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Interaction-induced stabilization of circular Rydberg atoms
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We discuss a candidate solution for the controlled trapping and manipulation of two individual Rydberg
atoms by means of a magnetic Ioffe-Pritchard trap that is superimposed by a constant electric field. In such
a trap Rydberg atoms experience a permanent electric dipole moment that can be of the order of several
hundred debye. The interplay of electric dipolar repulsion and three-dimensional magnetic confinement leads to
a well controllable equilibrium configuration with tunable trap frequency and atomic distance. We thoroughly
investigate the trapping potentials and analyze the interaction-induced stabilization of two such trapped Rydberg
atoms. Possible limitations and collapse scenarios are discussed.
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I. INTRODUCTION

Among the many fascinating systems encountered in
ultracold atomic and molecular physics are Rydberg atoms,
that is, highly excited atoms with large principal quantum
number n. Their size can easily exceed that of ground-state
atoms by several orders of magnitude and at the same
time is the origin of many extraordinary properties such as
their massively enhanced response to external fields and,
therewith, for their enormous polarizability [1]. In ultracold
gases, the resulting strong dipole-dipole interaction among
Rydberg atoms has been found to give rise to a nonlinear
excitation behavior: Rydberg atoms strongly inhibit excitation
of their neighbors entailing a state-dependent local excitation
blockade [2–6], which on its part results in a collective
excitation of many atoms [7–9]. Two recent experiments
even demonstrated the blockade between two single atoms a
few micrometers apart [10,11]. From an application-oriented
point of view, the strong dipole blockade effect renders
Rydberg atoms promising candidates for quantum information
processing [12] and allows the determination of the interaction
potential of Rydberg atoms in a one-dimensional lattice [13].
The large size of Rydberg atoms can also give rise to
bonding interactions between Rydberg and ground-state
atoms. The scattering-induced attractive interaction binds the
ground-state atom to the Rydberg atom at a well-localized
position within the Rydberg electron wave function and
thereby yields giant ultra-long-range molecules that can have
internuclear separations of several thousand Bohr radii [14].
The spectroscopic characterization of such exotic molecular
states, named trilobite and butterfly states on account of
their particular electronic density, has succeeded recently [15]
and has triggered a revived theoretical and experimental
activities [16–19].
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Most of the experiments with Rydberg atoms still involve
a large ensemble of atoms. They can therefore unavoidably
solely investigate effective and averaged properties since
individual atoms are typically not resolved. It is hence of great
interest to study only a small number of Rydberg atoms that
are preferably individually controllable and arrangeable with
respect to one another. It is furthermore necessary to stabilize
these Rydberg atom configurations against autoionization. An
essential step in this direction is the trapping of electronically
highly excited atoms. Several works have focused on trapping
Rydberg atoms, based on electric [20], optical [21–23], or
magnetic fields [24–27]. Due to the high level density and
the strong spectral fluctuations with spatially varying fields,
trapping or manipulation in general is a delicate task. This
is particularly the case when both the center of mass and
the internal motion are of quantum nature and the inhomo-
geneous external fields lead to an inherent coupling of these
motions.

In the present work we provide a candidate solution for
the controlled trapping and manipulation of two individual
Rydberg atoms by means of a magnetoelectric trap. Specif-
ically, we consider a magnetic Ioffe-Pritchard trap that is
superimposed by a constant electric field which induces a
permanent electric dipole moment for the Rydberg atoms
that can be of the order of several hundred debye. As has
been shown in a previous work, the resulting dipole-dipole
interaction in conjunction with the tight radial confinement
of the Ioffe-Pritchard trap gives rise to an effectively one-
dimensional ultracold Rydberg gas with a macroscopic in-
terparticle distance [28]. Here, we consider in addition the
longitudinal confinement that arises for a non-Helmholtz
configuration of the Ioffe-Pritchard trap. In contrast to our
previous work focusing on the trapping of individual Rydberg
atoms in two dimensions [25–27], this allows the controlled
confinement of two single Rydberg atoms in three dimensions
with variable trapping parameters and distance. We thoroughly
investigate the resulting trapping potentials and analyze the
interaction-induced stabilization of two such trapped Ryd-
berg atoms. Possible limitations and collapse scenarios are
discussed.

In detail, we proceed as follows. In Sec. II the Hamiltonian
of a single Rydberg atom in the magnetic Ioffe-Pritchard
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trap superimposed by a constant electric field is derived
and the corresponding adiabatic potential surfaces for the
center-of-mass motion of the Rydberg atom are provided, as
well as analytic expressions for the electric dipole moment
of the Rydberg atom induced by the external electric field.
In Sec. III we consider the interaction of two Rydberg
atoms in the same trapping environment. In the regime
of strong transversal confinements, analytic expression for
the equilibrium configuration of the two atoms are derived.
Weakening this restriction leads to three-dimensional potential
surfaces and possible loss mechanisms that are investigated
in the remainder of the section. Section IV outlines several
routes to experimentally realize the proposed system. A brief
summary is provided in Sec. V. In the Appendix we present a
detailed derivation of the perturbative results for the induced
dipole moment of the Rydberg atoms in the considered
trap.

II. THREE-DIMENSIONAL IOFFE-PRITCHARD
CONFINEMENT FOR A RYDBERG ATOM

A. Two-body Hamiltonian for a single alkali-metal
Rydberg atom

In a highly anisotropic magnetic-field configuration like
that of an Ioffe-Pritchard trap, the strength of the magnetic
field can vary significantly over the extension of a Rydberg
atom. The large size of Rydberg atoms can therefore modify
the way they couple to the magnetic field compared to the
coupling of ground-state atoms. We incorporate the large
extension of the atoms into our description by modeling a
Rydberg atom by two particles, namely, a valence electron
(particle 1) and an ionic core (particle 2). This is particularly
appropriate for alkali-metal atoms that are commonly used in
Rydberg experiments. We include in our model the coupling of
the electronic and the center-of-mass motion of the atom and
hence do not resort to the infinitely heavy mass approximation.
While the inclusion of the fine-structure and quantum defects
can be readily done, it turns out not to be necessary for the high
angular momentum electronic state which we focus on [29].
The coupling of the charged particles to the external magnetic
field is introduced via the substitution, pi → pi − qi A(r i);
qi is the charge of the ith particle and A(x) is the vector
potential belonging to the magnetic field B(x). Including
the coupling of the magnetic moments due to the spins to
the external field, our initial Hamiltonian in the laboratory
frame reads (atomic units are used except when stated
otherwise)

HL = 1

2M1
[ p1 − q1 A(r1)]2 + 1

2M2
[ p2 − q2 A(r2)]2

+V (|r1 − r2|) − μ1 · B(r1) − μ2 · B(r2). (1)

The magnetic moments of the particles are connected to the
electronic spin S and the nuclear spin � according to μ1 = −S
and μ2 = − gN

2M2
�, with gN being the nuclear g factor; because

of the large nuclear mass, the term involving μ2 is neglected
in the following.

The vector potential and the magnetic field of the Ioffe-
Pritchard configuration read

A = B

2

⎛⎝−y

x

0

⎞⎠
︸ ︷︷ ︸

= Ac

+G

⎛⎝0
0
xy

⎞⎠
︸ ︷︷ ︸

= Al

+ Q

4

⎛⎝ y(x2 + y2 − 4z2)
−x(x2 + y2 − 4z2)

0

⎞⎠
︸ ︷︷ ︸

= Aq

,

(2)

B = B

⎛⎝0
0
1

⎞⎠
︸ ︷︷ ︸
= Bc

+G

⎛⎝ x

−y

0

⎞⎠
︸ ︷︷ ︸

= Bl

+Q

⎛⎝ −2xz

−2yz

−x2 − y2 + 2z2

⎞⎠
︸ ︷︷ ︸

= Bq

.

The “traditional” macroscopic realization of the Ioffe-
Pritchard trap uses four parallel current-carrying Ioffe bars
which generate the two-dimensional quadrupole field Bl that
depends on the field gradient G. Encompassing Helmholtz
coils create the additional constant field Bc, where B denotes
the Ioffe field strength [30]. Bq designates the quadratic term
generated by the Helmholtz coils whose magnitude, compared
to the first Helmholtz term, can be varied by changing the
geometry of the trap,

Q = B
3

2

4D2 − R2

(D2 + R2)2
=: BQ̃(D,R). (3)

R is the radius of the Helmholtz coils, and 2D is their distance
from each other. The geometry factor Q̃(D,R) vanishes for
2D = R, which is known as the Helmholtz configuration. Ex-
posing Rydberg atoms to a Ioffe-Pritchard trap in a Helmholtz
configuration has been extensively studied in Ref. [29]. Here
we assume Q̃ to be nonzero and positive, 2D > R. In
this case, the absolute value of the magnetic field on the
Z axis, |B(0,0,Z)| = B|1 + 2Q̃Z2|, increases quadratically
with |Z|. The geometry factor reaches its maximal value,
Q̃max = 9

10D−2, when 2D = √
6R; that is, the smaller R, the

larger Q̃.
Along the lines of Ref. [29] we employ the unitary

transformation U = exp{ i
2 Bc × r · R}, introduce relative and

center-of-mass coordinates (r = r1 − r2 and R = (M1r1 +
M2r2)/M with the total mass M = M1 + M2), and omit the
diamagnetic contributions. The Hamiltonian describing the
Rydberg atom in the Ioffe-Pritchard trap becomes

H = P2

2M
+ HA + 1

2
Lr · Bc + S · B(R + r)

+ Al(R + r) · p + Aq(R + r) · p, (4)

where we named the electronic hydrogenic Hamiltonian in
field-free space HA = p2/2 − 1/r . In Hamiltonian (4) we
neglect any contributions arising from the transformation of
Aq(R + r), which is justified as long as |X|,|Y | � 2

Bn
. As

usual, the principal quantum number of the Rydberg state is
denoted as n.

For all relevant laboratory field strengths the spectrum of
the Hamiltonian (4) is dominated by the field-free energies
En

A = −1/2n2 that are n2-fold degenerate. It has been shown
in [29] that the inter-n-manifold couplings originating from
the constant and the linear term in the magnetic field, Bc

and Bl , are negligible. The quadratic contribution μ|Bq(R)|
does not further constrain the parameter regime where this
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approximation is valid. We can therefore restrict our study to
a single submanifold with a given principal quantum number
n. Considering the expressions 2〈α′|xipj |α〉 = εijk〈α′|Lk|α〉,
we find

H ≈ P2

2M
+ μ · B(R) + Hγ + HQ + H ′, (5)

where we named HQ := 2QZ(zLz − xSx − ySy + 2zSz),
μ := 1

2 Lr + S, and Hγ := G(xypz + xSx − ySy) as in
Ref. [29]. The terms

H ′ = S · Bq(r) − 2Q[zXSx + zYSy + (xX + yY )Sz]

+ Q

4
[(x2y + y3 − 4yz2)px + (−xy2 − x3 + 4xz2)py

+ (−y2py − 3x2py + 4z2py + 2xypx)X

+ (x2px + 3y2px − 4z2px − 2xypy)Y ] (6)

are small corrections as long as 4 |Q|
G

n2 � 1. For B = 10 G,
G = 1 T m−1 and n = 30 this condition reads Q̃ � 1.5 ×
10−11. To reach geometric parameters Q̃ as large as 10−11, the
coils of the Ioffe-Pritchard trap would have to be as close as
12 μm. For a macroscopic trap, the above condition is therefore
always valid. In contrast to the finite-size term Hγ , the term
HQ depends on the center-of-mass position. Since Lz and Si

are diagonal in the hydrogen basis, the latter is proportional to a
dipole matrix element and hence has only off-diagonal matrix
elements. Comparing its second-order energetic contribution
with |QLzZ

2| (which is a part of μ · B), and assuming the
energetic gap of adjacent surfaces to be B/2 (cf. Ref. [29]), we
find it to be negligible as soon as 4n5Q̃ � 1. In macroscopic
traps this restriction can only be broken with principal quantum
numbers n of the order of several hundreds.

Our working Hamiltonian thus reads

HIP = P2

2M
+ μ · B(R) + Hγ =:

P2

2M
+ He. (7)

In order to solve the remaining coupled Schrödinger equation,
we adiabatically separate the relative and the center-of-mass
dynamics by projecting Eq. (7) on the electronic eigenfunc-
tions ϕκ that parametrically depend on the center-of-mass
coordinates:

He |ϕκ (r; R)〉 = Eκ (R) |ϕκ (r; R)〉. (8)

We are thereby led to a set of decoupled differential equations
governing the adiabatic center of mass motion within the
individual three-dimensional energy surfaces Eκ (R); that is,
the surfaces Eκ (R) serve as potentials for the center-of-mass
motion of the atom. The nonadiabatic (off-diagonal) coupling
terms that arise within this procedure in the kinetic-energy
term can be neglected in our parameter regime since they are
suppressed by the splitting between adjacent energy surfaces
[29].

B. Electronic potential energy surfaces

Approximate expressions for the potential energy surfaces
Eκ (R) can be found analytically when the ratio of the
magnetic-field gradient and the Ioffe field is small, more
specifically if n2G/B � 1. In this case, the finite size term
Hγ is negligible compared to the contribution of μ · B(R). The

latter can be diagonalized by applying the spatially dependent
unitary transformation

U = e−iα(Lx+Sx )e−iβ(Ly+Sy ), (9)

where tan α = By(B2
x + B2

y )−1/2 and tan β = −Bx/Bz. The
spatial dependence is introduced by evaluating the magnetic-
field components Bi at the Rydberg atom’s center-of-mass
position, that is, Bi ≡ Bi(R). We note that the field-free
Hamiltonian HA is invariant under the transformation U .
Moreover,

UμU †B = 1
2 (Lz + 2Sz)|B|, (10)

where Lz and Sz are now defined with respect to the local
quantization axis. This procedure is equivalent to rotating the
system into the local magnetic-field direction. The adiabatic
potential energy surfaces hence read

Eκ (R) ≈
(ml

2
+ ms

)
|B(R)|. (11)

Expanding the absolute value of the magnetic field around its
minimum in the trap center,

|B(0,0,Z)| ≈ 2QZ2 = B(1 + 2Q̃Z2),
(12)

|B(X,Y,0)| ≈ B +
(

G2

2B
− Q

)
ρ2 + O(ρ4),

yields the harmonic confinement known from ground-state
atoms in a Ioffe-Pritchard trap (ρ = √

X2 + Y 2).
In the considered limit, n2G/B → 0, the energetically

uppermost electronic adiabatic potential energy surface is the
only nondegenerate one. The electronic state that corresponds
to the uppermost surface is (in the rotated frame of reference)
the circular one whose angular momentum projection quantum
number ml = l = n − 1 is maximal within the given n man-
ifold. Hence, the trap frequency experienced in this surface
exceeds the one of a ground-state atom by a factor n − 1.
This entails extremely large transversal trap frequencies for the
external motion such that the extension of the center-of-mass
wave function can become even smaller than the extension
of the electronic cloud of the Rydberg atom [29]. Since
the uppermost surface additionally suffers from the smallest
nonadiabatic couplings and due to its nondegeneracy, it is best
suited for a controlled confinement.

In the derivation of Eq. (11) we neglected the finite size term
Hγ since it only involves relative coordinates and therefore
constitutes to first order solely a constant energy offset to the
surfaces. Because of the coupling of the relative and the center-
of-mass motion, however, its contribution to the electronic
energy and the electronic wave function will ultimately depend
on the center-of-mass coordinates. The resultant admixture of
other hydrogenic states to the circular state entails a nonzero
permanent electric dipole moment outside the trap center,
which is discussed below. The corresponding energy surface
itself, on the other hand, hardly shows any deformation even
for large magnetic-field gradients.

C. Electric dipole moments

Let us proceed by studying the expectation value of the
electric dipole moment of the Rydberg state in the uppermost
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adiabatic energy surface. A nonzero dipole moment arises from
parity symmetry breaking terms in the Hamiltonian. The only
such term in the working Hamiltonian (7) is the finite-size
term Hγ , whose implicit R dependence will eventually entail
a spatially dependent dipole moment. In the following, we
pursue a perturbative treatment of Hγ that gives rise to an
explicit expression of the resulting dipole moment. To this end,
the off-diagonal matrix elements of the perturbation operator
Hγ ∼ G need to be much smaller than the corresponding
unperturbed energy level spacings 
E ∼ |B|. This yields the
requirement B/G � n2, which is easily satisfied for typical
Ioffe field strengths.

The perturbative treatment is detailed in the Appendix. It
results in the expression for the permanent electric dipole
moment

dγ (R) = λχ

⎡⎣− cos α sin β cos β

⎛⎝ cos β

0
sin β

⎞⎠
− sin α cos α(1 + sin2 β)

⎛⎝ sin α sin β

cos α

− sin α cos β

⎞⎠⎤⎦

= λχ

|B|3

⎛⎜⎝ Bx

(
2B2

y + B2
z

)
−By

(
2B2

x + B2
z

)( − B2
x + B2

y

)
Bz

⎞⎟⎠ ∼ n4 G

|B| , (13)

where χ := 9n2(2n2 − 3n − √
4n2 − 10n + 6 + 1)/(8
E),

λ = G/3, and 
E ≈ |B|/2 is the energetic gap between the
uppermost surfaces at the trap center. As can be deduced from
Eq. (13), the electric dipole moment is perpendicular to the
local direction of the magnetic field, dγ · B = 0. It vanishes
on the Z axis.

Further control of the electric dipole moment, both re-
garding the magnitude as well as the steric properties, can
be gained by applying an additional electric field. In the
following, we thus consider a modified Ioffe-Pritchard trap
with an additional electric field F = (Fx,0,0) pointing in
the x direction as in Ref. [28]. The latter can be treated
perturbatively as long as Fx � B/n. The elaboration of the
perturbative treatment (presented in the Appendix ) shows that
the energetic contribution of the electric-field Hamiltonian is
of second order,

λ2
F ε(2,Fx ) = 9

4

F 2
x


E
n2(n − 1)(cos β2 + sin α2 sin β2), (14)

where λF = |F|/|B|. For vanishing Q and with the approx-
imate expression for the energetic separation between the
coupling surfaces, 
E ≈ |B|/2, this simplifies to

λ2
F ε(2,Fx ) ≈ 9

4
F 2

x n2(n − 1)
B2 + G2Y 2

B2 + G2Y 2 + G2X2
. (15)

The perturbative contribution to the uppermost surface due to
an external electric field is thus positive and it is maximal on
the Z axis. For small atomic displacements |R| � B/G, it can
be considered a mere offset to the uppermost surface.

The electric field induces an electric dipole moment,

dF = 9

4

Fx


E
n2(n − 1)

1

B2

⎛⎝B2
y + B2

z

−BxBy

−BxBz

⎞⎠ ∼ n3 Fx

|B| , (16)

that depends on the ratio of the field strengths, as expected,
and on the cubed principal quantum number. Surprisingly,
however, only on the Z axis it points along the direction of
the generating electric field. Similar to dγ , dF is in general
perpendicular to the local quantization axis, which is set by
the magnetic-field direction, that is, dF · B = dγ · B = 0. In
addition, dγ and dF are perpendicular to each other on the
Y axis; on the positive X axis they are parallel while being
antiparallel on the negative X axis. These properties only
apply as long as the perturbative treatment is applicable. Our
numerical results show that the dipole moment aligns with the
electric field for a larger electric-field strength.

Analyzing the symmetry properties of the combined electric
dipole moment d = dγ + dF reveals that even in the case of
a longitudinal confinement an approximate symmetry in Z

remains, d(X,Y,Z) ≈ −d(X,Y, − Z). Much stronger than the
Z dependence of the electric dipole moment is its dependence
on the transversal coordinates X and Y . If no electric field is
present, the relevant electric dipole moment is dγ , generated
by the finite size term Hγ . The symmetry properties of its
components in the XY plane read⎛⎝dγx

dγy

dγ z

⎞⎠ (X,Y ) =
⎛⎝±dγx

∓dγy

dγ z

⎞⎠ (±X, ∓ Y )

=
⎛⎝−dγx

−dγy

dγ z

⎞⎠ (−X, − Y ). (17)

We have furthermore dγ,z(X,Y ) = −dγ,z(±Y, ± X) and
dγ,x(X,Y ) = dγ,y(Y,X). The dipole moment induced by the
external electric field, dF , exhibits different symmetries,⎛⎝ dFx

dFy

dFz

⎞⎠ (X,Y ) =
⎛⎝+dFx

−dFy

±dFz

⎞⎠ (±X, ∓ Y )

=
⎛⎝+dFx

+dFy

−dFz

⎞⎠ (−X, − Y ). (18)

The sum of the contributions is therefore only symmetric with
respect to a reflection about the X axis (Y → −Y ):

d =
⎛⎝dx

dy

dz

⎞⎠ (X,Y ) =
⎛⎝ dx

−dy

dz

⎞⎠ (X, − Y ). (19)

This can be seen in Fig. 1 where the components and the
absolute value of d are depicted. The parameters are chosen
such that dγ and dF are of the same order of magnitude.
Already for moderate electric fields, however, dγ is a mere
perturbation to d and the symmetry properties of d are
approximately those of dF [cf. Eq. (18)]. We note that the
correct procedure in the combined magnetoelectric trap is to
consider the perturbation operator consisting of the sum of
the electric-field term HF and the finite size term Hγ , rather
than adding up the dipole moments dγ and dF generated
by the individual contributions. However, as elucidated in
the Appendix, the latter approach is exact in first order. We
found very good agreement of the perturbatively computed
expectation values for d with the numerically calculated
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FIG. 1. (Color online) Components dx , dy , dz and absolute value |d| (from left to right) of the electric dipole moment d at Z = 0. The only
symmetry that survives when a small electric field is present is the symmetry with respect to the x axis [see Eq. (19)]. Parameters: B = 0.1 G,
G = 10 T m−1, F = 10−14 a.u. = 5.14 × 10−5 V cm−1. Electric dipole moments are given in atomic units ea0 = 2.54 D.

values, both for vanishing and for (small) finite electric-field
strengths.

III. INTERACTION-INDUCED STABILIZATION

In this section, we extend our studies by considering two
Rydberg atoms A and B that are trapped in a Ioffe-Pritchard
trap and that interact via their electric dipole moments. The
adiabatic Schrödinger equation for the two-atom center-of-
mass wave function, |
AB〉, for this situation reads

[TA + TB + VA(RA) + VB(RB) + Vint(RA,RB)]|
AB〉
= E|
AB〉, (20)

where Vint contains the interaction energy that depends on
the positions of both atoms. The one-atom potential for
the atoms A and B, VA(R) = VB(R), can be approximated
for high-Ioffe configurations by the analytically diagonalized
term (10). The interaction potential Vint is discussed in detail in
Sec. III A. Because of the strong transversal confinement in the
considered Ioffe-Pritchard trap, we restrict our considerations
in a first step to the Z axis in Sec. III B. In this simplified
geometry we analytically find a stable configuration of the
atoms in which their distance is easily tunable without
affecting either stability or trap frequencies. In Sec. III C
we extend our considerations to three dimensions and dwell
on the question of stability. The last section is dedicated to
experimental implementations suggesting different ways of
realizing the system.

A. Rydberg-Rydberg interaction

The interaction energy Vint of two Rydberg atoms—each
modeled by a core and an electron—can be formulated using
the electric dipole moments of the individual atoms as long as
the interatomic distance is large compared to the distance of
the electrons to their respective cores. To this end, we write
the Coulomb interaction between the charges of the different
atoms,

Vint(rA,rB,RAB)

e2/4πε0
= 1

|RAB | − 1

|RAB − rB | − 1

|RAB + rA|
+ 1

|RAB − (rB − rA)| , (21)

as a multipole expansion in the small parameter λint =
〈rA,B〉/RAB . Here we abbreviated the vector connecting the
ionic cores by RAB := RA − RB and rA/B denotes the
electronic relative vectors with respect to the cores A,B.
Due to the neutrality of the interacting constituents, the only
nonvanishing term up to third order in the expansion of Vint is
the dipole-dipole term Vdd. If we abbreviate the projections of
the electronic coordinates onto the vector connecting the cores
as rP

i := r i · R̂AB and rP
AB := (rA − rB) · R̂AB = rP

A − rP
B ,

R̂AB = RAB/RAB , the multipole terms up to fourth order in
the expansion of the interaction potential,

Vint(rA,rB,RAB) = Vdd + Vdq + O
(
λ5

int

)
, (22)

can be rewritten as follows:

VddR
3
AB

e2/4πε0
= (

rA · rB − 3rP
A rP

B

)
,

VdqR
4
AB

e2/4πε0
= 3

2

[
r2
BrP

A − r2
ArP

B + (
5rP

B rP
A − 2rA · rB

)
rP
AB

]
≈ 3

2

[(
r2 + 5rP

B rP
A − 2rA · rB

)
rP
AB

]
. (23)

The last line in (23) holds if r2
A ≈ r2

B , for example, for two
circular Rydberg atoms in the same n manifold. In this case
the dipole-quadrupole interaction Vdq vanishes if rP

AB vanishes,
that is, when the electric dipole moment expectation values for
both atoms are identical.

If the interaction operator Vint is treated as a perturbation to
the electronic Hamiltonians of the individual Rydberg atoms,
HA and HB , it is favorable to represent Vint in single-atom
electronic eigenstates. We hence use the two-electron basis
{|ϕA

i ; ϕB
j 〉} ≡ {|ij〉}, where i and j number the single-atom

adiabatic electronic wave functions in the rotated frame of
reference:

(HA + HB)
∣∣ϕA

i ; ϕB
j

〉 = (Ei + Ej )
∣∣ϕA

i ; ϕB
j

〉
. (24)

Note that we omitted the antisymmetrization of the two
electrons, which is valid in the asymptotic region we are
considering where the electrons are well localized at the
respective Rydberg atoms. The leading order of Vint is given by
the dipole-dipole interaction operator which can be represented
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in the above basis as

R3
AB〈i ′j ′|Vdd|ij 〉

e2/4πε0

= 〈i ′|r|i〉 · 〈j ′|r|j 〉 − 3〈i ′|rP
A |i〉〈j ′|rP

B |j 〉
= di ′i(RA) · dj ′j (RB) − 3dP

i ′i(RA,RAB)dP
j ′j (RB,RAB),

(25)

where dP
ij := 〈i|r|j 〉 · R̂AB . For configurations close to the

Z axis, that is, when R̂AB ≈ (0,0,1), the last term can be
approximately written involving the z components of the
electric dipole moments only, dP

i ′i(RA,RAB)dP
j ′j (RB,RAB) ≈

di ′i,z(RA)dj ′j,z(RB).
For finite interaction between the atoms, the two-atom basis

states |ij〉 are no longer eigenstates of the system. Looking at
the state where both atoms are circular, |ψc; ψc〉 = |11〉, the
only nonvanishing transition dipole matrix elements are

〈11|Vdd|33〉 = 9

4

n2(n − 1)

R3
AB

, (26)

where |3〉 denotes the state with l = ml = n − 2 in the rotated
frame of reference. This coupling is small as long as

〈11|Vdd|33〉 � δ ⇔ RAB � n

(
9

4|B|
)1/3

= Rc, (27)

where δ ≈ |B| is the energetic separation of the surfaces.
For the parameters B = 10 G and n = 30 this yields RAB �
1.3 μm, which allows us to use the form (25) in first order in
the following, that is, only considering diagonal elements.

B. One-dimensional stable configuration

A Ioffe-Pritchard trap can provide an extremely strong
confinement for Rydberg atoms in the transversal, that is,
XY direction [29]. We now want to take advantage of
this peculiarity in order to restrict the study of the total
potential Vtot := VA + VB + Vdd to the Z axis. In Sec. III C we
investigate the requirements on the magnetic-field parameters
to guarantee that this simplification is permitted. There we
find that for large-enough gradients G this is always the case
since they entail strong transversal confinement. To simplify
the situation even further we impose an external electric
field pointing in the X direction that keeps the atoms away
from each other and prevents autoionization [28]. As before,
the following discussion focuses on the uppermost potential
surface, emanating from the circular state.

1. Small oscillations of generalized coordinates

In order to study the one-dimensional configuration we set
the coordinates X and Y to zero and assume Q to be nonzero
and positive, which generates the confining potential in the
Z direction. Please note that in this case rP

i ≡ r i · R̂AB = zi

in Eq. (23), since the atomic separation vector coincides with
the Z axis. We calculate the expectation value of the electric
dipole moment of the single-atom eigenstate |ψc〉 via Eq. (25).
Additionally inserting the trapping potential Eq. (12), naming
the atoms such that ZA > ZB , and omitting the constant
potential offset 2nB, the two-atom potential represented in

the single-atom electronic eigenfunctions reads (again in the
rotated frame of reference; 4πε0/e

2 = 1 a.u.)

V
|ψc〉

tot (ZA,ZB)

:= 〈ψc,ψc|Vtot(ZA,ZB)|ψc,ψc〉
= 2nQ

(
Z2

A + Z2
B

)
+ 81F 2

x n4(n−1)2

4
(
B +2QZ2

A

)
(|ZA − ZB |)3

(
B +2QZ2

B

) . (28)

Utilizing generalized coordinates for the distance of the atoms
and for their center of mass, ZD = ZA − ZB > 0 and ZS =
(ZA + ZB)/2, respectively, the total potential (28) translates
to

V
|ψc〉

tot (ZD,ZS) ≈ 81

4
n4(n − 1)2 F 2

x

B2

1

Z3
D

+ nQ
(
Z2

D + 4Z2
S

)
.

(29)

Here we approximated B + 2QZ2
A,B ≈ B, which is valid as

long as

|ZS | + ZD/2 �
√

B/(2Q). (30)

The first term in Eq. (29) is the approximate version of
the dipole-dipole interaction operator. It only depends on
the distance of the atoms. Higher order terms originate in the
quadratic Z dependence of the interacting electric dipole
moments. They become significant only for very large Z

or exceptionally strong parameters Q reachable on atoms
chips. The coordinate for the center of mass of both atoms,
ZS , appears as the quadratic shift 4nQZ2

S . An equilibrium
configuration of the atoms is therefore bound to be symmetric
around the origin, that is, ZS = 0. Minimizing the energy of
the two-atom potential within this approximation, we find the
equilibrium position at

ZS,min = 0,
(31)

ZD,min = 3 5

√
F 2

x (n − 1)2n3

8B2Q
≈ 3

23/5
n

5

√
F 2

x

B2Q
.

The expression for the equilibrium distance, ZD,min, can
hence be readily controlled by the electric-field strength Fx .
The condition of validity of our approximation (30) at the
equilibrium position (31) reads

cD := 3

2
5

√
F 2

x (n − 1)2n3 10

√
Q3

2B9
≈ 3n

2
10

√
F 4

x Q3

2B9
� 1. (32)

See Table I for explicit values.
Since we are interested in the motion of the system around

a stable equilibrium configuration, we expand the potential
in a Taylor series around that equilibrium and solve the
corresponding classical eigenvalue problem. The resulting
frequencies for the center of mass and relative motion read
in the harmonic approximation

ω2
D = 20nQ

2M
, ω2

S = 4nQ

2M
, (33)

where 2M is the total mass of the system. It is worth noting
that within the approximation (30) the eigenfrequencies are
independent of the electric-field strength Fx . They indirectly
depend on the Ioffe field strength since Q = BQ̃.
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TABLE I. Explicit values for cD , Eq. (32), which measures the
quality of the approximation (30) at the equilibrium position (31).
The values are computed for the geometry parameter Q̃ = 6 × 10−16

which is around the highest values reachable with macroscopic Ioffe-
Pritchard traps [31]. The restriction cD � 1 is violated only for very
low Ioffe fields paired with electric fields that would ionize the
Rydberg atoms (10−11 a.u. = 5.142 206 32 V/cm).

F 10−12 a.u. 10−11 a.u. 10−10 a.u.

B = 0.1 G 0.0297 0.0747 0.1877
B = 1 G 0.0075 0.0188 0.0471
B = 10 G 0.0019 0.0047 0.0118
B = 100 G 0.0005 0.0012 0.0030

2. Tuning the distance of the atoms

The fact that the equilibrium distance ZD,min of the
atoms [Eq. (31)] can be increased without changing the trap
frequency by just increasing the electric-field strength F is
depicted in Fig. 2(a). The two-atom potential and its harmonic
expansion around the equilibrium position are drawn for
different electric-field strengths. In Fig. 2(b) a magnified view
of the minimum is provided, demonstrating the validity of
the harmonic approximation. The figure shows that we can
safely assume the center-of-mass ground state to be a Gaussian
with the corresponding trap frequency ωD . Figure 2(c) in
addition shows expansion coefficients of the potential around
the equilibrium position [computed without assuming the ap-
proximation (32) to be valid]. It is evident from the plot that the
harmonic description of the potential around the equilibrium
position is a good approximation for small Ioffe field strengths.
Therefore, not only the trap frequency but also the center-of-
mass ground state remains the same for different values of
ZD . To give a numerical example, the variation of the trap fre-
quency ωD does not exceed 10−3 for a Ioffe field of 1 G as long
as the electric-field strength is smaller than F ≈ 2.3V/cm.

3. Quadrupole-quadrupole repulsion

In this section we study the influence of higher-order
multipole interactions and answer the question concerning
in which situations they can change the behavior of the
system. We do this on the Z axis for vanishing electric field
and consider—as throughout the present work—the circular
Rydberg state.

When no electric field is present, circular Rydberg atoms
located on the Z axis of an Ioffe-Pritchard trap do not exhibit
a permanent electric dipole moment. They are, hence, subject
neither to dipole-dipole interaction nor to dipole-quadrupole
interaction. Since the circular electronic wave function is
not spherically symmetric, they feature a quadrupole mo-
ment, however. This is a first-order effect and the repulsive
quadrupole-quadrupole interaction is hence the leading order
of the interaction potential. For the special configuration we
are considering, it can be calculated using the simplified
expression [32]

Vqq = 3

4Z5
D

[
r2
Ar2

B − 5
(
z2
Ar2

B + r2
Az2

B

) − 15z2
Az2

B

+ 2
(
xAxB + yAyB − 4zAzB

)2]
. (34)

With the matrix elements 〈ψc|r2|ψc〉 = 1
4n2(n + 1)(n + 1

2 ),
〈ψc|x2|ψc〉 = 〈ψc|y2|ψc〉 = 1

2n3(n + 1), and 〈ψc|z2|ψc〉 =
1
2n2(n + 1), we find

Vqq = 1

Z5
D

3

2
n4(n + 1)2

(
n + 1

2

)2

≈ 1

Z5
D

3

2
n8. (35)

For low-enough center-of-mass kinetic energy, the repulsion of
the atoms due to the quadrupole-quadrupole interaction could,
in principle, stabilize Rydberg atoms on the Z axis against
autoionization. We must not forget, however, that the van der
Waals coupling as a second-order contribution to the multipole
interaction can be of similar strength for low-enough distances
in the considered parameter regime.

The situation changes completely when an electric field is
applied. The induced dipole moments scale linearly with the
field strength and the dipole-dipole interaction then depends
quadratically on F . From the first term in Eq. (29) its
magnitude can be estimated to be

Vdd,Z-axis ≈ 1

Z3
D

(
9

2
n3 F

B

)2

. (36)

FIG. 2. (Color online) (a) Two-atom potential energy [Eq. (28),
solid lines], the harmonic approximation (dotted lines) and the 1D
ground-state energy along ZD for ZS = 0 and different electric-
field strengths F . Parameters: B = 10 G, Q = 6 × 10−16B, n = 30,
F = 0.0514 V/cm (black), 0.257 V/cm (blue/gray), 0.514 V/cm
(yellow/light gray). (b),(c) Quality of the harmonic approximation
for the first set of parameters. Panel (b) depicts the harmonic
approximation (dotted line) of the two-atom potential Vtot,circ (solid)
in a region around the local minimum (filled: Gaussian). The double-
logarithmic plot in panel (c) shows the quadratic (dotted), cubic
(dashed), and the quartic (dot-dashed) coefficient of the expansion
of the potential around the equilibrium position as a function of the
Ioffe field strength.
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The dipole-quadrupole interaction happens to be zero on the
Z axis even for finite electric-field strength. In order for
the dipole-dipole interaction, |Vdd| ∼ |d|2/Z3

D , to dominate
the quadrupole-quadrupole interaction, |Vqq| ∼ 3

2n8/Z5
D , the

condition∣∣∣∣∣Vdd

Vqq

∣∣∣∣∣ = 27

2

(
ZDF

nB

)2

� 1 ⇔ ZD � 1

3

√
2

3
n

B

F
(37)

must be fulfilled. For a Ioffe field strength B = 10 G and
an electric-field strength as low as F = 10−12 a.u. (and
n = 30), this reads ZD � 35 000 a.u. = 1.7 μm. Increasing
the electric-field strength to F = 2 × 10−11 a.u. already
yields ZD � 1700 a.u. = 90 nm. For the examples above it
is therefore legitimate to neglect the quadrupole-quadrupole
interaction. Around the equilibrium configuration ZD,min of
the atoms [Eq. (31)], condition (37) is even easier to fulfill.

C. Three-dimensional stable configuration and collapse

Very strong transversal confinement leads to the one-
dimensional situation discussed in Sec. III B. Since the
magnetic-field gradient G only influences the transversal
but not the longitudinal confinement, the respective trap
frequencies can be altered independently. If the transversal
confinement is decreased and/or if the longitudinal con-
finement is increased, the local minimum of the potential
mentioned above turns into a saddle point: The tendency of the
dipole-dipole interaction to force the atoms to step out of the
Z axis wins against the confining nature of the transversal
magnetic-field gradient. The atoms then attract each other
and most probably eventually ionize. These statements are
substantiated and refined in the following.

The two-atom interaction potential exhibits an approximate
longitudinal symmetry as can be justified on account of
the smallness of Q̃ = Q/B. More precisely, the conditions
2Q̃Z2 � 1 [Eq. (30)] and 4Q̃|Z| � G/B have to be met.
Then the dipole-dipole interaction Vdd between two atoms
in the circular state exhibits a dependency on ZS that is
negligibly small. The confinement due to the Ioffe-Pritchard
magnetic-field configuration, on the other hand, is harmonic
around the origin in all directions. Within the range of validity
of the above approximations, we can thus conclude that
minimizing the total energy of the two atoms always leads to
a symmetric configuration, ZS = 0. We therefore set ZS = 0
for the following analysis.

In order to characterize the six-dimensional adiabatic two-
atom potential around the local stable minimum we first keep
a strong transversal confinement which is quantified by the
trap frequencies in X and Y directions. For a single atom in a
Ioffe-Pritchard trap and for finite Q they read

ω2
X = 2n

M

G2 − 2Q(B + 2GZ)

B + 2QZ2
,

(38)

ω2
Y = 2n

M

G2 − 2Q(B − 2GZ)

B + 2QZ2
.

Corrections due to the dipole-dipole interaction energy when
two atoms are considered are proportional to n3

M
F
B
Z

−5/2
D for a

dominating Ioffe field.

In what follows, let us investigate the exemplary parameter
set B = 30 G, G = 10 T m−1, Q = 6 × 10−16B, F = 2 ×
10−11 a.u., and n = 30. All the inequalities, which have been
formulated up to now in order to measure the quality of the
applied approximations, hold with a confidence factor of at
least 102. The only exception is the quality of the perturbative
approach to determine the electric dipole moment. The cor-
responding requirement explicitly reads nFx/B = 0.047 � 1
for the chosen parameters, which is still satisfactory.

Diagonalizing the Hesse matrix [∂2Vtot/(∂Ri∂Rj )] at the
local minimum position of the total, that is, two-atom potential
and extracting the trap frequencies along the principal axes
from the eigenvalues and its eigenvectors, respectively, yields

11.1 kHz (YA = YB),

11.1 kHz (XA = XB),

10.7 kHz (YA = −YB),
(39)

9.7 kHz (XA = −XB),

5.0 kHz (ZD),

4.5 kHz (ZS),

where the equations in brackets define the directions of the
principal axis. It is convenient to introduce appropriate gen-
eralized coordinates for all three spatial dimensions, namely,
RD = RA − RB and RS = 1

2 (RA + RB). Sections of the total
potential around its minimum are shown in Fig. 3.

The trap frequencies in (39) have to be compared to the
radiative lifetime of the interacting atoms. The field-free
lifetime of the electronic state corresponding to the uppermost
surface is τ (n,n − 1) ≈ 3

2c2

(
n
α

)5 = 2.3 ms [33]. Even the
reduction of the lifetime due to admixtures to the pure circular
state originating from the finite size term and due to the
coupling to the electric field leaves it close to the field-free
value [28]. We hence expect more than 10 oscillations of
the atomic motion to be observable within the lifetime of the
Rydberg state. Since ω2 ∼ nQ = nBQ̃ the trap frequencies ω

can obviously be increased by the choice of a larger principal
quantum number n, with higher Ioffe field strengths B and by
allowing for a stronger longitudinal confinement. The latter
can be achieved by shrinking the trap onto an atom chip [34].
We emphasize that the stable two-atom configuration is not
immediately lost when one of the atoms decays to the circular
state of the adjacent n-manifold since the electronic properties
of that state are very similar and, therefore, so are the electric
dipole moment and the adiabatic surface.

1. Loss of confinement and collapse

We now study mechanisms that endanger the stability of
the equilibrium position on the Z axis when the transversal
confinement is relaxed. We identify two situations in which
this happens. One of them is the loss of the confining property
of the Ioffe-Pritchard field configuration for a single atom for
large ratios B/G. Furthermore, the stability of the equilibrium
configuration is also lost as soon as the transversal confinement
becomes smaller than the transversal anticonfinement due to
the dipole-dipole interaction.
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FIG. 3. (Color online) Sections through the six-dimensional two-atom potential around the local minimum. The ZD coordinate of the
minimum is indicated by the vertical lines. The thick black contours are plotted at the energy of the two-atom harmonic center-of-mass
ground state which corresponds to half the sum of all six trap frequencies, E0 = 26 kHz. The contour plots are clipped at energies 125 kHz
higher than the minimal energy configuration. The dashed and dotted lines in the plots on the left-hand side indicate the quality of the
single-atom-surfaces approximation introduced in Sec. III A. They are drawn where the ratio of dipole-dipole interaction energy and energetic
distance of adjacent single-atom electronic surfaces, Edd/
E, equals 0.1 (dotted lines) and 0.01 (dashed lines). Parameters: B = 30 G,
G = 10 T m−1, Q = 6 × 10−16B, F = 2 × 10−11 a.u. = 10.28 V/m, n = 30.

Regarding the first mechanism, the transversal magnetic
confinement for a single atom is only guaranteed as long as
the respective curvature is positive. This yields the restriction

G2

B2
> 2Q̃

(
1 + 4

G

B
|Z|

)
. (40)

In order for this condition to be broken at the origin of the
trap, the ratio G/B must be extremely small since the highest
reachable values for the geometry parameter Q̃ in macroscopic
Ioffe-Pritchard traps are around 10−15 (we use Q̃ = 6 ×
10−16 for all presented examples [31]). For large-enough
displacements in the Z direction, however, the condition can
always be broken. To give a sense of the numbers, we insert
the exemplary parameter set B = 10 G, G = 2 T m−1 and
Q̃ = 6 × 10−16 to find that the displacement |Z| must be as
large 2 × 107 a.u. = 1 mm to break the condition (40). We do
not consider such large atomic distances from the trap center
for any example.

The second reason for the loss of the stable equilibrium
configuration on the Z axis is the dipole-dipole interaction
between the two atoms. Besides being the interaction of longest
range between neutral atoms, the major property of the dipole-
dipole interaction is its anisotropic character. This comes into
play when the atoms can step out of the Z axis and the angles
between the electric dipole moments and the connecting vector
change (Fig. 4).

Polarized case. In order to simplify our considerations let
us first assume that the external electric field F = (Fx,0,0)
fully polarizes the atoms. This happens for relatively large
electric-field strengths as discussed in Sec. 2 of the Appendix.
Then all dipole moments point in the X direction. For the sake
of clarity we now additionally assume that the magnitude of the
dipole moments does not depend on the position of the atom in
the trap. Then a displacement of both atoms A and B from the
Z axis in the same direction, XS �= 0 and/or YS �= 0, does not

change the interaction energy since the angle θ between the
two dipoles does not change. The angle also stays the same for
a displacement of the atoms in opposite Y directions, YD �= 0.
Here the interaction energy decreases only slightly due to the
increase of the distance RAB of the atoms. A displacement of
the atoms in opposite X directions, XD �= 0, however, changes
θ and thereby decreases the interaction strength considerably.
For a decreasing transversal confinement we therefore expect
the stable configuration to collapse by a displacement of the
atoms in opposite X directions in the polarized case.

Tilted moments. The reasoning above is based on the
assumption that the atoms are polarized, meaning that
their dipole moments point in the direction of the electric
field independent of the position of the atom. This is an

FIG. 4. (Color online) Spatial dependence of the direction of the
electric dipole moments dγ and dF (for Q = 0). (a) The electric
dipole moment dγ that originates from the finite size of the Rydberg
atom. It is perpendicular to the local magnetic magnetic-field direction
(yellow arrows) and it vanishes on the Z axis. On the positive
(negative) X axis it is parallel (antiparallel) to the electric dipole
moment dF that is induced by the electric field and depicted in the
subfigure (b). (c) Orientation of dF with respect to the vector RAB

connecting the interacting atoms A and B when they are displaced in
the same X direction, XS �= 0 (solid line), or in different X directions,
XD �= 0 (dashed lines).
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oversimplification in the case of Rydberg atoms in a strongly
confining magnetic-field configuration. In Sec. II C it has been
shown that the application of a moderate electric field induces
a dipole moment dF that is perpendicular to the local direction
of the magnetic field. In the Y -Z plane dF points in the
X direction (we neglect here marginal dependences on Q).
For finite X, by contrast, it has a finite Z component (see
Sec. 2 of the Appendix). We thus concentrate once more on
displacements in X and set YS = XD = 0 in the following.
The nonpolarized case is illustrated in Fig. 4.

In case of a displacement of the atoms in opposite
directions, XD > 0, the dipole moments of the two atoms
include different angles with their connecting axis. They
differ from the angles in the fully polarized case, θP , by the
additional tilt due to the local magnetic-field direction, ±
θ .
The interaction energy no longer depends on 1 − cos2(θP ) but
on 1 − cos(θP + 
θ ) cos(θP − 
θ ), which is smaller than the
former for 0 � θP ± 
θ � π/2. For electric dipole moments
perpendicular to the local magnetic-field axis, as considered
here, the reduction of the dipole-dipole interaction energy for
displacements in XD is therefore smaller than in the fully
polarized case discussed above. The curvature in that direction
is thus expected to be still positive for shallower transversal
confinements.

Symmetric displacements of the atoms in the same X

direction, XS �= 0, do not change the dipole-dipole interaction
energy in the fully polarized case as stated above. For tilted
dipole moments, however, the energy is reduced since the
moments are no longer perpendicular to their connecting axis.
This can be seen from the illustration in Fig. 4. The additional
angle due to the orientation of the moments perpendicular to
the local magnetic-field axis (for Q = 0) explicitly reads


θ = arctan

(
G

B
X

)
. (41)

The effects due to 
θ described above are therefore weak for
typical parameter sets since for typical parameters the ratio
G/B is small. A strong effect on the dipole-dipole interaction
energy is expected for large ratios G/B. In this case, however,
the transversal confinement is strong and the curvature in the
X direction is positive on the Z axis nonetheless.

In order to verify the predictions above on how the stability
of the equilibrium configuration of the atoms gets lost, and
the predictions for the configuration the atoms take when
they step out of the Z axis, we minimize the total two-atom
potential for the coordinates XS , XD , YS , and YD for fixed
symmetric displacements of the atoms in Z, ZD > 0, and
ZS = 0. As discussed above we expect the atoms to align on
the Z axis as long as the transversal confinement dominates
the interaction. When the longitudinal confinement increases
and/or the transversal confinement decreases, the atoms are
expected to step out of the Z axis in different X directions, that
is, XD �= 0, XS = YD = YS = 0, since the negative transversal
gradient at the equilibrium position due to the dipole-dipole
interaction is largest in the XD direction. This change of the
atoms’ configuration is depicted in Fig. 5 where we show
the computed XD positions that yield minimal energy for
fixed distances ZD as black dots into the two-dimensional
section through the two-atom potential for different parameter
sets (left plots). The series of plots in Fig. 5 shows the

loss of the local minimum position for relaxing transversal
confinement due to decreasing field gradients G (from top
to bottom). The vertical lines indicate the position of the
equilibrium configuration on the Z axis. The bar graphs
on the right-hand side show the minimal potential energy
of the two atoms depending on the atomic distance in Z

direction, ZD (we still assume symmetric displacements in
Z, that is, ZS = 0). As long as the equilibrium position
on the Z axis is a local potential minimum, the minimal
energy concordantly exhibits an energetic barrier toward
smaller distances of the atoms. The peak of this energetic
barrier is located at one of the two saddle points of the
potential that are located symmetrically with respect to the
longitudinal axis. When the local potential minimum is lost,
these saddle points collapse into a single saddle point at the
equilibrium position on the Z axis where the local minimum
simultaneously vanishes. This can be seen in the series of
plots on the left-hand side. The energy plots on the right-
hand side show that the energetic barrier also simultaneously
vanishes.

We find the minimal values of the potential energy at
positions for which XS is two orders of magnitude smaller
than XD , but nonzero. This is due to the permanent electric
dipole moments dγ for vanishing electric field, which in turn
are a signature of the finite size of Rydberg atoms. The origin
of these moments dγ is described in Sec. 1 of the Appendix
and their properties in the X-Z plane are depicted in the left
panel of Fig. 4. The illustration shows that they point in the
same direction as the electric dipole moments induced by the
electric field (dF , middle plot) for positive displacements of
the atoms in X. They are antiparallel for negative X and they
vanish on the Z axis. Since dγ is significantly smaller than
dF for all considered electric fields in this section, dγ can be
considered a correction to dF and their sum d is parallel to
dF but larger or smaller in magnitude than dF for positive or
negative X, respectively. This introduces an asymmetry in XS

and XD into the dipole-dipole interaction energy and is hence
responsible for the nonzero values of XS for the position of
minimal potential energy. This asymmetry is also responsible
for the negative values of XD for the positions of minimal
potential energy shown in Fig. 5.

The stability of the equilibrium configuration is insensitive
to changes in the electric-field strength. The same is true for
the transversal part of the center-of-mass wave function of
the atoms. We also note that changing the principal quantum
number n has no considerable effect on the stability of the
equilibrium position as long as the requirements involving n

can be met. The stability of the equilibrium configuration of
the two atoms hence depends essentially on the magnetic-field
parameters B, G, and Q but not significantly on F and n.

In order to find an analytical stability condition involving
the magnetic-field parameters we examine the curvature of the
potential in the XD direction at the equilibrium position. For
small ratios G/B (which is the case when the system is close
to collapse), and assuming F � nG, we find the approximate
expression for the curvature of the dipole-dipole interaction
energy in the XD direction,(

∂2

∂X2
D

Vdd

) ∣∣∣∣
Z−axis

≈
(

Fx

B

)2
n6

Z5
D

, (42)
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FIG. 5. (Color online) Loss of the local minimum for decreasing magnetic-field gradient G of the Ioffe-Pritchard trap. (a)–(c) Two-
dimensional sections of the six-dimensional two-atom potential through the XD-ZD plane, XS = YS = YD = ZS = 0. The plot range of all
three contour plots is ±150 kHz. (d)–(f) Minimal energy of the two-atom potential against ZD . Each point is computed minimizing the total
potential for fixed ZD with the other center-of-mass coordinates as parameters. The XD positions are shown as black dots in the sections on
the left. Parameters: B = 10 G, Q = 6 × 10−16B, F = 10−10 a.u., n = 30, G = 3 T m−1 [first row (a),(d)], G = 2 T m−1 [second row (b),(e)],
G = 1.5 T m−1 [third row (c),(f)].

which strongly depends on the distance of the atoms. Inserting
the equilibrium distance ZD,min from Eq. (31), where the
dipole-dipole repulsion and the longitudinal confinement add
to zero, we find(

∂2

∂X2
D

Vdd

) ∣∣∣∣
equilibrium

≈ −6nQ. (43)

For a stable configuration this anticonfinement has to be
weaker than the transversal confinement due to the magnetic
field at the equilibrium position, yielding the condition

G2

B2
> 14Q̃. (44)

As soon as the right-hand side of this inequality becomes
as large as the left-hand side the two saddle points at the
potential barriers join on the Z axis and the local minimum is
lost. Inserting the geometry parameter for the millimeter trap
in Ref. [31], Q̃ = 6 × 10−16, the stability condition takes the
explicit form G [Tm−1] > 0.17 B [G].

The previously derived condition (40) is less restrictive
than (44) for all presented examples. This means that the
collapse is interaction-induced and it is not due to the loss
of magnetic confinement.

For the existence of a stable configuration of the two
atoms it does, in fact, not suffice to have a local minimum
on the Z axis, that is, to meet the requirement (44). The
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potential around the local minimum must additionally be deep
enough to accommodate at least the two-atom center-of-mass
ground state. The height of the deciding potential barrier can
be increased by tightening the transversal confinement. For
the exemplary parameter set B = 1 G, G = 1 T m−1, F =
10−10 a.u., Q = 6 × 10−16B, the center-of-mass ground state
energy is E0 = 13.9 kHz, and the barrier height is 2140 kHz =̂
51.4 μK. This temperature can typically be reached in a
magneto-optical trap without further cooling.

IV. EXCITATION SCHEMES

The techniques that have been suggested and used to excite
atoms into circular Rydberg states range from the microwave
transfer method of Hulet and Kleppner [35], to the crossed-
fields method proposed by Delande and Gay [36], to the RF
field method proposed by Molander et al. [37]. The concern
of this section, however, is not the excitation of single atoms
into circular states but the excitation of two atoms in a Ioffe-
Pritchard trap with an additional electric field directly into
the equilibrium configuration that is stabilized by the dipolar
interaction of the atoms. Solutions to this complication include
(i) externally forcing the excitation to happen at the desired
positions only, or (ii) changing the single-atom potential such
that its minima coincide with the two-atom potential minimum,
or even (iii) adiabatically transferring the system to the desired
state by varying the detuning of the laser during the excitation
process. A possible implementation of each of the options
is described in the following. In principle, all schemes are
extendable to more than two atoms.

The only coordinates that have to be externally imposed
are the Z coordinates of the atoms since zero transversal
displacement minimizes the energy for both the single-atom
as well as the two-atom potential. The cleanest way to do this
is to trap individual ground-state atoms in two optical dipole
traps at the desired Z positions. The trapping volume of such
optical tweezers [38] can be made small enough (less than a
μm in diameter) that only one atom can be captured in each
trap [39]. These two atoms can then be excited using one of
the methods described in Ref. [35].

Another way of forcing the Rydberg atoms to be produced
at the desired Z positions is to excite them from a cold
ground-state atomic cloud by two laser beams perpendicular
to the Z axis that are focused next to each other to the desired
equilibrium positions of the Rydberg atoms. This is possible if
the equilibrium distance is considerably larger than the waist of
the focused laser beams, which can be as small as one μm. Due
to the strong Rydberg-Rydberg interaction, which yields an
energy shift within the excitation volume that is larger than the
linewidth of the laser, only one atom can be excited within one
of the laser beams. As the excitation can be located at any of the
atoms in that region, however, the ensemble of atoms is excited
collectively into a superposition state called superatom [40].

The second solution involves the modification of the single
Rydberg atom potential. This can be done by adding an extra
wire on the X axis to the Z trap on a chip or, correspondingly,
by adding an extra coil between the coils of a macroscopic
Ioffe-Pritchard trap that are responsible for the Ioffe field. Both
setups yield a double well potential with a variable barrier
height and a variable distance of the potential minima. For

vanishing electric field two Rydberg atoms can be excited
independently from each other, one in the bottom of each well,
by tuning the laser just under the energy of the minimum. In
order to keep heating as low as possible, the magnetic barrier
can now be substituted by the dipolar repulsion between the
atoms by decreasing the current through the extra coil or wire
and simultaneously increasing the electric-field strength.

The circularization of the Rydberg atoms with a modified
adiabatic rapid passage method [41], for example, can be
completed within 5 μs. The time scale of changing the
magnetic field strongly depends on the configuration. If it is
small enough, the described excitation scheme is scalable to
produce more than two excitations, that is, a Rydberg atom
chain. This can be done by applying a magnetic-field gradient
in the Z direction which tilts the trap and moves the stable
Rydberg atom pair in Z direction. The magnetic barrier can be
ramped up again as to confine the pair in one of the wells. At
the minimum of the other well an additional circular Rydberg
atom can be produced. The two atoms in the first well mutually
tune themselves out of resonance of the exciting laser due
to their interaction. By ramping the magnetic barrier up and
down, and exciting a Rydberg atom in the empty well every
time as described, a stable chain of atoms can be produced
in the trap. The procedure is restricted by the time scales of
excitation, magnetic-field switching, and the lifetime of the
circular Rydberg atoms, which is about 2 ms for n = 30 in the
field-free case and scales with n5.

With both schemes mentioned above, the atoms are excited
into single-atom potential minima whose positions have to
match the minimum of the two-atom potential that includes
the interaction. Instead of artificially creating single-atom po-
tential minima outside the origin, one can adiabatically transfer
a cloud of ground-state atoms from the state with no excitation
via the state with one excited atom at the origin to the stable
equilibrium state for two atoms relying on the structuring effect
of the dipole-dipole repulsion. The electric field must thus be
switched on at the beginning of the procedure.

The idea is based on the dynamical crystallization approach
of Pohl et al. [42]. The starting point is a cold gas of
ground-state atoms that can be modeled as consisting of
two-level systems. The two levels considered in Ref. [42] are
the ground and the low angular momentum nS1/2 Rydberg
state. Here, of course, we need the excited level to be the
circular Rydberg state, which can be achieved by utilizing the
rf-optical excitation technique described by Cheng et al. [43].
Within the dynamical crystallization scheme, the coupling
laser is detuned against the two-photon resonance. For large
negative detunings the many-body ground state in the rotating
frame of reference coincides with the initial state where
all atoms are in the ground state. Increasing the detunings
to positive values effectively lowers the energy levels of
many-body states with one and two and more excitations.
They cross at critical detunings 
0

1, 
1
2, . . . , and states with

1, 2, and more Rydberg atoms are populated. The detuning is
hence a control parameter that decreases the energy difference
of adjacent number states |0〉, |1〉, |2〉, . . . with zero, one,
two, . . . excitations, respectively [44]. Since the laser couples
the different number states, their energies undergo avoided
crossings of separations δ0

1, δ1
2, . . . at the critical detunings.

An adiabatic preparation of the states |1〉, |2〉, . . . is possible
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as long as the time in which the detuning of the laser changes
is large compared to 1/δ0

1 , 1/δ1
2 , . . . .

At the first crossing the initial state |0〉, with all atoms in
the ground state, is directly coupled to the first excited state
|1〉, with one Rydberg atom at the origin, which yields δ0

1 ∼ �.
From |1〉 to |2〉, however, there is no direct laser coupling since
the energetically lowest state with two Rydberg atoms, |2〉, is
the stable equilibrium configuration described in Sec. III B
with two Rydberg atoms symmetrically displaced from the
origin. To go from |1〉 to |2〉, two off-resonant intermediate
steps are required. First the central atom is deexcited and
subsequently the two Rydberg atoms at their equilibrium
position are excited. A three-photon process is hence needed
to come from |1〉 to |2〉. Assuming that |1〉 and |2〉 are resonant
at time t , then the intermediate states are detuned by 
�i .
For the parameters used in Sec. III B (e.g., in Fig. 3; B =
30 G, G = 10 T m−1, Q = 6 × 10−16B, F = 2 × 10−11 a.u.,
n = 30) all detunings 
�i are of the order of ∼100 kHz. If
the Rabi frequency is much smaller than the intermediate-state
detunings 
�i , then the intermediate states that couple |1〉 and
|2〉 act as virtual levels for a resonant multiphoton transition.
For larger Rabi frequencies, however, �(t) > 
�i , power
broadening exceeds the intermediate state detunings and the
states are coupled by consecutive one-photon transitions.

V. BRIEF SUMMARY

In the present work we investigated the controlled trapping
of two individual Rydberg atoms by means of a magnetic
Ioffe-Pritchard trap that is superimposed by a constant electric
field. The single-atom adiabatic potentials for such a field
configuration have been derived and discussed. Including the
interaction of the two Rydberg atoms, analytic expressions
for the equilibrium positions of the two involved Rydberg
atoms could be derived in the regime of a strong transversal
confinement. As an interesting result, it turned out that
the distance between the two atoms can be easily tuned
without altering the involved trap frequencies by changing the
applied electric field. Loosening the restriction of a strong
transversal confinement, on the other hand, leads to truly
three-dimensional potential surfaces that, in principle, allow
for the collapse of the system. The regime of stable trapping
has been identified and the resulting adiabatic potentials
were discussed. Possible routes to experimentally realize the
proposed system have been outlined.
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APPENDIX: COMPUTING ELECTRIC DIPOLE MOMENT
EXPECTATION VALUES PERTURBATIVELY

In order to be able to base the perturbative treatment
in the uppermost surface on the circular Rydberg state, the

perturbation operator has to be rotated into the local direction
of the magnetic field.

1. Permanent electric dipole moments as finite size effect

In the analytically diagonalizable case of high Ioffe field
the electronic state corresponding to the uppermost electronic
adiabatic energy surface is the circular state with respect to the
local field direction as quantization axis. For a finite gradient
G the purely electronic finite-size term Hγ admixes states
to the circular state that have opposite parity. The total wave
function thus loses its definite parity and the matrix elements
of the odd dipole operator er no longer vanish identically due
to symmetry. This can result in a permanent electric dipole
moment.

Because the unperturbed state vector is analytically given
in the rotated system, that is, with the local magnetic-field
axis as the quantization axis, the perturbation operator has
to be rotated into this local frame, too. It is convenient to
additionally replace the momentum operator in Hγ by angular
momentum operators. This can be done exploiting the ener-
getic degeneracy of an n manifold in a field-free environment.
The commutator [xyz,HA] vanishes within an n manifold;
it is therefore 〈ϕ|xypz|ϕ〉 = 1

3 〈ϕ|(xLx − yLy)|ϕ〉, and the
perturbation operator in the transformed frame becomes

W = UHγ U † = Uλ(xLx − yLy + 3xSx − 3ySy)U †

= λ
{(
R−1

αβ r
)
x
· (R−1

αβ L
)
x
− (

R−1
αβ r

)
y
· (R−1

αβ L
)
y

+ 3
(
R−1

αβ r
)
x
· (R−1

αβ S
)
x
− 3

(
R−1

αβ r
)
y
· (R−1

αβ S
)
y

}
= : λ cij (R,B,G,Q) ri(Lj + 3Sj ), (A1)

where λ = G/3 a.u. and Rαβ is the rotation associated with
the transformation U [cf. Eq. (9)]. We write R−1

αβ in Eq. (A1)
instead ofRαβ to recall the fact that the components of a vector
operator transform in the rotation R like those of a vector in
the rotation R−1 [45]. Both the coordinate vector r and the
angular momentum operators L and S are vector operators.

We note that the perturbation operator, which is of purely
electronic nature in the laboratory frame, now depends on
the center-of-mass coordinates R through the coefficients
cij (R,B,G,Q) in the rotated frame.

The first-order energy correction to the uppermost circular
state |ψc〉 vanishes,

λε1 = 〈ψc|λcij ri(Lj + 3Sj )|ψc〉 = 0. (A2)

The first-order correction in the wave function reads

∣∣λϕ
(1)
1

〉 =
∑
p �=1

〈ϕp|λcij ri(Lj + 3Sj )|ϕ1〉
E0

1 − E0
p

|ϕp〉

= :
∑
p �=1

Wp1

E1p

|ϕp〉 =:
∑
p �=1

fp|ϕp〉. (A3)

Here we introduced the abbreviations Epq = E0
p − E0

q and
Wpq = 〈ϕp|λcij ri(Lj + 3Sj )|ϕq〉, and we use the symbols
|ϕ〉 = |n,l,m,ms〉 for the unperturbed hydrogenic electronic
states in energetic order, starting with the circular state
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constituting the uppermost surface,

|ψc〉 = |ϕ1〉 = ∣∣n,n − 1,n − 1, 1
2

〉
,

|ϕ2〉 = ∣∣n,n − 1,n − 2, 1
2

〉
,

|ϕ3〉 = ∣∣n,n − 2,n − 2, 1
2

〉
,

|ϕ4〉 = ∣∣n,n − 1,n − 3, 1
2

〉
,

|ϕ5〉 = ∣∣n,n − 2,n − 3, 1
2

〉
, (A4)

|ϕ6〉 = ∣∣n,n − 3,n − 3, 1
2

〉
,

|ϕ7〉 = ∣∣n,n − 1,n − 1, − 1
2

〉
,

...∣∣ϕ13〉 = |n,n − 2,n − 2, − 1
2 〉.

The states {|ϕ2〉,|ϕ3〉}, the states {|ϕ4〉, . . . ,|ϕ7〉}, and the
states {|ϕ8〉, . . . ,|ϕ13〉} are energetically degenerate in the limit
B/G → ∞. The quantum numbers are given with respect
to the local quantization axis which is the direction of the
magnetic field.

In order to compute the matrix elements Wp1 = Wp,ψc

defined in Eq. (A3) we rewrite the angular momentum
operators with ladder operators,

Lx |ψc〉 = 1

2
(L+ + L−)|ψc〉 = 1

2
L−|ψc〉, (A5)

Ly |ψc〉 = 1

2i
(L+ − L−)|ψc〉 = iLx |ψc〉, (A6)

where L−|l,m〉 = √
l(l + 1) − m(m − 1) |l,m − 1〉 (h̄ =

1 a.u.). The only nonvanishing matrix elements in (A3) are

〈ϕ3

ϕ5

∣∣cixriLx |ψc〉 = 1
2

√
2n − 3

〈ϕ3

ϕ5

∣∣cixri |ϕ2〉, (A7)

〈ϕ3

ϕ5

∣∣ciyriLy |ψc〉 = i 1
2

√
2n − 3

〈ϕ3

ϕ5

∣∣ciyri |ϕ2〉, (A8)

〈ϕ3|cizriLz|ψcψ〉 = (n − 1)〈ϕ3|cizri |ψc〉, (A9)

due to the dipole selection rules 
l = ±1, 
ml = 0, ± 1, and

ms = 0. We proceed similarly with the spin operators,

Sx

∣∣∣∣ms = ±1

2

〉
= 1

2

∣∣∣∣ms = ∓1

2

〉
and (A10)

Sy

∣∣∣∣ms = ±1

2

〉
= ± i

2

∣∣∣∣ms = ∓1

2

〉
. (A11)

The only nonvanishing matrix elements involving the spin
operators are

〈ϕ13|cixriSx |ψc〉 = 1

2
〈ϕ13|cixri |ϕ7〉, (A12)

〈ϕ13|ciyriSy |ψc〉 = i

2
〈ϕ13|ciyri |ϕ7〉, (A13)

〈ϕ3|cizriSz|ψc〉 = 1

2
〈ϕ3|cizri |ψc〉. (A14)

Considering the following relations between the dipole matrix
elements,

〈l′,m′|y|l,m〉 = ±i 〈l′,m′|x|l,m〉 for m′ = m ∓ 1,

〈l′,m′|y|l,m〉 = 0 = 〈l′,m′|x|l,m〉 for m′ = m, (A15)

〈l′,m′|z|l,m〉 ∼ δm,m′ ,

we find the first-order correction to the wave function,∣∣λϕ
(1)
1

〉 =
{
(cxz + icyz)

|ϕ3〉
E13

[(
n − 1

2

)
x31 + 1

2

√
2n − 3z32

]
+ |ϕ5〉

E15
(cxx − cyy + 2icxy)

1

2

√
2n − 3x52

+ |ϕ13〉
E13,5

(cxx − cyy + 2icxy)
3

2
x13,7

}
λ. (A16)

Here we introduced the notation xij = 〈ϕi |x|ϕj 〉, yij =
〈ϕi |y|ϕj 〉, and zij = 〈ϕi |z|ϕj 〉. The following explicit expres-
sions for the matrix elements can be deduced from the formulas
for the radial and angular integrals involving hydrogenic wave
functions in [46],

z32 = −3

2
n, (A17)

x13 = 3

2
√

2
n
√

n − 1, (A18)

x52 = 3

2
√

2
n
√

n − 2, (A19)

x13,7 = 3

2
√

2
n

√
(n − 1/2)(n − 3/2)

n − 2
. (A20)

Note that the correction |λϕ
(1)
1 〉 to the circular wave function

|ϕ1〉 = |ψc〉 has definite parity since |ϕ3〉, |ϕ5〉, and |ϕ13〉 have
the same l quantum number. It is opposite to the parity of |ψc〉,
however. The involved coefficients cij (R,B,G,Q), defined in
Eq. (A1), come from the inverse rotation of r , L, and S with
Rαβ . Expressed via the rotation angles α and β, the coefficients
read explicitly

cxx = cos2 β,

cyx = sin α sin β cos β,

czx = − cos α sin β cos β,

cxy = sin α sin β cos β,

cyy = (sin2 α sin2 β − cos2 α), (A21)

czy = − sin α cos α(1 + sin2 β),

ciz = − cos α sin β cos β,

cyz = − sin α cos α(1 + sin2 β),

czz = (cos2 α sin2 β − sin2 α),

where cij = cji . This is a general expression for the perturba-
tion operator (A1). The particular magnetic-field configuration
only enters via the explicit expressions for the angles α and
β. On the Z axis (α = β = 0, U = 1) all the coefficients but
cxx = 1 and cyy = −1 vanish. The correction to the circular
state in first order reduces to∣∣λϕ

(1)
1

〉
(O) ≈ λ

3

2
n
√

n

(√
n
|ϕ5〉
E51

+ 3√
2

|ϕ13〉
E13,5

)
(A22)
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for large n. The electric dipole moment expectation value
therefore vanishes at the origin due to the dipole selection
rules as is described in the following.

The electric dipole moment of the electronic state to
second order in perturbation theory is found by computing
the expectation value of the dipole operator rotated into the
local direction of the magnetic field, U †rU , for the perturbed
state in the rotated frame, |ϕ1 + λϕ

(1)
1 〉,

dγ = 〈
ϕ1 + λϕ

(1)
1

∣∣U †rU
∣∣ϕ1 + λϕ

(1)
1

〉
= 〈ϕ1|U †rU |ϕ1〉 + 〈

λϕ
(1)
1

∣∣U †rU
∣∣λϕ

(1)
1

〉
+ 2 Re

(〈ϕ1|U †rU
∣∣λϕ

(1)
1

〉)
. (A23)

The second line in Eq. (A23) vanishes due to the definite
parity of |ϕ1〉 and |λϕ

(1)
1 〉 and the matrix element in the third

term simplifies due to the dipole selection rules (since 
m = 2
for 〈ϕ1|U rU †|ϕ5〉 and 
ms = 1 for 〈ϕ1|U rU †|ϕ13〉),

〈ϕ1|U †rU
∣∣λϕ

(1)
1

〉 = f3U
†〈ϕ1|r|ϕ3〉U = f3R−1

αβ

⎛⎝ x13

−ix13

0

⎞⎠ ,

and it is

dγ = 2 Re

⎡⎣f3R−1
αβ

⎛⎝ x13

−ix13

0

⎞⎠⎤⎦ = λχR−1
αβ

⎛⎝ cxz

cyz

0

⎞⎠ , (A24)

where χ := 9n2(2n2 − 3n − √
4n2 − 10n + 6 + 1)/(8
E)

and λ = G/3. We can find the explicit spatial dependence
of the electric dipole moment by expressing the angles α

and β with the magnetic-field components Bi , to find the
expression (13). For an Ioffe-Pritchard magnetic-field config-
uration, dγ vanishes on the Z axis because the magnetic-field
components Bx and By are zero there. It is convenient for the
symmetry analysis to also write the explicit form of dγ for
Q = 0,

dγ (Q = 0) = λχ
G3

|B|3

⎛⎜⎝X(2Y 2 + B2/G2)

Y (2X2 + B2/G2)

(Y 2 − X2)(B/G)

⎞⎟⎠ . (A25)

As can be deduced from Eq. (A24), the electric dipole
moment expectation value is perpendicular to the local
direction of the magnetic field,

dγ · B ∼ R−1
αβ

⎛⎝ cxz

cyz

0

⎞⎠ · B = 0. (A26)

2. Nonparallel moments in an electric field

The Hamiltonian for the additional external electric field is
HF = qφ = (xFx + yFy + zFz) since F = −grad φ and q =
−e (= −1 in atomic units). According to the considerations
in the preceding chapter the perturbation operator therefore
reads

WF = U (r · F)U † = U rU † · F =: cF,ijFirj , (A27)

where the small parameter in the operator WF is the modulus
of the electric field, λF = |F|. Considering the Zeeman term

dependence, μB ∼ |B|, the perturbation parameter is the ratio
of the field strengths, λF = |F|/|B|.

The first-order energy correction due to WF vanishes due
to the dipole selection rules since 
l = 0,

λF ε(1,F ) = 〈ψc|cF,ijFirj |ψc〉 = 0. (A28)

The first-order correction to the circular state is

∣∣λF ϕ
(1,F )
1

〉 =
∑
p �=1

〈ϕp|cF,ijFirj |ϕ1〉
E0

1 − E0
p

|ϕp〉

= :
∑
p �=1

WF,p1

E1p

|ϕp〉 = WF,31

E13
|ϕ3〉, (A29)

where we introduced WF,pq = 〈ϕp|cF,ijFirj |ϕq〉 and Epq =
E0

p − E0
q . For an electric field in arbitrary direction the

numerator in (A29) reads

WF,31 = ex31[Fx(cF,xx + icF,xy)

+FyicF,yy + Fz(cF,zx + icF,zy)] (A30)

and if we restrict our consideration to an electric field pointing
along the X axis we find

∣∣λF ϕ
(1,Fx )
1

〉 = ex13Fx(cF,xx + icF,xy)
|ϕ3〉
E13

, (A31)

where cF,xx = cos β and cF,xy = sin α sin β.
The second-order energy correction due to the external

electric field reads

λ2
F ε(2,Fx ) = Fx

〈
ϕ1 + λF ϕ

(1,Fx )
1

∣∣cF,xj rj

∣∣ϕ1 + λF ϕ
(1,Fx )
1

〉
= 2Re

(
Fx〈ϕ1|cF,xj rj

∣∣λF ϕ
(1,Fx )
1

〉)
= 2

eF 2
x

E13
x2

13

(
c2
F,xx + c2

F,xy

)
= 9

4

F 2
x

E13
n2(n − 1)(cos β2 + sin α2 sin β2). (A32)

For vanishing Q and with the approximate expression for the
energetic separation between the coupling surfaces, E13 :=

E ≈ |B|/2, this reads

λ2
F ε(2,Fx ) ≈ 9

4
F 2

x n2(n − 1)
B2 + G2Y 2

B2 + G2Y 2 + G2X2
. (A33)

The perturbative contribution to the uppermost surface due
to an external electric field (Fx,0,0) is thus positive and it is
maximal on the z axis.

Both the unperturbed wave function |ϕ1〉 as well
as the perturbation |λF ϕ

(1,Fx )
1 〉 have definite parity. The

electric dipole moment expectation value in the upper-
most electronic energy surface is therefore, analogously
to (A23),

dF = 2Re
(〈ϕ1|U †rU

∣∣λF ϕ
(1,Fx )
1

〉)
= R−1

αβ

⎧⎨⎩2x31
Fx

E13
Re

⎡⎣cF,x

⎛⎝ x13

−ıx13

0

⎞⎠+cF,y

⎛⎝ ıx13

x13

0

⎞⎠⎤⎦⎫⎬⎭
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= 2Fx

E13
x2

13R−1
αβ

⎛⎝ cF,x

cF,y

0

⎞⎠
= 2eF

E13
x2

13

⎡⎣cos β

⎛⎝cos β

0
sin β

⎞⎠+ sin α sin β

⎛⎝ sin α sin β

cos α

− sin α cos β

⎞⎠⎤⎦
= 9

4

Fx

E13
n2(n − 1)

1

B2

⎛⎝B2
y + B2

z

−BxBy

−BxBz

⎞⎠ , (A34)

where we use cF,x = cos β, cF,y = sin α sin β, x13 =
3

2
√

2
n
√

n, and the relation (A15). In contrast to dγ , dF does
not vanish on the Z axis but points in the direction of the
electric field with dF,x = 4x2

13Fx/|B|. This is not true away
from the Z axis. The dipole moment does not point in the
electric-field direction there but stays rather perpendicular to
the local direction of the magnetic field [alike dγ , Eq. (A26)].
This can be deduced from the directional dependence in (A34)
for arbitrary magnetic-field configurations,

dF · B ∼
⎛⎝B2

y + B2
z

−BxBy

−BxBz

⎞⎠ · B = 0. (A35)

3. Addition of perturbatively calculated dipole moments

For a nonzero external electric field the perturbation
operator is Wtot = UHγ U † + UHF U † and the total first-
order correction to the wave function hence reads |λ1〉 =
|λγ 1〉γ + |λF 1〉F . The calculation of the expectation value
of the observable Ô in the perturbed state |ψc + λ1〉 yields
accordingly

〈ψc + λ1|Ô|ψc + λ1〉
= Ôγ + ÔF + 2Re(〈λγ 1γ |Ô|λF 1F 〉). (A36)

The perturbations |λγ 1〉γ and |λF 1〉F [Eqs. (A16) and (A29)]
involve the states |ϕ3〉, |ϕ5〉, |ϕ13〉, which do not differ in their
angular momentum quantum number l. They have the same
definite parity since the parity of the spherical harmonics
does not depend on the quantum number m. The mixed
matrix element 〈λγ 1γ |d|λF 1F 〉 therefore vanishes (the dipole
operator is an odd operator) and

d = 〈ψc + λ1|r|ψc + λ1〉 = dγ + dF . (A37)

In other words, within first-order perturbation theory, adding
the different dipole moment expectation values dγ and dF

is equivalent to calculating the expectation value for the
combined perturbed state vector.
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