the
atoms. The first is caused by photon recoil which limits the
final energy to kg Tyee = h*k?/m, where K is the wave vector of
the cooling laser light. The second is caused by the uncertainty
in the position at which the atom gets excited. The probability
of absorption versus position in the ODT can be written as

N

R C i

where A is the normalization constant, s = I /[ is the
saturation parameter (intensity in units of the saturation
intensity) of the cooling laser, and § is its detuning from
the transition frequency of the free atom. dg5(r) is the ODT
induced differential ac Stark shift between the excited and
ground states and v is the atomic velocity. Even ignoring
the Doppler shift, it is impossible to drive atoms into the
excited state strictly at the minimum of the ODT potential
due to the nonzero linewidth of the transition. This leads to a
temperature limitation similar to the Doppler limit for cooling
in MOTs, unlike the polarization gradient cooling technique
that overcomes the Doppler limit. Neglecting the Doppler shift
term and assuming a homogeneous distribution of atoms in the
trap, we can perform a simple estimate of this heating effect.
In 1D, taking 6 = 85(0) (i.e., the cooling laser is resonant at
the bottom of the trap), the average energy gained during an
absorption event is

p(r)=A

3)

2 2

OO — 2
AE = / p(x)wdx, @

which evaluates to AE = /1 +s(hy /2) = kpTpep, exactly
corresponding to the Doppler temperature Tpp. This can serve
as an estimate of achievable temperatures. We can then expect
the cooling to cease at either Tre. or Tpop, Whichever is higher.

We now include the Doppler shift due to atomic motion to
evaluate the spatial dependence of transition probabilities due
to the cooling laser. Figure 3 shows representative examples
of photon absorption and subsequent emission probabilities
as functions of position for various energies for Sr. The main
consequence of the Doppler effect is to shift the position of
peak absorption away from the trap center [see Fig. 3(a)]. This
is because while being substantially smaller than the ac Stark
shift of the atomic levels, the Doppler shift can easily be larger
than the linewidth of the cooling transition (!So = 3P;). Even
though the position shift is small compared to the trap size,
the cooling efficiency will be reduced. We also note that the
effect is far less pronounced in Yb because of its wider cooling
transition.

A possible strategy to overcome the effect of the Doppler
shift is to introduce an additional detuning of the cooling light
[see Fig. 3(b)]. In this way the cooling light can be resonant
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FIG. 3. (Color online) Absorption (solid lines) and subsequent
emission (dashed lines) probabilities of cooling photons per unit
length vs position in ODT (centered at position zero). The calculations
are performed for Sr atoms moving along the radial dimension of
an ODT formed at the 10 um focus of a 10 W beam at 750 nm.
Curve normalizations take into account that the time spent by an
atom at a certain position is inversely proportional to its velocity.
The integral under each absorption curve directly corresponds to
the probability to absorb a photon during one oscillation. Emission
curves are proportional to the rate of emission. The curves correspond
to atomic energies of 400 (red outer curves), 50 (green middle
curves), and 5 (blue inner curves) uK and cooling laser detunings of
(a) § = 85(0) and (b) § = §5(0) — 12y.

for the atoms near the bottom of the trap. Further refinements
include implementing a combination of two or more cooling
beams at different frequencies or a frequency chirp of the
cooling beam to follow the changing Doppler shift as the atom
is being cooled.

In the limit of trap frequencies w, much higher than
spontaneous decay rates y (w, 3> y) the emission probabilities
will be peaked near the turning points of motion, thus much
farther from the trap bottom than the absorption probabilities,
and cooling can be very efficient. When w, < y the profile
of the emission probability is essentially the same as that of
the absorption probability, and efficient cooling is impossible.
When w, is comparable to y (as in Fig.3), the emission
probability is still greatest near the motional turning points,
and efficient cooling is possible. This is the regime of focus in
this paper.

While the above discussion has been restricted to a single
trapped atom, we now consider inelastic collisions in a
many-atom system. We can make a simple estimate of the
density limitations of this effect by balancing the growth
in density from the cooling and the loss in density from
two-body inelastic collisions. Atom density in a harmonic
trap scales as T2, Thus the rate at which density grows
due to the Sisyphus cooling is dn/dt = (dn/dT)(dT/dt) =
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(=3n/2T)(1/kp)(dE/dt). For an energy loss rate propor-
tional to the energy, we can take dE/dt = —E/t and 7 =
(kgT)/(fyE) where f is the average fraction of time spent
in the excited state and &(cxkgT) is the average energy loss
per photon scattering event. Hyperfine-changing collisions
are nonexistent for spin-zero atoms, making light-assisted
collisions the dominant inelastic process. This process leads
to a density decay rate —28fn? where 8 corresponds to the
two-body loss rate when f = 1/2. Our 8 is analogous to that
used to characterize light-assisted collisions in bright MOTs
where f ~ 1/2 [18,29]. The density reaches equilibrium
when the two rates are equal, giving neq = 3/(47fB). In the
simple situation described by Eq. (2), neq = (3y/88)(1 —
ag/a)/[1+ (y/ 2w,)*]. We will make quantitative estimates
of 7 for our scheme and the consequent n.q in Sec. V.

IV. NUMERICAL MODEL

To address the stochastic nature of the process and to
include the effect of the Doppler shift we develop a semiclas-
sical Monte Carlo simulation. Our numerical model is applied
to the dynamics of a single trapped atom and is based on
the fact that for a small enough time increment, changes in
the relevant parameters such as atomic position and velocity
are negligible. We break atomic motion in the ODT into a
set of discrete time steps Az, and at each step calculate the
probability of the atom to make a transition (either absorption
or spontaneous emission). We calculate the new position and
velocity assuming that the acceleration is constant during Az.
If a transition occurs during a particular step, the atom starts
the next step in the other state and experiences the different
trapping potential. Ar is chosen to be much smaller than
all other time scales of the problem (trapping frequencies
and spontaneous decay rate) and is 1 us or less for all the
calculations in this paper. We include the photon recoil but
neglect atom-atom interactions in the simulation.

For an atom in the ground state, we model the absorption
of a cooling photon as a random process that happens with
probability given by the right-hand side of Eq. (3) with A =
(y/2)At. We set § = 85(0) + 6p, where §p = 0 brings the
laser into resonance with a stationary atom at the trap bottom
and a finite § p can be used to mitigate the effect of the Doppler
shift. We model the spontaneous decay of an atom in the
excited state as a random process with probability defined by
the spontaneous decay rate.

A. 1D case

We first employ this numerical model for Yb in a 1D
harmonic potential (see Fig. 4). We use trap frequencies
corresponding to the center of the transverse profile at the
focus of a 750 nm ODT with 2 W power and 3 um waist. In
Fig. 4(a) we present the evolution of the energy of the trapped
atom. The discrete steps up or down in energy correspond
to events of absorption or emission of a photon. The exact
shape of the curve and the final energy varies between different
numerical iterations due to the stochastic nature of the process.
In Fig. 4(b), we show the average of 100 iterations with the
same initial conditions. The energy drops to 5.5 uK within
the first 3 ms, comparable to Tp,, = 4.3 1K, and then stays
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FIG. 4. (Color online) Energy of Yb atoms vs cooling time. Here
At = 0.1 us. Harmonic potentials are assumed with trap frequencies
Wge) = 2 x 55(74) kHz (see text). The cooling beam parameters
are s = 0.5 and §p = —y. (a) Atomic energy during three individual
runs (iterations) of the numerical model. Each curve shows the time
evolution for a single initial energy. The sharp steps correspond to
transitions from ground to excited state and vice versa. (b) Results
for the same conditions with each curve averaged over 100 iterations.
Average final energy is 5.5 uK in this example.

essentially the same. Here and in the rest of the paper we will
express the energy of the atom in uK.

Similar simulations can be performed for Sr (see Fig. 5).
The smaller linewidth of the cooling transition leads to lower
Doppler temperature but also a longer cooling time scale. The
harmonic potentials correspond to the transverse profile at the
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FIG. 5. (Color online) Energy of Sr atoms vs cooling time.
Each curve shows the evolution for a single initial energy and is
averaged over 50 iterations. Here Ar = 1 pus. Harmonic potentials are
assumed with trap frequencies w,) = 27 x 10(14) kHz (see text).
The intensity of the cooling beam is s = 10 equally split between fre-
quency components corresponding to §p = —{5,15,45}y. Average
final energy is ~0.86 1K in this example.
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FIG. 6. (Color online) Final energy of a Yb atom vs cooling beam
detuning expressed as —8p/y. Here At = 0.1 us, s = 0.5, and initial
energy is 500 K. The final energy is evaluated as the energy after
20 ms, averaged over 100 iterations. Each point is the mean and
uncertainty of four such values.

focus of a 750 nm ODT with 5 W power and 10 pm waist. To
mitigate the more severe Doppler effect due to the narrower
linewidth of the cooling transition (see Fig. 3), we introduce
three frequency components in the cooling beam. Energies of
about 1 uK are reached within 15 ms.

We studied the dependence of final energy on detuning
(Fig. 6) for the Yb case, with an initial energy of 500 uK.
The initial Doppler shift is about 3y. Clearly, very small
detunings will not be useful since they cannot mitigate this
shift. Detunings that are much larger than the Doppler shift
would also clearly not be useful. This would suggest optimum
(red) detunings on the scale of y, which is verified by our
simulations. For the Sr case, a clear study is impeded by
the requirement of multiple frequency components for good
cooling performance.

We also investigated the dependence of the final energy
on the intensity of the cooling beam. High intensity causes
saturation broadening that makes the position of photon
absorption less defined. On the other hand, low intensity of
the cooling beam makes events of photon absorption rare,
slowing down the cooling process. Therefore, it is meaningless
to ask about optimal intensity of the cooling beam without
specifying the interaction time. To study this dependence, we
set the interaction time to 5 ms. We show in Fig. 7 the final
energy versus intensity of the cooling beam and compare it to
the Doppler limit of /1 4 s(fy /2).

B. 2D and 3D cases

After gaining some basic understanding we can attempt to
apply our numerical method to higher dimensions. The present
cooling method strictly requires that the atom pass through
the minimum of the trapping potential. This will always
be the case in 1D. The two- and three-dimensional cases,
however, allow trajectories that never cross the minimum
of the trapping potential. This will make efficient cooling
impossible. We verified this in simulations with isotropic 2D or
3D confinement, performed in polar or spherical coordinates,
where we observed reduction in the radial velocity component
but not in the angular ones. In such a situation, mixing
between the different degrees of freedom is desirable. This
can be achieved either by means of collisions with other
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FIG. 7. (Color online) Final energy of a Yb atom vs the intensity
(expressed as saturation parameter) of the cooling beam. Here At =
0.1 us, p = —y, and initial energy is 500 ©K. The final energy is
evaluated as the energy after 5 ms, averaged over 20 iterations. Each
point is the mean and uncertainty of four such values. Also shown is
the Doppler limit of conventional laser cooling for a given saturation
parameter (blue dashed line).

trapped atoms, or by anharmonic mixing. We concentrate our
study on the second mechanism, since it does not imply any
requirements on collisional properties of atoms or the density
of the atomic sample.

Anharmonic mixing is a process that couples atomic motion
between different dimensions of a trap. This coupling enables
redistribution of energy over the different dimensions. ODT
potentials are intrinsically anharmonic. Since atomic energy
is not negligible compared to the trap depth, anharmonicity
plays an important role. However, mixing between radial and
angular components does not occur in spherically symmetrical
potentials. To introduce mixing, an elliptical trap shape is
required in the 2D case. In the 3D case, an ODT consisting
of two intersecting beams of different transverse sizes can
provide the needed mixing. One can expect longer cooling
times as well as higher final energies for 3D traps. This is
because of the presence of trajectories that do not pass through
the center of the ODT, causing the atoms to spend less time
at the minimum of the trapping potential. This reduces the
excitation rate as well as the average energy lost per scattering
event, thus lengthening the cooling process. Additionally, the
probability for atoms to be driven into the excited state away
from the potential minimum is higher than in the case of 1D
traps. This increases the average energy gained per excitation
and limits the final energies to values higher than in 1D
[see Eq. (4)].

We consider two 2 W ODT beams with wavelength 750 nm,
focused to waists of 3 and 3.5 pm intersecting perpendicularly
at their foci. Figure 8 shows an example of cooling of Yb
in such a trap. While a single cooling beam is sufficient to

TABLE I. Final energies (in ©K) for Sr and Yb obtained in 1D
and 3D simulations. Each value of final energy is the result of 80
time-averaged numerical simulations.

Trec TDOP EID E3D
Sr 0.46 0.18 0.8 3x1.4
Yb 0.35 4.3 6.0 3x8.5
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FIG. 8. (Color online) 1/3 of total energy of Yb atoms vs cooling
time, evaluated in 3D simulations. Each curve shows the evolution
for a single initial energy and is averaged over 50 iterations. Here
At = 0.1 us. The atoms move in an anharmonic crossed-optical
dipole trap potential, as described in the text. The cooling beams have
detuning §p = —y and total intensity s = 0.5, split into three equal
parts aligned orthogonal to each other with two along the ODT beam
axes. The average final energy after 50 ms of cooling is ~3 x 8.6 uK.

lower atomic energy substantially, our simulations indicate
that two or three beams [28] will provide faster cooling and
about 30% lower final energies. Employing three orthogonal
cooling beams at total intensity s = 0.5 allows an energy
decrease from 3 x 500 uK to ~3 x 10 uK during 40 ms of
cooling from scattering as few as 20—40 photons. As expected,
3D cooling takes a considerably longer time than in 1D. We
write the energy as 1kzT per dimension. This definition of
T then directly corresponds to the temperature for a sample
of many atoms. While thermal equilibrium is not guaranteed
by our scheme, equilibrium will be established within a few
collisional time scales after the cooling process.

We summarize our findings in Table I where we report
the final energies for Sr and Yb for 1D and 3D simulations.
The Sr energies (10 x 12 um crossed ODT with 5 W in each
beam) were obtained for the saturation parameter s = 10 per
cooling beam. Lower final energies could be obtained at the
cost of longer cooling time at lower intensities. Our results
compare well with the limits set by the Doppler and recoil
temperatures.

V. POSSIBLE APPLICATIONS

Our proposed method can potentially enhance many experi-
ments based on optically trapped atoms, including studies with
quantum gases, precision metrology, and quantum information
science. The method can act as an additional cooling step
that improves initial, pre-evaporation conditions for these
experiments. For properly chosen parameters, it may be
possible to increase the phase-space density to approach
quantum degeneracy. The achievable phase-space densities
can be estimated by incorporating the limitations from density-
dependent loss processes. Optimum performance will require
a careful choice of ODT and cooling beam parameters. It
is experimentally easier to implement the proposed cooling
method in ODTs with a larger volume. However, a sufficiently
high optical power at given wavelength is not always available.
We perform calculations for the cases of '74Yb atoms in
2000 nm wavelength ODT and #Sr in 800 nm wavelength
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ODT. High power at these wavelengths can be obtained from
commercially available lasers.

We first examine the case of '7*Yb atoms in an ODT
formed by the perpendicular crossing of beams with waists
10 and 12 pm, each with 20 W power. For an initial energy
of 3 x 500 uK, our one-atom numerical simulations indicate
an average final energy of ~3 x 9 K using a single cooling
beam with s =3 and ép = —0.5y. The trap depth (5 mK)
and volume seem adequate to efficiently capture atoms from a
MOT operating on the 'Sy — *P; transition.

We can estimate the density limitations from light-assisted
collisions using the expression n.q = 3/(4tfB) derived in
Sec. III. Here we will assume that this is the dominant
limiting effect. For simulations with initial energy 0.5 mK,
we obtain average values of T =65ms and f = 0.0025.
Using B = 107" em™ /s [30], we then get neq =~ 10" cm™?
as the limiting density. The resultant phase-space density
at a temperature of 9 uK is 0.05, which greatly exceeds
what is typically achievable in optically trapped Yb, prior
to evaporative cooling [31,32]. While the estimated final
optical density near the center of the trap is about 6,
radiation trapping of the emitted photons should not be an
issue, because emissions take place preferentially away from
the center, at the motional turning points. Furthermore, the
short time scale for cooling will alleviate losses from other
inelastic processes such as three-body collisions as well.
For subsequent studies, the trapped sample lifetime can be
extended by adiabatically relaxing the ODT confinement after
cooling.

The cooling performance can be improved by using time-
dependent cooling beam parameters. Using ®¥Sr atoms in
an ODT formed by the perpendicular crossing of beams
with waists 10 and 12 um, each with 10 W power (7 mK
depth), our simulations indicate cooling from 3 x 250 uK
to ~3 x 1.15 uK with three orthogonal cooling beams with
parameters s = 0.5 + 5.0e7/10™ and §, = —{3,10,20}y.
These simulations indicate average values of 7 = 78.1 ms
and f = 0.01, which yield neq >~ 1.9 x 10'* cm™ using B =
10~ ¢cm~3 /s [30] and a consequent final phase-space density
of 0.5. This is of particular significance as direct evaporative
cooling of %8Sr is infeasible due to the near-zero atomic
collision cross section. The density limiting mechanisms may
also be further mitigated by using time varying cooling beam
detunings and relaxing the ODT confinement near the end
of the cooling process. We also note that the spontaneous
scattering rate of ODT photons for the above cases are
0.3s7!' (Yb) and 18s~! (Sr). The large value for the Sr case
may start to affect achievable temperature and phase-space
density.

We now turn to applications of this scheme beyond the
wavelength ranges and atomic species discussed thus far.
We first note that the use of time-dependent cooling beam
parameters could allow extension of the proposed method to
optical trap wavelengths satisfying o, /ct, > 1. In this case, &
has to be increased over time, starting from § =~ 0.

In addition to alkaline-earth-metal-like atoms, this method
can be employed for other atomic species as well, provided
sufficiently narrow cycling transitions are available. In alkali
atoms, while the usual D; line nS;/, —> nP3;; will be much
too broad, the narrower nS;,, — (n + 1)P3; line may be
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utilized. This transition has recently been used for conventional
laser cooling of Li [33] and “°K [34].

Application of this method to spin-polarized Fermi gases
can prove a useful alternative to sympathetic cooling strategies.
In this case an additional advantage is derived from the Pauli
suppression of inelastic collisions between ground-state atoms.
A particularly appealing application may be in the context of
an optical lattice trap where only a few atoms are located in
each lattice site. Atoms in different sites will then enjoy high
trap frequencies and thus efficient cooling, while at the same
time the total number of traps and therefore atoms can be
substantial.

VI. CONCLUSIONS

We have described a Sisyphus-cooling method for atoms
confined in an optical dipole trap that exploits the trap-induced
differential ac Stark shift of two atomic levels coupled through
a narrow-linewidth optical transition. With a proper choice of
ODT wavelength and energy levels, the atoms are cooled by a
process of preferential absorption of photons from a resonant
laser beam near the trap center followed by spontaneous
emission away from the center. The presented cooling scheme
resembles other Sisyphus-cooling methods but does not rely
on the presence of a ground-state magnetic substructure and is
well suited for cooling alkaline-earth-metal-like atoms which
have narrow intercombination transitions.

Numerical simulations presented for 8Sr and '7*Yb show
that temperatures as low as few wK are reachable in time
scales of tens of milliseconds. The temperature is limited to
the higher of Doppler and recoil temperatures. We pointed out
experimentally accessible parameters for Yb and Sr where our
predicted final phase-space density from this cooling method
is near the quantum degenerate regime. Further improvements
include the use of time-dependent trap geometries as well
as time-dependent cooling beam parameters. The scheme is
also adaptable to narrow electronic transitions in other atomic
species.

The presented cooling method falls under the more gen-
eral class of one-photon cooling methods where noticeable
reduction of the temperature is achieved by scattering of one
photon, as demonstrated in Refs. [35,36]. These methods are
crucial for cooling species that do not possess near-cycling
transitions with high branching ratio. An appealing prospect
is the cooling of molecules that have been precooled using
other methods [37-39]. Recent work by the DeMille group has
demonstrated laser cooling of heteronuclear molecules [40] on
a transition with a moderately high branching ratio, adequate
for cooling using the proposed method.
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