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Production of excitons in grazing collisions of protons with LiF surfaces: An onion model
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In this work we evaluate the production of excitons of a lithium fluoride crystal induced by proton impact
in the intermediate and high energy regime (from 100 keV to 1 MeV). A simple model is proposed to account
for the influence of the Coulomb grid of the target by dressing crystal ions to transform them in what we call
onions. The excited states of these onions can be interpreted as excitons. Within this model, total cross section
and stopping power are calculated by using the first Born and the continuum distorted-wave (CDW) eikonal
initial-state (EIS) approximations. We found that between 7 and 30 excitons per incident proton are produced in
grazing collisions with LiF surfaces, becoming a relevant mechanism of inelastic transitions.
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I. INTRODUCTION

There is strong theoretical and experimental evidence that
excitons play an important role in the charge transfer to neutral
hydrogen atoms by grazing scattering from LiF surfaces at
low impact velocities. In this process it has been proven that
excitons are first excited as a consequence of the collision
and then, from this intermediate state, the electron is captured
by the projectile to form H− [1–5]. There is also a large
number of experiments on radiation absorption where it is
possible to excite excitons and, what is more interesting, the
energy associated with this electronic excitation can travel
in the periodic crystal carrying no electric charge [6]. In
semiconductors excitons are depicted as an electron and a
positive hole rotating around each other, much like a positron
[7]. In the present article we deal with insulators and the focus
is devoted to evaluate the formation probability of excitons
by proton impact. After the collision, excitons are known to
migrate (electron and hole) through the crystal, relaxing to
give rise to photon emission (luminescence), defect creation,
or nonradiative transitions (conversion of the electronic excita-
tion energy into lattice vibrations) [6]. We do not pay attention
to any of these post-collisional processes here.

To illustrate the focus of this work, let us first consider
the stopping power of protons penetrating the LiF bulk at
intermediate and high energies where experiments are avail-
able [8,9] [see Fig. 1(a)]. A basic theoretical approximation
to interpret these experiments is to consider the target as a
grid of independent ions (GII), composed by F− and Li+ ions
forming a NaCl-type structure. By independent ions we mean
to isolated cations and anions whose electron wave functions
are described, for example, by Clementi-Roetti Slater orbitals
[10]. Within this model, the three principal mechanisms of
projectile energy loss are F− and Li+ ionizations [denoted
in Fig. 1 as F−(1 + 2 → ε) and Li+(1 → ε), respectively],
and Li+ excitation [Li+(1 → 2 + 3)]. The notation 1 + 2
indicates that initial states belong to the shells n = 1 and 2,
while 2 + 3 (ε) indicates transitions to the corresponding final
excited shells (continuum states). In fact, the contribution of
ionization from the F−(1s) state as well as of the electron
capture process [11] are both negligible in the considered
energy range. We also neglect the nuclear stopping (i.e., elastic

collisions with the whole target ion) and excitation of lattice
vibrations which contribute only at low projectile velocities
[12]. The important point is that within the framework of the
GII model there is no possible F− excitation because there is
no excited state for such an isolated negative ion.

In Fig. 1(a) we show partial and total stopping cross sections
corresponding to the above mentioned processes, which were
derived with the GII model by using the first Born and
continuum distorted-wave (CDW) eikonal initial-state (EIS)
approximations. Calculations were performed rigorously by
solving the radial wave functions for the bound and continuum
states [13]. Both theories, Born and CDWEIS, seem to
reproduce very well the data in almost the whole velocity
range, starting to depart each other at low energies only. For
impact energies lower than 100 keV these theories display
the usual behavior: Born and CDWEIS results overestimate
and underestimate, respectively, the experiments, reflecting
the range of validity of the approximations. In Fig. 1(b) we
also show theoretical calculations of excitation and ionization
cross sections as a function of the projectile velocity. The total
inelastic cross section, obtained by adding the contributions
of the different mechanisms, gives the inverse of the mean
free path when multiplied by the density of ionic targets.
Within the GII model, the main process is F− ionization,
and consequently, the inelastic mean free path is completely
governed by electron emission to the continuum.

In previous articles the GII model has successfully been
used to treat a series of processes involving LiF crystals,
such as electron production [14,15], stopping power [16],
etc. We have even extended the GII model to deal with
interference effects for He atoms colliding with a LiF surface
along low-indexed crystallographic directions [17]. However,
although the GII model predicts reasonably well different
magnitudes [as shown in Fig. 1(a)], it is physically incomplete
to describe NaCl-type crystals since it neglects the Coulomb
interactions of the crystal lattice. There are two main effects
that are not taken into account in the GII model. First, as
the unperturbed crystal is neutral, after ionization the emitted
electron should see its own hole at large distances; that is,
regardless of its initial state, it should feel an attractive unitary
Coulomb potential far from its parent target [18]. And second,
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FIG. 1. (Color online) (a) Stopping power cross sections for
protons moving in a LiF crystal as a function of the proton velocity.
Full circles, experiments of Bader et al. [8], empty circles and squares,
experiments for proton and deuteron impact from Ref. [9]. Theories
calculated considering the GII model. In general, throughout this
article, solid and dotted lines denote CDWEIS and Born calculations,
respectively. Contributions of F− (red lines) and Li+ ions (blue lines),
as indicated in the text. Thick solid and dotted green lines, total
stopping power results per LiF molecule evaluated with the CDWEIS
and Born approximations, respectively. (b) Inelastic cross sections for
protons moving in a LiF crystal as a function of the incident velocity.
Theoretical notation similar to (a).

the Madelung potential at ion sites moves up the binding
energies of the bound states of the Li+ cation and moves
down the ones of the F− anion. Then, the influence of the grid
changes the map of possible inelastic processes, making a new
mechanism come to existence, that is, electronic transitions
to F− excited states. These unoccupied excited states are
the Frenkel excitons, as they are called in the language of
condensed matter [6,7].

In this work we improve the GII model by considering the
influence of the Coulomb grid of the crystal. We approximate
the potential generated by the grid on the active electron by
considering 44 spherical shells centered on the parent ion,
in which the Coulomb charges of the neighboring ions are
assumed to be uniformly distributed. These newly dressed
cations and anions are here called onions, becoming the basic
unit, instead of the isolated ions, of the crystal lattice. In this
way, the crystal is reformulated as a grid of independent
onions (GIO), which displays excited states that will be
identified as excitons. In Sec. II we calculate the eigenenergies
and radial wave functions of the onions by solving the
corresponding Schrödinger equation. Within the GIO model
we calculate electron yields (ionization), probability of exciton

formation and electronic stopping by employing traditional
atomic collision approximations, such as the simple first
Born approximation or the more sophisticated CDWEIS
approach, both developed in Sec. III. In Sec. IV we deal with
surface collisions under grazing incidence conditions, where
experiments are possible. We calculate the number of excitons
produced by grazing impact of protons on a LiF crystal, which
is the central goal of this article, and found that this number
varies between 7 and 30 excitons in our energy range of
interest. Atomic units are used except where otherwise stated.

II. THE ONION MODEL

Let us consider a perfect cubic piece of LiF crystal centered
in the lithium ion that will be chosen as the active ion. We
assume that the crystal is formed by 113 − 1 = 1330 punctual
ions, without counting the one at the center. In addition, for
the whole crystal to be neutral we have to use an appropriate
caging (Evjen method) by considering a fraction of the ions
at the edges. Then, if we regard one electron of the lithium
ion at the center as the active electron, its wave function is the
solution of the Hamiltonian

H
(crystal)
Li+ = HLi2+ + V −

G (�r), (1)

with

HLi2+ = − 1
2∇2

r + VLi2+(r), (2)

where VLi2+ is the central core potential (formed by the nucleus
Li3+ and one passive electron) and V −

G is the potential created
by the whole grid.

By considering just the long distance Coulomb interaction
of the grid ions, V −

G (r) reads

V −
G (�r) =

∑
�n�=0

g�n
(−1)nx+ny+nz

|�r − �R�n|
, (3)

where

�R�n = a

2
�n, �n = (nx,nx,nx), (4)

with a the lattice parameter (a = 7.597 for LiF) and nx , ny ,
and nz integer numbers ranging from −5 to 5. In Eq. (3),
��n�=0 indicates the sum on nx , ny , and nz so that the term
�n = (0,0,0) is excluded because the central Coulomb charge,
corresponding to the active ion, has already been taken into
account in VLi2+(r). The sign minus in the superindex of V −

G

has been included to express that the grid has a net negative
unitary charge. In this way, far from the crystal the active
electron sees a grid charge −1 plus a charge +2 from VLi2+ ,
which produces a net positive unitary charge. The factors g�n
in Eq. (3) describe the Evjen caging, that is, g�n = 1 except
for ions placed at the limiting surface (g�n = 1/2), at an arista
(g�n = 1/4) or at a vertex (g�n = 1/8). This caging warranties
the charge neutrality of the complete crystal.

For VLi2+(r) we use a simple expression given by

VLi2+(r) = −2

r
− 1

r

3∑
k=1

Zk(1 + αkr) exp(−μkr), (5)

where the parameters Zk, μk , and αk were adjusted by
solving the radial Schrödinger equation associated with HLi2+ ,
requiring that the corresponding ground state 1s have a binding
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TABLE I. Parameters corresponding to the potentials given by
Eqs. (5) and (10), respectively.

Potential VLi2+(1s) VF0(2p) VF0(2s) VF0(1s)

Z1 0.0102 3.4724 3.0113 4.2896
Z2 0.1018 5.0348 5.3931 4.5012
Z3 0.8879 0.4928 0.5957 0.2092
μ1 1.1992 1.0377 0.6875 0.6588
μ2 2.4446 2.6037 2.7568 3.0297
μ3 3.4710 27.456 6.4830 12.003
α1 −0.0596 −0.0149 −0.0149 −0.0050
α2 −0.0348 0.0050 0.0099 −0.0033
α3 −0.0249 −0.0967 −0.0083 −0.0672

energy E1s and mean radial values 〈r〉1s and 〈1/r〉1s as close
as possible to the values obtained by using the Hartree-Fock
method [10], which are employed as a starting point. In all
these cases, the Hartree-Fock eigenenergy was obtained with at
least four significant figures, while the mean radial values were
derived with a relative error of less than 1%. The parameters
Zk , μk , and αk are listed in Table I for all the ions and states
studied in this article. Figure 2(a) displays the potential VLi2+

as a function of the radial distance r.

Now we proceed to assume that all the ions placed at a
distance Rn = | �Rn| = |�n|a/2 from the center form part of a
spherical shell with a uniform superficial density of charge
σn = Qn/(4πR2

n), where Qn is the net Coulomb charge of the
ions spread uniformly upon the shell, taking into account of
course the Evjen factors. Under this assumption the first shell,
composed by six negative charges, is situated at R1 = a/2 =
3.798 a.u., while the farthest one is situated at the diagonal,
that is, R44 = √

75a/2 = 32.89 a.u., and encircles the 8 vertex,
producing a net charge equal to −1 (recall that the charge at
the vertexes is g(±5,±5,±5) = 1/8). A list of the values of Rn

and Qn for the 44 shells considered in this article is displayed
in Table II. The potential created by all the uniformly charged
shells can easily be calculated to give rise to our onion potential
V −

O (r), which is a central approximation to V −
G (�r). It reads

V −
O (r) = −

44∑
n=1

Qn

[
�(Rn − r)

Rn

+ �(r − Rn)

r

]
, (6)

where � is the unitary Heaviside (step) function. The potential
V −

O given by Eq. (6) can be considered as the radial version of
the Madelung potential and it represents the main hypothesis
of the present work. Within this onion model, the Madelung
potential at the origin is VM = V −

O (r = 0) = 0.46005 a.u.=
12.51 eV, which is very close to the precise result 0.46037 a.u.
of Ref. [19]. In Fig. 2(a) we also plot V −

O as a function of the
distance r along the extreme values R1 and R44 of the shell
radius, which are indicated with arrows. It is very important to
verify that

VLi2+(r) + V −
O (r) ∼

r→∞ −2

r
+ 1

r
= −1

r
, (7)

which means that the active electron feels asymptotically the
interaction of a unitary Coulomb charge. In the Wannier model
this asymptotic potential is interpreted as that produced by the
hole left behind by the excited electron.
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FIG. 2. (Color online) (a) Central ionic VLi2+ and onion V−
O

potentials as a function of the distance r to the nucleus. (b) Central
VF0 and onion V+

O potentials as a function of the distance r to the
nucleus. R1 and R44 indicates the position of the first and last onion
shells, respectively.

To be coherent with the high energy approximations that
we will use, in the potential of Eq. (7) we do not consider
the screening of the medium via a dielectric constant. At high
impact velocities, the impulse approximation considers that
the electronic transition takes place at very short times, shorter
than the relaxation time of the electronic cloud. For the same
reasons we neglect the induced polarization due to the hole
created by the electronic excitation, whose contribution has
been largely referenced in the literature as the Mott-Littleton
relaxation energy. This additional term would increases the
energy by amount of 1.66 eV (2.64 eV) if the hole is at anion
(cation) site [20]. Anyway, the inclusion of a dielectric constant
in our formalism would be straightforward, if necessary.

In Eq. (1), replacing V −
G (�r) with the radial approximation

V −
O (r) of Eq. (6) the problem is reduced to the calculation of

a central potential, that is,

H
(crystal)
Li+ � HLi+@ = − 1

2∇2
r + VLi2+(r) + V −

O (r), (8)

where we have resorted to the symbol @ to represent the Li ion
embedded in the crystal grid, much like the use of @ to describe
atoms within fullerenes (in fact, the idea is essentially the
same). From Eq. (8), eigenfunctions and eigenenergies of the
Hamiltonian HLi+@ can be numerically obtained. To that end
we used the RADIALF program developed by Salvat et al. [21].
Due to abrupt oscillations of V −

O (r), the numerical grid in the
calculation was required to be very dense; about 5000 pivots
were used to achieve a good convergence. The onion wave
functions for the principal quantum numbers n = 1, 2, and 3
are plotted in Fig. 3 and the corresponding binding energies
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TABLE II. Shell radius Rn and shell charges at the bulk Qn and
at the surface Q(s)

n for the onion potential given by Eq. (6).

n Rn Qn Q(s)
n

1 3.7985 −6 −5
2 5.3718 +12 +8
3 6.5791 −8 −4
4 7.5970 +6 +5
5 8.4937 −24 −16
6 9.3043 +24 +12
7 10.743 +12 +8
8 11.395 −30 −17
9 12.011 +24 +16
10 12.598 −24 −12
11 13.158 +8 +4
12 13.695 −24 −16
13 14.212 +48 +24
14 15.194 +6 +5
15 15.661 −48 −28
16 16.115 +36 +20
17 16.557 −24 −12
18 16.987 +24 +16
19 17.406 −48 −24
20 17.816 +24 +12
21 18.608 +24 +12
22 18.992 −27 −18
23 19.368 +60 +32
24 19.737 −20 −10
25 20.455 −60 −32
26 20.805 +24 +12
27 21.487 +12 +8
28 21.820 −36 −18
29 22.148 +36 +20
30 22.472 −24 −12
31 22.791 +24 +12
32 23.415 +24 +12
33 24.322 −36 −20
34 24.617 +24 +12
35 24.908 −12 −6
36 25.481 −24 −12
37 26.316 +8 +4
38 26.859 +27 +14
39 27.126 −6 −3
40 27.913 +6 +3
41 28.678 −12 −6
42 29.176 −6 −3
43 30.859 +6 +3
44 32.896 −1 −0.5

are listed in Table III. To indicate that we are considering a
particular nl state of a dressing cation (onion) we denote it
as Li+@(1s−1|nl). The notation 1s−1 indicates that the active
electron was initially in the 1s state, where the hole remains.
Although for Li+@ the notation is redundant, for F−@ it will
be necessary since the state F−@(2p−1|nl) is different from
F−@(2s−1|nl).

The first important point is that V −
O (r) makes the binding

energy of Li+@(1s−1|1s) to increase by an amount equal
to the Madelung constant, as compared with the one of
the isolated ion, that is, −75.98 + 12.51 ∼= −63.46 eV (see
Table III). Furthermore, due to the asymptotic limit given by
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FIG. 3. (Color online) Wave functions, as a function of the
distance r to the nucleus. Solid lines, onion Li+@ wave functions;
small empty circles, wave functions of the isolated Li+ ion, as reported
by Clementi and Roetti [10] (we have segmented this small circle line
to avoid a full overlap with the solid line). Dashed lines, hydrogen
wave functions. Vertical lines indicate the position of the positive +
(blue) and negative − (red) onion shells.

Eq. (7), as n increases the effect of V −
O (r) transforms the

He2+-type structure of VLi2+ , characterized by energies close
to −22/2n2, into a hydrogen electronic series, characterized
by eigenenergies similar to −12/2n2. For the 1s ground state
the onion wave function is almost equal to the one of the
isolated ion given by Clementi and Roetti [10]. However,
for excited states the onion shells leave substantial footprints
on the wave functions: the electronic density tends to depart
from the negative shells (composed by F− anions), and to be
attracted toward the positive ones (composed by Li+ cations).
As the angular momentum l increases the onion wave functions
approach the hydrogen ones, but it still bears some scars of
the onion shells. For example, for Li+@(1s−1|3d) the binding
energy is −1.61 eV, quite close to the value corresponding to
H(3d), which is −1.51 eV.

In a way similar to the onion model for the active Li+
cation, we can derive an onion treatment for an active electron
belonging to a F− anion situated now at the center of the grid.
The corresponding Hamiltonian reads

H
(crystal)
F− = HF0 + V +

G (�r), (9)

with

HF0 = − 1
2∇2

r + VF0 (r),

where V +
G (�r) = −V −

G (�r) and the sign + indicates that the grid
has now a net charge equal to +1, that is, V +

G behaves as an
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TABLE III. Energies of the bound states (in eV) for lithum and flouride ions as derived with the GII
and the GIO models. �εj , j = 1, 4, energy difference with respect to the level Li+@(1s−1|1s) (j = 1),
F−@(2p−1|2p) (j = 2), F−@(2s−1|2s) (j = 3), and F−@(1s−1|1s) (j = 4), respectively. �ε12, energy
difference between the first excited state of Li0@(2s) and its nearest neighbor F−@(2p−1|2p).

GII state GIO state Difference

Li+(1s−1|3p) = −6.14 Li+@(1s−1|3p) = −1.58 �ε1 = 61.88
Li+(1s−1|3d) = −6.05 Li+@(1s−1|3d) = −1.61 �ε1 = 61.85
Li+(1s−1|3s) = −6.59 Li+@(1s−1|3s) = −2.00 �ε1 = 61.46
Li+(1s−1|2p) = −13.92 Li+@(1s−1|2p) = −3.57 �ε1 = 59.88
Li+(1s−1|2s) = −15.57 Li+@(1s−1|2s) = −5.00 �ε1 = 58.46
Li+(1s−1|1s) = −75.98 Li+@(1s−1|1s) = −63.46 �ε1 = 0.00

F−(2p−1|3d) � F−@(2p−1|3d) = −1.69 �ε2 = 15.7
F−(2p−1|3p) � F−@(2p−1|3p) = −3.49 �ε2 = 13.9
F−(2p−1|3s) � F−@(2p−1|3s) = −6.28 �ε2 = 11.1
F−(2p−1|2p) = −4.92 F−@(2p−1|2p) = −17.38 �ε2 = 0.0

F−(2s−1|3d) � F−@(2s−1|3d) = −2.19 �ε3 = 39.56
F−(2s−1|3p) � F−@(2s−1|3p) = −4.85 �ε3 = 36.89
F−(2s−1|3s) � F−@(2s−1|3s) = −8.22 �ε3 = 33.52
F−(2s−1|2s) = −29.22 F−@(2s−1|2s) = −41.75 �ε3 = 0.00

F−(1s−1|3d) � F−@(1s−1|3d) = −3.71 �ε4 = 711.6
F−(1s−1|3p) � F−@(1s−1|3p) = −8.07 �ε4 = 707.2
F−(1s−1|3s) � F−@(1s−1|3s) = −11.6 �ε4 = 703.7
F−(1s−1|1s) = −702.56 F−@(1s−1|1s) = −715.3 �ε4 = 0.0

Li0(1s2|2s) = −5.30 Li0@(1s2|2s) = −3.97 �ε12 = 12.08
Li0(1s2|2p) = −3.46 Li0@(1s2|2p) = −2.93 �ε12 = 13.92

attractive potential at long distances. We use the same potential
structure of Eq. (5)

VF0 (r) = 0

r
− 1

r

3∑
k=1

Zk(1 + αkr) exp(−μkr), (10)

which is the central potential of the F− core (formed by the
nucleus and nine passive electrons). The parameters Zk, μk ,
and αk are obtained in similar way to the Li+ case, being also
displayed in Table I for the three occupied states of the F−.
Note that as we are dealing with negative ions, VF0 (r) presents a
neutral asymptotic Coulomb charge. Again, by approximating
V +

G (�r) ∼= V +
O (r) = −V −

O (r) we derive the onion Hamiltonian

H
(crystal)
F− � HF−@ = − 1

2∇2
r + VF0 (r) + V +

O (r), (11)

whose eigenfunctions can be numerically obtained and the
corresponding eigenenergies are shown in Table III. In
Fig. 2(b) we plot the potentials VF0 (r)and V −

O (r) as a function
of the radial distance r . It is interesting to note that once more
the Coulomb grid makes the electron feel a central attractive
potential, which behaves as

VF0 (r) + V +
O (r) ∼

r→∞
0

r
− 1

r
= −1

r
(12)

at large distances. Consequently, even though there is no
excited state for the isolated F− ion, there are infinite possible
excited states when the anion is embedded in the grid. These
excited states tend to be hydrogenic as the principal quantum
number n increases. Onion wave functions corresponding to
the F−@(2p−1|nl) states are plotted in Fig. 4, the features
to be noted being very similar to those of the Li+ case.

For the occupied states the onion potential leaves almost no
footprints on the wave functions; the only trace is that the wave
function of the state F−@(2p−1|2p) decays slightly faster than
the one of the isolated ion F−(2p) due to the influence of the
Madelung potential. But for unoccupied excited states we find
the same trend as before: the larger the angular momentum the
more hydrogenic the wave functions.

In order to test the proposed GIO model it is conve-
nient to compare our ground-state ionization energies with
ab initio quantum chemistry calculations [19,22,23]. For
F−@(2p−1|2p) we find an ionization energy of 17.4 eV, in
contrast with the value 15.2 eV obtained by Tatewaki and
Miyoshi [19] using a Li14

+F13
− perfect cluster embedded in

an ion cage and including correlation. This difference of 2.2 eV
between the ionization energies can be reduced by considering
different starting values to determine the parameters of VF0

as given by Eq. (10) [24]. By using a Li146
+F63

− cluster,
Wirtz et al. [22] reported two peaks in the density of states,
at 15.2 and 16.8 eV respectively, with a total bandwidth of
about 3.7 eV. However, experimental ionization thresholds
are much lower than the theoretical results, ranging between
9.8 and 13 eV [23]. Tatewaki [23] attributes this difference
to the presence of defects which inevitably contaminate real
crystals. By inserting defects at Li+ sites he found a reasonable
agreement with the experiments. If we let our Coulomb
grid points be polarized, we would obtain an increase in
energy of about 1.66 eV due to the Mott-Littleton relaxation
effect [20].

Another important magnitude to compare is the difference
of energy associated with the electronic transition from an
F−@ anion to the nearest neighbor Li+@ cation (charge
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FIG. 4. (Color online) Wave functions as a function of the
distance r to the nucleus. Solid lines, onion F−@ wave functions;
empty circles, wave functions of the isolated F− ion, as reported by
Clementi and Roetti [10] (we have segmented this small circle line to
avoid a full overlap with the solid line). Dashed lines, hydrogen wave
functions. Vertical lines indicate the position of the positive + (blue)
and negative − (red) onion shells.

transfer). The energy difference between the first excited
state of Li0@(2s) and its nearest neighbor F−@(2p−1|2p)
is �ε12 = 12.08 eV (see Table III). This value is similar to the
energy 11.8 eV of the first excited state reported in Ref. [19],
which was identified as an electronic transition producing a
localized hole at the central F− accompanied by an electronic
density spanned by the Li(2s) orbital.

Finally, the onion model can be extended from the bulk to
the surface by drastically removing the ions of the hemisphere
corresponding to the vacuum region. In the surface case, the
number of crystal ions decreases to 725 and the values of
the shell charges Q(s)

n are smaller than those of the bulk, as
observed in Table II. For example, note that in the first shell
corresponding to the nearest neighboring ions to a surface Li
cation we have five negative ions, instead of the six in the
bulk, because the ion above the surface is missing. The surface
Madelung constant is slightly smaller than the bulk value
V

(s)
M = 0.4425 a.u.= 12.04 eV, indicating that there is a slight

relaxation of the Madelung potential of about 0.0165 a.u. =
0.45 eV in the surface case.

III. INELASTIC COLLISIONS IN THE BULK

In this section we study different inelastic processes
produced by fast protons moving in the bulk of a LiF crystal.

They will be classified in excitation or ionization transitions
according to the final state of the active electron: bound or
continuum state, respectively.

A. Excitation transitions

We consider two families of direct excitation processes
produced by proton impact,

H+ + Li+@(1s−1|1s) → H+ + Li+@(1s−1|nl), (13)

H+ + F−@(i−1|i) → H+ + F−@(i−1|nl), (14)

with i = 1s, 2s, and 2p.
An important outcome of the GIO model is that both

onion-electron systems, described by the Hamiltonians HLi+@

and HF−@, respectively, are neutral and with localized wave
functions. In what follows we identify the necessary steps to
reduce the extended tight-binding model to a local description.

Within the tight-binding formalism [25] the initial and final
unperturbed electronic states φ−→κ j ,j

(�r) read

φ�κj ,j (�r) =
∑

�R
ei�κj · �R ϕ�κj ,j (�r − �R), j = i,f, (15)

where the wave vector �κj has been introduced to identify a
given crystal state within the band j , with �κj belonging to the
first Brioullin zone, and the sum involves all �R positions of the
target ions. The state ϕ�κj ,j (�r − �R) is the full Wannier function
centered on the lattice site �R. We can approximate ϕ�κj ,j

(�r − �R)
by the eigenfunctions of HLi+@ or HF−@ as appropriate [26].
In such a way, the GIO model ensembles neutral onions
instead of the isolated ions considered within the GII model.
The GIO model is expected to work better than the GII one
because the Hamiltonians HLi+@ and HF−@ already include
the Madelung potential, so the energy shift term β of the
tight-binding energy [25] should be smaller. In addition, as
the wave function ϕi of F−@(2p−1|2p) decays slightly faster
than the one of the isolated ion F −(2p), the overlap between
nearest-neighbor Wannier functions is expected to be smaller
as well. Structurally, the tight binding model for onions would
resemble more a hybridization of neutral Ne and He than that
of isolated ions.

Within the GIO model, the amplitude for the electronic
transition i → f can be expressed as a coherent sum of
individual electronic transitions from different lattice sites.
In this work we neglect the electronic transitions that involve
different lattice sites, that is, only electronic excitations in
which the initial and final onion states correspond to the
same lattice site are considered. After adding the contributions
from the different crystal states by integrating �κi and �κf over
the first Brioullin zones and considering the incoherent limit
of such �κj integrals [11], the excitation probability can be
expressed in terms of the local T-matrix element Tif associated
with the excitation between individual states ϕi and ϕf , both
corresponding to the same onion. Consequently, under these
assumptions it is possible to reduce the tight-binding model to
a local description involving one onion only.

The local T-matrix element is evaluated here using two
different well-known distorted-wave methods, reading

Tif = 〈χf |V †
f |χi〉, (16)
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where χi and χf are the distorted wave functions in the
entrance and exit channels, respectively, and Vf represents
the perturbative potential in the final channel.

If we are interested in high energy collisions we can directly
resort to the first Born approximation, whose initial and final
distorted-wave functions are the unperturbed ones, that is,

χB
j ( �R,�r) = exp(i �Kj · �R)

(2π )3/2
ϕj (�r), with j = i, f, (17)

where �R denotes the projectile position with respect to the
center of mass of the active ion, �Ki ( �Kf ) is the initial (final)
projectile momentum vector, and ϕi (ϕf ) is the initial (final)
electronic wave function, eigenfunction of HLi+@ or HF−@.
Then, within the first Born approach Tif is simply given by

T B
if = 1

(2π )3/2
ṼP (p) Fif ( �p), (18)

where ṼP (p) = −ZP

√
2/π/p2 is the Fourier transform of the

projectile-electron Coulomb interaction, with ZP the projectile
charge (ZP = 1 for proton impact), and �p is the momentum
transfer vector. The function Fif represents the atomic form
factor

Fif ( �p) =
∫

d�r ϕ∗
f (r) exp(i �p · �r)ϕi(r), (19)

which can be expressed as a series of Clebsch-Gordan
coefficients (see Appendix for details).

The first Born approximation, given by Eq. (18), is a
perturbative method, useful at large impact velocities only.
But if we are interested in the intermediate energy regime we
have to improve the calculation of the transition matrix. In this
article we resort to the CDWEIS approximation, which was
recently applied to describe total ionization with success [27].
Within the CDWEIS approach the distorted wave functions
include the projectile distortion in the initial and final channels
in the following way:

χEIS
i ( �R,�r) = E+

i (�rP ) χB
i ( �R,�r), (20)

χCDW
f ( �R,�r) = D−

f (�rP ) χB
f ( �R,�r), (21)

where

E+
i (�rP ) = exp[−iξ ln(v rP + �v · �rP )], (22)

D−
f (�rP ) = Nξ 1F1(−iξ,1,−iv rP − i�v · �rP ), (23)

Nξ = exp(ξ/2)�(1 + iξ ), (24)

with �v the projectile velocity, ξ = ZP /v, 1F1 the confluent
hypergeometric, and �rP = �r − �R. After some algebra, the
CDWEIS T-matrix element can be expressed as

T CDWEIS
if = − 1

(2π )3/2
�W ( �p) · �Gif ( �p), (25)

where

�Gf,i( �p) =
∫

d�r[ �∇ϕf (�r)]∗ei �p·�r
i ϕi(�r), (26)

�W ( �p) =
∫

d�r
(2π )3/2

E+
i (�r)e−i �p·�r �∇D−∗

f (�r). (27)

In the Appendix we summarize the expression of �Gif ( �p) in
terms of radial integrals, while �W ( �p) has a closed form in terms

of the hypergeometric functions 2F1, reported in Ref. [28].
Notice that as both ϕi and ϕf are numerical solutions of the
same unperturbed Hamiltonian (HLi+@ or HF−@), the transition
matrix T CDWEIS

if does not display prior-post discrepancies [29],
as we have here numerically verified.

From Eqs. (18) and (25), Born and CDWEIS T-matrix
elements depend on the vector �p, which can be expressed
as �p = (�η,pm), where �η is the component of the momentum
transfer perpendicular to the incident velocity �v and pm is
the minimum momentum transfer along the direction of �v,
pm = (εf − εi)/v, with εi (εf ) the initial (final) electron
energy given in Table III. Then, the excitation cross section
reads

σ
(e)
if = (2π )4

v2

∫
d �η |Tif |2. (28)

In Fig. 5 we plot the total excitation cross section σ (e) =∑
i,f σ

(e)
if , and the stopping power (energy loss per unit path

length) S(e) = ∑
i,f (εf − εi)σ

(e)
if , evaluated within the Born

and CDWEIS approximations, as a function of the incident
velocity. For the onion F−@ we have considered the initial
states i = 2s and 2p and the final excited states f = 3l and
4l, while for Li+@ the considered initial and final orbitals
are i = 1s and f = 2l and 3l, respectively, with lthe angular
momentum number. In all the cases the contribution of
excitation from the F−@(2p−1|2p) state is the most relevant.
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FIG. 5. (Color online) (a) Stopping power cross sections for
protons moving in a LiF crystal, as a function of the proton
velocity, considering the GIO model. Notation similar to Fig. 1.
F−@(2− > 3 + 4), excitation from the level ni = 2 to the levels
nf = 3 and 4 of the fluoride onion. (b) Inelastic cross sections for
protons moving in LiF crystal, as a function of the proton velocity,
considering the GIO model. Theoretical notation similar to (a).
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As expected, at high impact energies CDWEIS results tend to
the first order ones derived from the first Born approach, but
substantial differences are observed at intermediate energies.

B. Ionization transitions

For protons moving inside a LiF crystal we consider two
mechanisms of electron production,

H+ + Li+@(1s−1|1s) → H+ + Li2+@(1s−1) + e@, (29)

H+ + F−@(i−1|i) → H+ + F0@(i−1) + e@, (30)

where the term e@ has been introduced to indicate that the
electron continuum state is also embedded in the grid; that
is, the electron ejected with momentum �k is described by
an eigenfunction ϕ−

�k (�r) of the onion Hamiltonian HLi+@ or

HF−@, with positive energy ε = k2/2 and outgoing asymptotic
conditions. Then, the T-matrix element associated with the
ionization process can be calculated in the same way as in
the previous subsection [Eqs. (18) and (25)] but now using
the unperturbed final state ϕf (�r) = ϕ−

�k (�r), which is again
orthogonal to the initial state ϕi(�r). However, the evaluation
of Tif gets much more complicated than in the excitation case
since we have to expand ϕ−

�k (�r) in different angular momenta
(we used up to 24 values of l) and for each angular momentum
l a numerical integration is required to solve the radial integral.
Besides, as we are dealing with ionization, to obtain the total
cross section we need to evaluate two further integrals: on the
electron energy we used a grid of about 50 pivots and on the
ejection angle we used 28 angles.

Partial ionization cross section and stopping power evalu-
ated within Born and CDWEIS approximations are displayed
in Fig. 5, along with the excitation results. By far, ionization
from F−@(2p−1|2p) is the dominant mechanism, as also
observed within the GII model (see Fig. 1). But the ionization
contribution derived within the GIO formalism is substantially
smaller than the GII one. This behavior is originated by the
Madelung potential, which deepens the binding energy of the
initial states by an amount close to the Madelung energy, thus
reducing the ionization probability. Like in Fig. 1, in Fig. 5
we also display the total values of the inelastic cross section
and stopping power as a function of the incident velocity.
While the simple first Born approximation gives a good
account of the experiments of stopping, including excitation
processes, the CDWEIS theory, which should work better
at intermediate velocities, does not introduce improvements,
decreasing excessively in comparison with the experiments at
the lower velocities.

On the other hand, the reason why both the GII and GIO
models give about the same stopping power at high energies,
as shown in Figs. 1 and 5, should be found in the f-sum
rule, which imposes a closure relation regardless of the basis
used. However, the GIO model involves a physical picture
of the energy loss process different from the one of the GII
model, taking into account the contribution of an additional
mechanism. In the GII model no electron excitation of F−
is possible and the stopping is essentially due to the F−
ionization, as observed in Fig. 1. In turn, within the GIO
model the ionization of the F−@ is lower than the GII value
but F−@ excitation and Li+@ ionization acquire additional

importance. Then we can say that the contributions of the
different mechanisms are redistributed in the GIO model
although the total stopping power remains the same as in the
GII one at high energies. Notice that at 200 keV, the F−@
excitation contributes with 7% to the total stopping and with
27% to the total cross section. It means that one out of four
inelastic transitions is an F−@ excitation.

1. Interference structures

In addition, an interesting feature that comes up when we
use the GIO model is that interference effects appear in the sin-
gle differential ionization cross section. In Figs. 6(a) and 6(b)
we show CDWEIS differential cross sections for ionization
from the onion states F−@(2p−1|2p0) and Li+@(1s−1|1s),
respectively, as a function of the electron energy ε for 200 keV
and 1 MeV protons. In the figures we have also included
results derived by considering the isolated ion states F−(2p0)
and Li+(1s) (GII model). The interference structures observed
in the onion spectra of Figs. 6(a) and 6(b) might be related to the
coherent superposition of different quantum paths: the direct
path and the ones that rebound at the different onion shells. This
fact can clearly be appreciated by plotting the enhancement
factor of the continuum onion wave function ϕ−

�k , defined as its

value at the origin J (k) = ϕ−
�k (r = 0), which is related to the

Jost function. The enhancement functions J (k) corresponding
to the final continuum states considered in Figs. 6(a) and 6(b)
are shown in Figs. 6(c) and 6(d), respectively. By comparison
we plot also the Coulomb enhancement factors Jc(k) given by
the well known expression

Jc(k) = 2πς

1 − exp(−2πς )
, with ς = Z

k
, (31)
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FIG. 6. (Color online) (a) Single differential ionization cross
sections, as a function of the electron energy, for 200 keV protons
colliding with the anion F−(2p0). Solid and dashed lines, CDWEIS
results evaluated within the GIO and GII models, respectively.
(b) Similar to (a) for 1 MeV protons colliding with the cation Li+(1s).
(c) Enhancement factors for F−@(2p0) (solid line) and
F−(2p0) (dashed line), as a function of the electron energy, as
explained in the text. Jc Coulomb enhancement factor for Z = 2.26
a.u., as given by Eq. (31). (d) Similar to (c) for the cation Li+(1s). Jc

Coulomb enhancement factor for Z = 2.16 a.u., as given by Eq. (31).
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where the Z values were chosen as Z = 2.26 and 2.16 a.u.
for F−@ and Li+@, respectively, in order to fit the binding
energies of the states F−@(2p−1|2p) and Li+@(1s−1|1s) with
the expression Z2/(2n2) (see Table III). The figures shows that
while the Jost functions associated with the continuum states of
the isolated ions, as well as the Coulombic ones Jc(k) display
monotonically decreasing behaviors, the Jost functions of the
onion states F−@(2p−1|ε) and Li+@(1s−1|ε) present strong
destructive and constructive interference regions as a function
of the electron energy, which should be related to rebounds at
the different shells.

C. Exciton transmission velocity

As mentioned in Sec. I, the formation of the exciton
corresponds to the electronic excitation to an excited state
of the onion F−@. We have reduced the exciton formation
by collisions to a local process in which one lattice site is
involved only, that is, the hole and the electron are placed on
the same crystal ion and therefore we are dealing with Frenkel
excitons [7]. After the exciton is created, one interesting
question is to describe its movement. In this subsection we
will estimate the velocity of propagation of the exciton by
employing our picture. Within our model the movement of the
exciton can be interpreted as an excitation transfer mechanism
between different sites [30]. For the simplest case in which only
two lattice sites (or onions) are involved, the dimer formed by
two nearest neighbor F−@ onions includes a hole in the state
h and one electron in the state e, consequently the exciton
transmission can be expressed as

F−@(h−1|e1) + F−@(h1|e0)

→ F−@(h1|e0) + F−@(h−1|e1). (32)

This mechanism then transfers the hole–excited-state
(h−1|e1) couple from one center to the other one without
charge displacement. The basic velocity of transfer of the
(h−1|e1) couple from one center of the dimer to the other,
which is situated at a distance �R1 (R1 = 5.37a.u. in our case),
is given by the expression vh−1|e = R1/τh−1|e, where τh−1|e is
the transfer time given by [31]

1

τh−1|e1
= κ

π

2R3
1

[|〈�r〉h,e|2 − 3|R̂1 · 〈�r〉h,e|2], (33)

where the dipole interaction element is

〈�r〉h,e =
∫

d�r ϕ∗
h(�r)�r ϕe(�r), (34)

and the factor κ accounts for the crystal structure (κ = 1 for the
dimer). Note that Eq. (33) can be obtained from the simplified
form of the Bethe-Salpeter equation {see, for example, Eq. (3)
of Ref. [32]} by approximating the interaction by its dipole-
dipole large-distance limit between Frenkel excitons (localized
in the same center). Using our onion states to calculate the
dipole elements, it produces for κ = 1: v2p−1

z |3s = 0.018 a.u,
v2p−1

x |3s = 0.0059 a.u., and v2s−1|3p = 0.00021 a.u., where ẑ

was chosen along R̂1.
It is interesting to compare these values with the hole

velocities in which an unit charge e moves from one site to its

neighbor. In our onion formalism the transmission of one hole
alone can be expressed as

F−@(h−1) + F−@(h1) → F−@(h1) + F−@(h−1). (35)

The hole velocity transmission is again given by vh−1 =
R1/τh−1 , where now

1

τh−1
= κ

π

2R3
1

∫
d�r ϕh(�r)Vh(�r)ϕh(�r − �R1) (36)

with ϕh(�r) the wave function of the h state and Vh its central
potential. Using our onion states and potentials, we obtain
for κ = 1 the following hole velocities: v2p−1

z
= 0.126 a.u.,

v2p−1
x

= 0.024 a.u., and v2s−1 = 0.016 a.u. For a real LiF
crystal, just to make an idea, we can consider the first 12
neighbors (noninteracting themselves), so κ ∼=

√
12. Then we

obtain v2p−1 � √
12(v2p−1

z
+ 2v2p−1

x
)/3 � 0.2 a.u. This value

is in between the velocities of hot holes (vh−1 = 0.3 a.u.) and
cold holes (vh−1 = 0.1 a.u.) used by Wirtz et al. [33].

Note that as we are dealing with high impact velocities,
we consider that the hole created in the target travels at a
velocity much lower that the projectile one, and so a frozen
crystal model is reasonable. This is not the case if we deal
with low velocity projectiles [3] where the hole mobility is a
variable to be taken into consideration. Furthermore, electron
capture could be rethought as precisely a hole migration from
the projectile to a target site.

IV. GRAZING EXCITATIONS

In this section we deal with the production of excitons by
grazing collisions of swift protons with LiF surfaces. As seen
in Sec. III, the transition probability from the initial band i [11]
in the incoherent limit (after integrating over the crystal wave
vector �κi and �κf ) coincides with that derived by assuming the
crystal surface as composed by a continuous distribution of
onions. Furthermore, taking into account that in the energy
range of interest the projectile movement can be described in
terms of a classical trajectory, the transition probability for a
given projectile path is expressed as

Pif = δs

∫ ∞

−∞
dx

∫ ∞

−∞
dy |Aif [�b(x,y)]|2, (37)

where Aif (�b) is the transition amplitude corresponding to the
surface onion placed at the position (x,y) on the surface plane,
as a function of the impact parameter �b, and δs is the surface
density of crystal ions. In Eq. (37) the impact parameter �b
depends on both, the target position and the classical projectile
path. Within the GIO model, the transition amplitude Aif can
be obtained from the CDWEIS T-matrix element given by
Eq. (25) by using the well known eikonal approximation; that
is,

Aif (�b) = 2π

v

∫
d �η exp(i �η · �b) T CDWEIS

if , (38)

where �η is the perpendicular momentum transfer, as defined
in Eq. (28). Calculations get more complicated than in the
bulk case considered in Sec. III because we have to evaluate a
further two-dimensional integration on the positions (x,y) of
the target onions. Details of the calculation can be found in
Ref. [27].
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The total excitation probability γ = �if Pif was obtained
from Eq. (37) by adding the contributions of the transitions
from the initial state i = 1s to the excited shells nf = 2
and 3 for Li+@ and from i = 1s, 2s, and 2p to the final
shells nf = 2 and 3 for F−@. Total values were evaluated
by averaging the contributions of different projectile paths.
Classical projectile trajectories were derived from Newton’s
equations corresponding to the punctual potential of Ref. [16]
by using the Rung-Kutta method. In the calculation of
the projectile-surface interaction, for every position of the
projectile we considered contributions from the fourth-order
nearest neighboring target ions, which involves four atomic
layers of the solid. To avoid the inclusion of new parameters
and restrain our calculation to the high energy regime, we
overlooked the polarization of the onions by considering only
the static potential.

As we are interested in electron emission produced by
projectiles that do not penetrate either the bulk or the
subsurface region, only trajectories strictly reflected from the
topmost atomic plane were selected to evaluate the excitation
probability. In all cases 200 projectiles paths with random
initial conditions were considered. We found that for inci-
dence directions far away from low-indexed crystallographic
channels, as considered here, partial excitation probabilities
Pif show a very weak dependence on the particular projectile
trajectory.

Figure 7 shows the total number of excitons γ produced
by grazing protons impinging on a LiF crystal under random
incidence conditions, as a function of the ratio θi/θc, where
θi is the impact angle measured with respect to the surface
plane and θc is the critical angle of penetration into the solid.
We use θc = 0.89 and 0.34 deg for 100 and 1000 keV impact
energies, respectively. We have checked that at these angles
90% of the trajectories penetrate the first atomic plane. Within
the considered angular range, the production of F−@ excitons
varies between 7 and 30, while the production of Li+@
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FIG. 7. (Color online) Exciton yields γ for grazing proton
collisions on LiF surfaces, as a function of the incident angle θi

divided by the critical penetration angle θc, as explained in the text.
Two different impact energies are considered: 100 keV and 1 MeV.
Upper (red) and lower (blue) lines correspond to F−@ and Li+@
targets, respectively.

excitons is almost negligible. The small value of the exciton
production for Li+@ (the yields are lower than the unity) is due
to the fact that grazing projectiles sample regions were only
electron densities of F−@ are relevant. In addition, the F−@
states are more loosely bound, producing more excitations,
comparatively.

If we consider that the experimental value of the total
electron yield is about 60 [34], taking into account that
most of the F−@ excitons might decay producing secondary
electrons, these values of the exciton production would
represent a considerable contribution to the electron emission
probability. In practice, we have to consider that the number
of excitons could be larger than the primary one calculated
here because additional secondary excitons might be produced
by primary ejected electrons colliding with F−@ targets. At
the bulk it is estimated that one third of the primary ionized
electrons end up in excitons and the rest is transformed into
atomic vibrations [6]. Therefore, a considerable exchange
between exciton and electron production mechanisms is
expected.

V. CONCLUSIONS

Summing up, we have introduced the concept of the onion
potential to simulate the influence of the ionic grid on electrons
in a LiF crystal. Under this assumption it is possible to calculate
the binding energies and wave functions of the excited onion
states that we have here identified as excitons. Within this
framework, excitation and ionization probabilities induced
by swift projectiles have been calculated with the help of
traditional atomic collision theories, such as the first Born
and CDWEIS approximations. The inelastic cross section and
the stopping power of protons penetrating the LiF bulk were
calculated. The contribution of the exciton production was
found to be significant for the inelastic cross section, which
is associated with the projectile mean free path, while for the
stopping power its contribution was relatively small. From the
comparison with stopping experiments we observe a better
agreement of the theoretical values derived within the first
Born approximation than the ones obtained with the more
complex CDWEIS approach. In the case of protons colliding
with LiF surfaces under grazing incidence conditions we found
a production between 7 and 30 excitons per incident proton,
which might play an important role in electron emission
processes.
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APPENDIX

As usual, by writing the initial (i) and final (f ) unperturbed
states as

ϕj (r) = uj (r)

r
Y

mj

lj
( r̂ ) with j = i,f, (A1)
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the onion form factor given by Eq. (19) can be expressed in
terms of a one-dimensional numerical integration as

Fif ( �p) = 4π
∑
l3 m3

il3 (−1)mf D
−mf m3 mi

lf l3 li
Y

m3
l3

(p̂ )

×
∫ ∞

0
dr uf (r) jl3 (pr) ui(r), (A2)

where

D
m1 m2 m3
l1 l2 l3

=
∫

d r̂ Y
m1
l1

( r̂ ) Y
m2
l2

( r̂ ) Y
m3
l3

( r̂ ). (A3)

In a similar way, the function �Gif ( �p), defined by Eq. (26), is

�Gif ( �p) = 4π
∑
l3 m3

il3 (−1)mf Y
m3
l3

(p̂ )
[
J−

lf
�V mi m3 mf (−)
li l3 lf

R−
li l3 lf

−J+
lf

�V mi m3 mf (+)
li l3 lf

R+
li l3 lf

]
, (A4)

with

J−
l =

√
l

2l + 1
, J+

l =
√

l + 1

2l + 1
, (A5)

R±
lf l3 li

=
∫ ∞

0
dr ui(r)jl3 (pr) U±

f (r), (A6)

U+
f (r) = d

dr
uf (r) − lf + 1

r
uf (r), (A7)

U−
f (r) = d

dr
uf (r) + lf

r
uf (r). (A8)

The coupling vector is

�V mi m3 mf (±)
li l3 lf

=
∫

d r̂ Y
mi

li
( r̂ ) Y

m3
l3

( r̂ ) �Ylf 1,lf ±1,mf
( r̂ ), (A9)

where �Ylf 1,lf ±1,mf
(̂r) is the spherical harmonic vector as

defined in Ref. [35].
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