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Nonadiabatic tunneling in circularly polarized laser fields: Physical picture and calculations
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We consider selectivity of strong-field ionization in circularly polarized laser fields to the sense of electron
rotation in the laser polarization plane in the initial state. We show that, in contrast to the textbook examples
of one-photon ionization and bound-state excitations with increase in the electron angular momentum, and also
in contrast to the well-studied ionization of Rydberg atoms in microwave fields, which all prefer corotating
electrons, optical tunneling selectively depletes states where the electron initially rotates against the laser field.
We also show that key assumptions regarding adiabaticity of optical tunneling may quickly become inaccurate
in typical experimental conditions.
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I. INTRODUCTION

Electron tunneling from atoms and molecules in strong laser
fields is usually described as an adiabatic process. It implies
that the motion of the tunneling barrier does not affect the
electron dynamics during tunneling. In circularly polarized
fields, the adiabatic picture assumes that the electron escapes
along the instantaneous direction of the electric field, ignoring
its rotation in each tunneling event. If this is not the case, would
tunneling deplete different m states selectively? Specifically,
would electrons corotating with the barrier (m > 0) tunnel
easier than the electrons rotating in the opposite direction
(m < 0)? Surprisingly, this question has not been addressed,
in spite of a large body of experimental work performed with
circularly polarized fields applied to initial states with m �= 0
in nonadiabatic tunneling regime [1–5]. Here we answer this
question by deriving virtually exact analytical solutions for
short-range potentials. Including effects of the long-range
Coulomb potential in a standard way does not change our
conclusions. Our results have implications for understanding
and interpreting “attosecond angular streaking” experiments
[1–5], where a strong circularly polarized field is used as a
probe of electron dynamics in atoms and molecules. Currently,
interpretation of these experiments relies on the adiabatic
picture of ionization, which as we show quickly becomes
inaccurate for typical experimental conditions.

In the case of one-photon ionization the preference for
the sign of m is well known. For transitions which in-
crease the angular momentum of the electron, the bound
m state corotating with the circular field (m > 0) will be
depleted more efficiently than the m state in which the electron
rotates in the opposite direction [6]. The same is true for
the ionization of circular Rydberg states (and of rotating
Rydberg wave packets) in circularly polarized microwave
fields. Ionization is much more likely for the Rydberg electron
corotating with the field, preferably with the same angular
velocity [7,8]. It proceeds via successive excitations of the
manifold of Rydberg states, which is more efficient for
corotating electrons. Would the same preference appear in
tunneling, where real excitations are not involved?

Formally, tunneling corresponds to the nonresonant ab-
sorption of many photons N � 1. For a right-polarized
circular field, each absorbed photon increases the magnetic
quantum number by �m = +1. Which of the degenerate
m sublevels of the initial state p has better chances to

be depleted: m = 1, m = −1, or m = 0? In other words,
which final state is more likely to be created: mf = N + 1,
mf = N − 1, or mf = N? We show that, in contrast to
one-photon ionization and ionization from Rydberg states
in microwave fields [7,8], in tunneling the counterrotating
electron has significantly better chances to penetrate the barrier
than corotating electron (about three times higher for typical
experimental conditions), while m = 0 is suppressed by orders
of magnitude. Even though the difference in the final mf is
minimal, the sensitivity to initial m is high. Thus, the use of
the adiabatic assumption and the quasistatic tunneling rates
are inaccurate in typical experimental conditions. It is also
commonly assumed that the electron after tunneling has zero
average velocity perpendicular to the field. Our analysis shows
that this assumption also becomes inaccurate in typical cases.

II. PHYSICAL PICTURE

Let us first try to understand this result using qualitative
arguments. Consider strong-field ionization in right (+) or left
(−) circularly polarized laser fields:

E±(t) = E[cos(ωt) ex ± sin(ωt) ey]. (1)

The axes are shown in Fig. 1. Strong-field ionization is
successfully described using semiclassical approaches, due
to large action associated with the electron motion in the
strong laser field. For each final momentum of the electron
registered at the detector, the least action principle specifies a
particular trajectory for the electron tunneling. However, since
the electron moves in the classically forbidden (underbarrier)
region, this trajectory evolves in complex time. The dominant,
exponential part of the tunneling rate wk(E,ω) is characterized
by the electron action accumulated “under the barrier” along
this trajectory:

wk(E,ω) ∝ e−2Im S(k,ti ),

S(k,ti) = −1/2
∫ Re ti

ti

[k + A±(t)]2dt + Ipti, (2)

where A±(t) is defined as

E±(t) = − d

dt
A±(t),

A±(t) = −A0[sin(ωt) ex ∓ cos(ωt) ey], (3)
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FIG. 1. (Color online) Kinematics of electron tunneling through
rotating barrier. (a) Right circularly polarized laser field E+ creates the
tunneling barrier rotating counterclockwise. The electron observed at
the detector placed along the x axis exits the barrier along the y axis,
opposite to the direction of the laser field E+, i.e. in the negative
direction of y axis. (b) Ionization rate estimated with exponential
accuracy [Eq. (5)] for γ ∼ 1 (solid red line) is maximal for the initial
velocity vxi < 0 and it corresponds to electron rotating clockwise.
In the adiabatic limit (γ � 1) the distribution of initial transversal
velocities becomes symmetric and is centered around zero (dashed
blue line).

k is the final momentum observed at the detector, Ip is the
ionization potential, A0 = E

ω
is velocity amplitude of electron

oscillations in the laser field, and ti = Re ti + iIm ti is the so-
called (complex) time of ionization, which is uniquely linked
to k.

Complex time ti can be interpreted as the time of entering
into the barrier, while its real part Re ti is the time of exiting the
barrier [9]. For continuous-wave circularly polarized field and
final momenta kx = k cos θ , ky = k sin θ in the polarization
plane, and kz = 0, these times are [10,11]

ωRe ti = π

2
+ 2πN ± θ (N ∈ Z),

(4)

ω Im ti = arcosh χ, χ (k) = A0

2k

[(
k

A0

)2

+ γ 2 + 1

]
.

Here γ = √
2Ip/A0 is the Keldysh parameter [12] discrim-

inating among adiabatic tunneling (γ � 1), nonadiabatic
tunneling [13] (γ ∼ 1), and multiphoton ionization (γ � 1).
Substituting Eqs. (4) into Eqs. (2) obtains

wk(E,ω) ∝ e− 2A0k

ω
(χ arcosh χ−

√
χ2−1). (5)

The maximal ionization rate given by Eq. (5) corresponds to

the final momentum k0 = A0

√
1 + γ 2

√
1−ζ0

1+ζ0
for any angle θ .

The parameter 0 � ζ0 � 1 satisfies the equation
√

ζ 2
0 +γ 2

1+γ 2 =
tanh 1

1−ζ0

√
ζ 2

0 +γ 2

1+γ 2 . Note that ζ0 
 γ 2/3 for γ � 1, and ζ0 

1 − 1/ ln γ for γ � 1 [10]. For each observation angle θ ,
the momentum k0 defines the “optimal” trajectory, which
corresponds to the highest ionization rate. Consider right
circular polarization. Let us follow one of these optimal
trajectories, which corresponds to the the electron observed
at the detector along the x axis [θ = 0; see Fig. 1(a)].
Equation (4) tells us that this electron has been ejected at
ωRe ti = π/2, when the direction of the instantaneous electric

field is parallel to the y axis and electron velocity along the y

axis vy = 0. When the electron enters the barrier at complex
time ti , vy is purely imaginary: vyi = −iA0

√
χ (k0)2 − 1,

just as one would expect for tunneling in the field pointing
along the y axis. The transverse velocity at this time is
vxi = [k0 − A0χ (k0)]. In the adiabatic limit (γ � 1) vxi 

−√

2Ipγ /3, the distribution of initial transversal velocities
becomes symmetric and is centered around zero (vxi 
 0)
[see Fig. 1(b), blue curve], also as usually expected in
the direction perpendicular to the field. However, in the
regime of nonadiabatic tunneling (γ ∼ 1) [13], the transverse
initial velocity distribution is asymmetric; its peak vxi =
−A0

√
1 + γ 2ζ0/

√
1 − ζ 2

0 < 0 is substantially offset from zero
[see Fig. 1(b), red curve] and corresponds to negative velocities
[14]. The electrons which rotate opposite to the direction of
the laser field are more likely to have this velocity than those
corotating with the field. Therefore, the p− orbital will be more
strongly depleted than the p+ orbital. The hole created after
ionization will rotate opposite to the direction of the laser field.

To complete the analysis, one has to take into account the
pre-exponential terms in the ionization rate wk(E,ω) which
depend on the particular shape of the initial state, that is, the
presence of the required momentum components in the initial
wave function. We have derived simple analytical expressions
which quantitatively describe this effect (see Fig. 2; the
derivation is discussed below) for right circularly polarized
field (left polarization is treated similarly [15]):

wpm
(E,ω) = Ip|Cκl|2 E

2E0
hpm

(γ ) e− 2E0
3E g(γ ), m = ±1, (6)

where E0 = (2Ip)3/2, κ = √
2Ip, Cκl characterizes the asymp-

totic behavior of the radial wave function with the orbital
quantum number l. Results for p0 orbital will be exposed in
our companion paper [11]. The function g(γ ) in the exponent
is the same as in the case of s orbitals:

g(γ ) = 3ζ0

γ 2
(
1 − ζ 2

0

)√
(1 + γ 2)

(
ζ 2

0 /γ 2 + 1
)
, (7)

and the factors hpm
(γ ) for p± states

hpm
(γ ) = hs(γ )

3(1 + γ 2)

2
(
1 − ζ 2

0

)
⎛
⎝

√
ζ 2

0 /γ 2 + 1

1 + γ 2
∓ ζ0

γ
sgn(m)

⎞
⎠

2

(8)

are expressed via the factor hs(γ ) for the s state:

hs(γ ) = (1 − ζ0)

√
(1 + γ 2)

(
1 − ζ 2

0

)
(
ζ 2

0 /γ 2 + 1
)(

2ζ 2
0 /γ 2 + ζ 2

0 + 1
) . (9)

The result for the s state has been previously derived in [10].
The limiting cases of tunnel and multiphoton ionization in
right circularly polarized field [15] yield

wp−

wp+

∣∣∣∣
γ�1

= 1 + 4γ

3
> 1,

wp−

wp+

∣∣∣∣
γ�1

= (2 ln γ )2 � 1. (10)
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FIG. 2. (Color online) Ionization rate [Eqs. (6)–(9)] for p± orbitals and right circular polarization. (a) Ionization rate vs laser frequency for
Kr ground 4p state (Ip = 0.5 a.u.) and laser field E = 0.06 a.u. (b) Ionization rate vs laser intensity for Kr ground 4p state (Ip = 0.5 a.u.) and
laser frequency ω = 0.057 a.u. (c) Photoelectron energy distribution at the detector [Eq. (19)] for p− (solid red line) and p+ (dashed blue line)
orbitals, for Kr ground 4p state (Ip = 0.5 a.u.), laser frequency ω = 0.057 a.u., E = 0.06 a.u. Electrons with energy Eo

kin = 2Up + Ip (vertical
line) correlate to nonrotating hole, low-energy electrons E < Eo

kin correlate to counterrotating holes, and higher energy electrons E > Eo
kin

correlate to corotating holes. In the adiabatic case (γ = 0) photoelectron distributions are peaked at 2Up and are the same for p+ and p−
orbitals.

Equations (6)–(9) and are based on the Perelomov, Popov
and Teren’tev (PPT) [10] approach. As is known [16],
this approach is virtually exact for short-range potentials.
Deviations from the exact solution are due to the following
two approximations: (i) the Stark shift of the initial state is not
included, and (ii) the saddle point method is used. Comparison
with the exact solution for a δ potential [16] shows that the
errors introduced by the saddle point method are small for low
frequencies ω � Ip and field strengths E � (2Ip)3/2. While
the results [Eqs. (6)–(9)] are general, the Stark shifts are system
specific and can be calculated separately on a case-by-case
basis [5,17] and incorporated into Eqs. (6)–(9). The Coulomb
corrections can be introduced using standard recipes [9,18]
involving the time integration of the Coulomb potential along
the optimal trajectory. Since this trajectory is the same for p+
and p− states, the Coulomb correction in its standard form will
equally affect the ionization rates from all p orbitals. Thus, it
will not change our results for the ratio wp−/wp+ . In contrast to
the PPT theory, the velocity gauge strong-field approximation
(SFA) [19] provides only exponential accuracy even for the
short-range potentials and cannot provide the correct answer in
our case, since all the effect is in the prefactor of the ionization
rate. In fact, Ref. [20] has failed to find the difference in strong-
field ionization from the p+ and p− orbitals by circular fields.
The deficiencies of the velocity gauge SFA even for short-range
potential have now been clearly documented using comparison
with the exact analytical treatment [21] and with full numerical
simulations [22–24].

III. CALCULATIONS

We now derive Eqs. (6)–(9). Following the PPT approach
[10], we obtain [11] the total ionization rate as a sum over
multiphoton channels:

w(E,ω) = 2π

∞∑
n�n0

∫
dk δ

(
k2

2
− k2

n

2

)
|Fn (k,ω)|2 , (11)

where the final kinetic energy of the electron Ekin = k2
n

2 is

k2
n

2
= (n − n0)ω, n0 = Ip + 2Up

ω
, Up = E2

4ω2
, (12)

and n0 is the minimal number of photons required for
ionization. The functions |Fn(k,ω)|2 describe the probability
of each multiphoton process:

|Fn(k,ω)|2k=kn
= ω2

4π2

∣∣∣∣
∫ π/ω

−π/ω

dt φlm(v(t))eiS(k,t)

∣∣∣∣
2

k=kn

. (13)

The prefactor is proportional to the specific momentum
component of the initial wave function ϕlm(r), corresponding
to the instantaneous electron velocity v(t) = k + A±(t):

φlm(v(t)) = 1

2
(v(t)2 + 2Ip)ϕ̃lm(v(t)),

ϕ̃lm(k) = 1

(2π )3/2

∫
dr e−ikrϕlm(r). (14)

The saddle point method selects complex ionization time
ti [Eq. (4)] and yields a simple expression for functions
|Fn(k,ω)|2:

|Fn(k,ω)|2k=kn
= ω2

4π2

∣∣∣∣∣φlm(v(ti)) eiS(k,ti )

√
2π

S ′′(k,ti)

∣∣∣∣∣
2

k=kn

. (15)

The ionization time is the solution of the saddle point equation:
∂S/∂t = v(ti)2/2 + Ip = 0. The saddle point method tells us
that the integral in Eq. (13) is accumulated mostly in the
small region around the ionization time ti . The width of this
region is determined by the second derivative of the action
1/

√
S ′′(k,ti). The initial electron velocity v(ti) specifies the

required momentum component of the initial wave function.
The amount of this momentum component is different for p+
and p− orbitals. The initial electron velocity v(ti) coincides
with the pole of the initial wave function in the momentum
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representation. In coordinate representation, it corresponds to
the wave function asymptotically far from the core:

ϕlm(r,θr ,φr ) = Cκlκ
3/2 e−κr

κr
Ylm(θr ,φr ), (16)

with the constant Cκl , depending on κ = √
2Ip and l and details

of the potential near the core. Transforming Eq. (16) to the
momentum space, we obtain

|Fn(k,ω)|2k=kn
= |Cκl|2 ωγ

kρ

2l + 1

16π3

(l − |m|)!
(l + |m|)!

∣∣∣∣P |m|
l

(
ikz

κ

)∣∣∣∣
2

× |eimφv |2 e−2 Im S(k,ti )√
χ2(kρ) + k4

z /
(
4k2

ρA
2
0

) − 1

∣∣∣∣∣∣
k=kn

,

(17)

where φv is “tunneling angle,” tan(φv) = vy(ti)/vx(ti), and k =√
k2
ρ + k2

z . The difference in ionization from p+ and p− states

is solely due to the factor |eimφv |2, which is not equal to unity,
since the tunneling angle φv is complex. By evaluating |eimφv |2
and other factors in Eq. (17) explicitly [25] and introducing
a dimensionless parameter ζ = 2n0/n − 1 we obtain the final
expression for ionization rate from p± orbitals in right [15]
circularly polarized laser fields:

wpm
(E,ω) =

∞∑
n�n0

wpm

n (E,ω), (18)

where w
pm
n (E,ω) describes electron energy distribution

[Ekin = k2
n/2 = (n − n0)ω]:

wpm

n (E,ω) = 3|Cκ1|2Ip

8
√

2π n
3/2
0

(
1 + 1

γ 2

)3/2 1√
1 − ζ

(
1 + γ 2

ζ 2 + γ 2

)3/4

×
⎛
⎝

√
ζ 2 + γ 2

1 + γ 2
− ζ sgn(m)

⎞
⎠

2

× e
− 4n0

1+ζ

(
artanh

√
ζ2+γ 2

1+γ 2 −
√

ζ2+γ 2

1+γ 2

)
. (19)

To evaluate the total ionization rate, the summation over n

can be replaced with integration over ζ ; that is,
∑∞

n�n0
≈∫ ∞

n0
dn = 2n0

∫ 1
−1

dζ

(1+ζ )2 . The application of the saddle point
method for Ip � ω (i.e., n0 � 1) for integration over ζ yields

the compact expressions for ionization rate from p± orbitals
given above in Eqs. (6)–(9).

IV. CONCLUSIONS

Thus, counter to standard cases of one-photon ionization
and excitation and multiphoton ionization of Rydberg states
[26], tunneling in circularly polarized fields selects counterro-
tating orbitals.

Photoelectron spectra are also different for electrons com-
ing from different orbitals [Fig. 2(c)]. There is a unique
final kinetic energy Eo

kin = 2Up + Ip for which the amount
of electrons coming from p+ and p− orbitals is exactly
the same. In terms of the setup presented in Fig. 1, it
corresponds to the component of their momentum-space wave
function with vxi = 0. Obviously, there is “an equal amount
of such electrons” in p+ and p− orbitals. The final kinetic
energy of the electron uniquely indicates the strength and
the direction of the ring current [28,29] generated in the
ion, measured in correlation with the electron. Low-energy
electrons Ekin < Eo

kin correlate to the ions with positive ring
current, while higher energy electrons Ekin > Eo

kin correlate to
the ions with negative ring currents. Since the signal from p−
orbital dominates, the ring current in the ion can be detected
even if the electron energy has not been measured, for example,
by using a setup similar to that in Ref. [30], where the hole
dynamics upon strong-field ionization has been directly probed
in real time.

Note that, contrary to standard assumptions [1–5], in
nonadiabatic tunneling, optimal trajectories for both p+ and
p− electrons have nonzero velocities in the observation
direction just after exiting the barrier: vx = k0 − A0. That is
why the peaks of the kinetic energy distributions for both p+
and p− electrons are shifted beyond 2Up [Fig. 2(c)]. For γ � 1
the shift disappears as expected [31] and all peaks tend toward
the 2Up value. However, for γ ∼ 1 nonzero average transverse
velocities of electron after tunneling are substantial and may
be responsible for the enhanced probability of nonsequential
double ionization in circularly polarized fields [32].
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