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Cold collisions of PH (3�−) with helium in magnetic fields
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A theoretical investigation of the He-PH (3�−) complex is presented. We perform ab initio calculations of
the interaction potential energy surface and discuss its error bounds with relevance to cold collisions, and we
carry out accurate calculations of bound energy levels of the complex including the molecular fine structure and
magnetic-field effect. We find the potential has two shallow minima and supports ten and 13 bound levels in
complex with 3He and 4He, respectively. Based on the potential the quantum scattering calculations are then
implemented for elastic and inelastic cross sections of the magnetically trappable low-field-seeking state of PH
(3�−) in collision with 3He atom. The cold-collision properties and the influence of the external magnetic field
as well as the effect of the uncertainty of interaction potential on the collisionally induced Zeeman relaxation
are explored and discussed in detail. The ratio of elastic to inelastic cross sections is large over a wide range
of collision energy, magnetic field, and scaling factor of the potential, so that helium buffer-gas loading and
evaporative cooling of PH is a good prospect.
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I. INTRODUCTION

Over the last decade, there has been continuous experimen-
tal progress in cooling and trapping molecules. At present,
ultracold molecules can be produced by a wide variety of
approaches, such as photoassociation of atoms at microkelvin
temperatures [1–3], molecular beam deceleration [4,5], or
buffer-gas loading followed by evaporative cooling in a mag-
netic trap [6,7]. Among these methods, the helium buffer-gas
loading technique is applicable to any paramagnetic species
and is the most universal method to cool down molecules.
It employs a gas of 3He atoms and involves the capture of
molecules in a gradient magnetic trap for further evaporative
cooling. Magnetic trapping selects molecules in the low-field-
seeking states whose energy increases with increasing mag-
netic field. Whereas the low-field-seeking states are always
instable, it may undergo inelastic relaxation in collisions with
helium atoms at cold and ultracold temperatures, leading
to trap loss. The efficiency of buffer-gas cooling depends
critically on the ratio of elastic energy transfer and Zeeman
relaxation in collisions with 3He atoms.

It is expected that the interaction potential of helium atom
and molecules in �—or atoms in S—electronic states should
have less anisotropy and will be far more robust against
helium-induced Zeeman relaxation than molecules or atoms
in states with projection of electronic orbital angular moment
� �= 0. Investigation of the Zeeman relaxation of these types
of species is of importance for buffer-gas cooling. Many
experimental works have been devoted to this subject for
molecules [8–14] and for atoms [15,16] in the past few years.
The first successful buffer-gas cooling and magnetic trapping
of molecules was accomplished with a CaH (2�) molecule at
a temperature of about 0.4 K [7]. Later, another 2� molecule,
CaF, was also buffer-gas cooled [10]. The technique was
further successfully extended to molecules with high spin
electronic ground state, including NH and ND 3� molecules,
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[11–13], VO 4� molecules [8], and CrH 6� and MnH 7�

molecules [14].
The experimental success in the buffer-gas cooling and

trapping of molecules also stimulates theoretical investigations
on the understanding of collisional energy transfer. Many
of them are dedicated to Zeeman relaxation of diatomic
molecules in a � state in collisions with 3He at low temperature
and submitted to a magnetic field. Volpi and Bohn [17,18]
studied the He-O2 collision and magnetic-field effects, and
showed that the collisionally induced Zeeman relaxation in
this system is slow. Krems and Dalgarno [19] developed
the formal theory of collisions between atom and molecule
in the presence of a magnetic field, and applied it to the
He-CaH (2�) [20,21] and He-NH (3�) [22,23] collisions.
They indicated the molecules with large rotational constants
and small spin-rotation constants should be least efficient for
Zeeman relaxation processes. For the He-NH (3�−) system,
González-Martı́nez and Hutson [24] located two very narrow
zero-energy Feshbach resonances. Very recently, Turpin et al.
[25] studied the Zeeman relaxation of a high spin electronic
state molecule, MnH (7�+), in collisions with 3He and gave
a comparison with experiment. Stoecklin and Gianturco and
coworkers further extended the study to the ionic molecule
collision: He-N2

+ (2�) [26–28], He-OH−(X 1�+) [29], He-
OH+(3�−) [30], and He-LiH−(X 2�+) [31].

In the present work, we investigate the low-energy colli-
sions of ground-state PH (3�−) molecule with He atoms in
a magnetic field based on an ab initio interaction potential.
The ground electronic state of PH molecule has the same
3�− symmetry as NH molecule. Helium buffer-gas loading
and magnetic trapping experiments of the NH molecules have
been successfully performed [11,13]. There are also extensive
theoretical works on the cold collisions of the He-NH system
[22–24]. Here, the main purpose of this work is to provide a
proposal of whether or not the PH (3�−) is a good candidate to
be cooled using buffer-gas cooling and stored using magnetic
trapping through our theoretical calculation.

The paper is organized as follows. In Sec. II, the ab initio
calculations of the interaction potential energy are briefly
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described and the uncertainty of the potential is discussed.
In Sec. III, the method used for the calculating of bound states
and the theoretical results are presented. In Sec. IV, we briefly
recall the main steps of the close-coupling calculations, and
give results and discussions in detail.

II. THE POTENTIAL ENERGY SURFACE
AND ITS UNCERTAINTY

The He-PH system can be described by the usual Jacobi
coordinates: R, the distance between the He atom and the
center of mass of the PH molecule; r , the PH bond distance; and
θ , the angle between R and r . θ = 0◦ corresponds to the He-
P-H collinear configuration. The PH bond distance was frozen
at its experimental equilibrium geometry (2.687a0) [32].
Preliminary close-coupling with single and double excitation
(CCSD) calculations of the He-PH system have shown that
the T1 diagnostic (∼0.008) and the D1 diagnostic (∼0.017)
both are smaller than the corresponding usual cutoff values of
0.02 and 0.025 [33], indicating that a single reference wave
function is able to accurately describe the system. The partially
spin-restricted open-shell single and double excitation coupled
cluster method with perturbative triples [RCCSD(T)] method
was thus used to determine the potential energy surface (PES)
for the He-PH (3�−) complex. We employed the aug-ccpV5Z
basis set of Woon and Dunning [34] for the three atoms,
augmented by the (3s3p2d2f 1g) set of midbond functions
with exponents of 0.90, 0.30, 0.10 for the s and p functions,
0.60, 0.20 for the d and f functions, and 0.30 for the g function.
The bond functions were placed at mid-distance between the
PH center of mass and He. The Boys and Bernardi [35] counter-
poise procedure was used to correct for basis set superposition
error. Calculations were done at a total of 210 geometries. The
values of R ranged from 4.5a0 to 20a0 and the angular θ grid
varied at every 30◦ spacing from 0◦ to 180◦. It is notable that
the X 3�− state of PH is odd under reflection in the plane
containing the PH axis, and for nonlinear He-PH geometries
the electronic ground state of the complex has A′′ symmetry
under reflection in the plane containing all the nuclei. All
the calculations were carried out using the MOLPRO 2006
package [36].

In order to facilitate the following applications, we adapted
the two-step fitting procedure described in our previous
papers [37–39] to obtain an analytic representation of the
PES. Over the entire grid, the global rms error between
the analytic fit and the ab initio points is 0.0159 cm−1 and
the maximum absolute error is 0.0439 cm−1. In the region
of the potential well, the absolute error is less than 0.1 cm−1

and the relative error is less than 0.015%. In the long range,
the relative error is within 0.7%. A FORTRAN subroutine
for generating the two-dimensional PES is available upon
request.

Figure 1 shows the contour plot of the PES of He-PH
complex. It has two minima on the potential energy surface
with comparable depths. The global minimum with energy of
–17.10 cm−1 locates at R = 7.65a0 and θ = 134.0◦, and the
second minimum is –16.88 cm−1 at R = 7.44a0 and θ = 0◦.
The two minima are separated by a saddle point at R = 7.86a0

and θ = 80.55◦ with a barrier height of 5.4 cm−1 relative to the
global minimum. Compared with the He-NH system (Fig. 2 in
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FIG. 1. Contour plot (units of cm−1) of the He-PH potential
energy surface.

Ref. [23]), the PES of the He-PH complex is more anisotropic,
predicting larger inelastic cross sections in the collision of PH
with He.

An important problem is that scattering calculations at very
low energies depend strongly on the details of the interaction
potential. We thus further make an estimation of error bounds
for calculated interaction energies. The largest contributions
to the uncertainty in the interaction potential arise from
the approximate treatment of electronic correlation and the
incompleteness of the electronic basis set. We expect that the
effect of the neglecting vibrations of the PH molecule is much
less important due to low collision energy.

For the first aspect, we performed eight-electron full
configuration-interaction (FCI) calculations of the interaction
energy with 6-31G basis set augmented with spd midbond
functions (only a small basis set is possible used in FCI). We
included all electrons arising from the H and He atoms and the
3s3p electrons of the P atom. The FCI correlation energy was
found to be larger than the RCCSD(T) correlation energy by
0.15–0.25% for a wide range of R in the region of the potential
well. To a good approximation we expect the ratio of these two
correction energies to be constant in different basis sets. This
suggests that the global minimum energy obtained with the
coupled-cluster method is underestimated by ∼0.04 cm−1.

For the second aspect, we extrapolated the individual
counterpoise-corrected interaction energy to the complete
basis set (CBS) limit. The CBS limit value is obtained by
three-point extrapolation [40] from values of the aug-cc-pVXZ
(X = T,Q,5) basis sets; at the global minimum this yields
a depth of –17.29 cm−1. This is 0.19 cm−1 more than in
the method used for the complete surface here. We also
performed test calculations including additional core-valence
basis functions that are absent in the basis set used for the
complete surface potential. The interaction energy at the global
minimum obtained with aug-cc-pCV5Z is approximately
0.12 cm−1 smaller than for basis sets without core-valence
functions.
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In summary we can approximately set the error bounds on
the interaction potential at the global minimum between –0.23
and +0.12 cm−1, which is between −1.3% and +0.7%.

III. BOUND-STATE CALCULATIONS

To obtain the rovibrational energy levels of the 3He-PH
and 4He-PH molecules with the PES presented in Sec. II, we
used the method analogous to that described in our previous
papers [37–39]. Here we extend it to include the magnetic-field
effect. The Hamiltonian of the He-PH (3�−) complex in Jacobi
coordinates (R,θ ) is

Ĥ = − h̄2

2μR

∂2

∂R2
R + L̂2

2μR2
+ ĤPH + V (R,θ ), (1)

where μ is the reduced mass of the complex, L̂ is the
rotation angular momentum associated with the intermolecular
coordinate R, and V (R,θ ) is the He-PH interaction potential.
ĤPH denotes the Hamiltonian for the PH (3�−) monomer and
is expressed as:

ĤPH = bPHN̂2 + γ N̂ · Ŝ + 2

3
λSS

√
24π

5

×
∑

q

(−1)qY2−q(r)[Ŝ ⊗ Ŝ]2
q + Ĥz, (2)

where bPH = 8.412518 cm−1 is the rotational constant of
PH in its ground vibrational level [32], and N̂ and Ŝ are
the rotational and spin angular momenta of the monomer
molecule. The spin-rotation and spin-spin interaction constants
are γ = −0.076916 cm−1 and λSS = 2.20969 cm−1 [32]. The
Zeeman HamiltonianHz, neglecting rotational and anisotropic
spin terms, is

HZ = geμBB̂ · Ŝ, (3)

where ge is the g factor for the electron, μB is the Bohr
magneton, and B̂ is the magnetic-field vector.

In the presence of a magnetic field, total angular momentum
J is not a good quantum number; the only rigorously good
quantum numbers are the total parity which is given by p =
(−1)N+L+1 and the total angular momentum projection MJ =
MN + MS + ML, where MN , ML, and MS are the projections
of N̂ ,L̂, and Ŝ individually. There are several basis sets that
could be used to expand the eigenfunctions of Eq. (1). We
used an uncoupled basis set |χq(R)〉|NMN 〉|SMS〉|LML〉 [24].
States with N � 6 and L � 8 were included in the angular
basis set |NMN 〉|SMS〉|LML〉. The quantum numbers take all
values allowed by conservation of MJ and parity p. The radial
basis |χq(R)〉 was determined as numerical eigensolutions to
the vibrational Schrödinger equation [37–39],[

− h̄2

2μ

∂2

∂R2
+ V (R,134◦)

]
χq(R) = Eqχq(R), (4)

where V (R,134◦) is a cut of the He-PH interaction potential
at an angle of 134◦ corresponding to the global minimum of
potential. The required angular matrix elements of operators
in Eq. (1) can be found in Ref. [24] and radial matrix elements
were calculated by numerical integration. The eigenvalues
and eigenfunctions of the Hamiltonian are determined from
solution of the corresponding secular equation.

TABLE I. Bound levels of He-PH complex. All the levels
correspond to the approximate quantum numbers N = 0 and j =
1. Energies are relative to the ground-state energy of PH (X 3�−)
which is −0.088 cm−1.

3He-PH 4He-PH
J Parity L Energy (cm−1) Energy (cm−1)

1 – 0 –3.6651 –4.5018
0 + 1 –3.1636 –4.0982
1 + 1 –3.1451 –4.0767
2 + 1 –3.1326 –4.0621
1 – 2 –2.1305 –3.2410
2 – 2 –2.1234 –3.2328
3 – 2 –2.1103 –3.2173
2 + 3 –0.6587 –1.9988
3 + 3 –0.6543 –1.9934
4 + 3 –0.6415 –1.9770
3 – 4 –0.4051
4 – 4 –0.4014
5 – 4 –0.3865

The bound-state levels of the 3He-PH and 4He-PH com-
plexes with zero magnetic field are listed in Table I. The
energies are relative to the ground-state energy of PH (3�−)
which is −0.088 cm−1. The binding energies, –3.6651 and
–4.5018 cm−1, of the two complexes are small compared with
the rotational constant bPH = 8.412518 cm−1 which means
all bound levels correspond to the ground rotational state of
PH with N = 0, j = s = 1. In zero field, the total angular
momentum J is conserved and J = L,L ± 1. The ground
level of the complex is associated with L = 0 and odd parity,
while the excited levels of the 4He-PH complex correspond to
L = 1–4 and the 3He-PH complex with L = 4 is unbound.
The three different J excited levels corresponding to each
value of L are not threefold degenerate as the spin-spin and
spin-rotation interactions, but are close together: Separations
are only about 0.01 cm−1. As can be seen, there are ten bound
levels in the complex with 3He while 13 bound levels in the
complex with 4He. Though the well depth of He-PH is slightly
shallower than that of He-NH, the number of bound levels in
He-PH is three more than in He-NH complex [23] due to larger
reduced mass of He-PH complex.

In the presence of a magnetic field, J is no longer conserved.
The energy is characterized by the MJ and parity p. L remains
an essentially good quantum number except in the vicinity of
the avoided crossings. Figure 2 shows the bound-state energies
of 3He-PH for MJ = 0 and MJ = −1 as a function of magnetic
field. Each level splits into components that can be labeled
with the approximate quantum numbers Mn = 0 and Ms =
0, ±1. For different MJ �= 0, some Ms levels are missing and
there are also small shifts of the energy levels with the same
L value. As expected, the Zeeman splits are approximately
linear for He-PH in the range of fields studied. This is because
for N = 0 state the coupling arises from the off-diagonal term
of V (R,θ ) and the spin-spin interaction that mixes the excited
N levels, but the spacing (∼16.8 cm−1) between N = 0 and
N = 1 levels for PH is larger than the Zeeman split tuned by
the magnetic field. There is an avoided crossing at about 1.2 T
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FIG. 2. (Color online) Bound-state energy levels of 3He-PH for
MJ = 0 (upper panel) and MJ = −1 (lower panel) as a function of
magnetic field.

field for MJ = 0 where levels of the same MJ and parity but
different MS cross.

IV. SCATTERING CALCULATIONS AND RESULTS

A. Method

The method developed by Krems and Dalgarno [19] and
González-Martı́nez and Hutson [24] was employed to treat
collisions between He atom and PH (3�−) molecule in
the presence of a magnetic field. The Hamiltonian of the
He-PH collision system in a magnetic field has been given
in Eq. (1). For the bound-state calculation, an uncoupled
angular basis set φi = |NMN 〉 |SMS〉 |LML〉 was used. The
asymptotical Hamiltonian in Eq. (2) is not diagonal in
the uncoupled basis set φi which then cannot be used to
describe the asymptotic states of the dressed molecule in the
presence of the field. We use instead a transformation basis
set χα = �iCαi |NMN 〉 |SMS〉 [26], which diagonalizes the
monomer Hamiltonian (2),

[CHPHC−1]αβ = ξαδαβ, (5)

FIG. 3. (Color online) Diatomic eigenenergies of the PH (3�−)
monomer Hamiltonian as a function of the applied magnetic field.
The value of Mj is reported on each curve of the N = 0. The Zeeman
relaxation transitions originating from the N = 0, Mj = 1 level are
also represented.

where ξα is the energy level of the dressed diatomic molecule
in the magnetic field represented in Fig. 3. The magnetic field
removes the degeneracy in Mj = MN + MS and each energy
level ξα correlating with a unique value of Mj labeled by
Mj (α), where j is the total angular momentum of the diatomic
molecule, ĵ = N̂ + Ŝ, and Mj is its projection. For a given
value of MJ and for a given Mj , the ML = MJ (α) − Mj (α).
The basis set describing the collision process is obtained
by including the possible values of the quantum number L

for each value of α. With the basis set, the close-coupling
equation is

{
d2

dR2
− L(L + 1)

R2
+ 2μ[E − ξα]

}
Fα,ML,L(R)

= 2μ
∑

α′,M ′
L,L′

[CT UC]
α′,M ′

L,L′

α,ML,L Fα′,M ′
L,L′(R). (6)

The cross sections for elastic and inelastic scattering were
computed from the S matrix as follows:

σα→α′ = π

k2
α

∑
MJ

∑
MLL

∑
ML′L′

∣∣δαα′δMLML′ δLL′ − S
MJ

αLML;α′L′ML′

∣∣2
.

(7)

The coupled equations were propagated on a radial grid
ranging from 6a0 to 200a0 in steps of 0.25a0 using the log-
derivative propagator of Johnson [41]. At ultralow collision
energies, s-wave scattering dominates the collision dynamics
and calculations can be performed with a small number of
partial waves. We carried out convergence tests on state-to-
state cross sections both in the s-wave regime and at energies
up to E = 10 cm−1, at fields up to 2 T. In all cases a basis set
with N = 0 . . . 5 and L = 0 . . . 8 gave convergence to within
approximately 5% for all state-to-state cross sections. This
basis set was therefore used in all the remaining calculations.
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B. Results and discussions

As shown in Fig. 3, the low-field-seeking state which can be
magnetically trapped is the state with N = 0, Mj = 1 of PH
(3�−). It can relax to lower-energy states with N = 0, Mj =
0, –1 through inelastic collisions. Figure 4 shows the elastic
and Mj changing cross sections for this trappable state in the
absence of magnetic field which corresponds approximately
to the situation of the center of a trap [42]. We can see that
the cross section for the Mj changing Zeeman relaxation is
much smaller than the elastic cross section and decreases as
E2 with decreasing collision energy below ∼10−1 cm−1. It
can be understood by Wigner’s threshold law for isoenergetic
processes [43,44]:

σ ∝ EL+L′
, (8)

where L and L′ denote the partial waves in the incoming and
outgoing channels, respectively. At low collision energies, the
cross sections are dominated by incoming s waves. For elastic
collisions, we have L = L′ = 0 and the cross section is constant
as a function of collision energy E. For inelastic collisions, the
change in Mj must be accompanied by a change of the ML

quantum number, which follows from the conservation of MJ .
Since the parity p is also conserved, it is easily found that
the dominant inelastic process for the incoming s wave of PH
corresponds to the L′ = 2 outgoing channel, and consequently
exhibits E2 behavior as observed in Fig. 4. The presence of a
d wave centrifugal barrier in the exit channel, whose height is
about 0.3 cm−1 for 3He-PH, strongly suppresses the inelastic
transitions for low collision energies.

The cross sections also show two main resonant structures.
The elastic cross section varies by about one order of
magnitude through the resonance, while the spin-flipping cross
section increases by three to four orders of magnitude for the
large peak. The cross sections do not show any resonance
enhancement with only L = 0 . . . 3 channels, whereas adding
the L = 4 channels produces the large peak at the collision
energy of about 1.6 cm−1; adding further the L = 5 channels
produces the small peak at about 3 cm−1. Thus both the peaks

FIG. 4. (Color online) The cross sections for spin-flipping and
elastic scattering transitions of PH (N = 0, Mj = 1) in collisions
with 3He in the absence of magnetic field.

FIG. 5. (Color online) The Zeeman relaxation cross sections of
PH (N = 0, Mj = 1) in collisions with 3He as a function of collision
energy with an applied magnetic field.

in Fig. 4 arise from shape resonances and the L = 4 shape
resonance is responsible for the large peak and the L = 5
shape resonance for the small peak. Shape resonance is due to
coupling of the scattering state with a quasibound level trapped
behind a repulsive barrier. We note that the barrier height of
L = 4, 5 is about 2.2 and 4.3 cm−1 for 3He-PH, respectively.

Investigation of the behavior of the molecules in a magnetic
field is essential to understanding magnetic trapping. The
cross sections as a function of collision energy with different
magnetic-field strengths are given in Fig. 5. The inelastic cross
sections are summed over both the M ′

j = 0 and M ′
j = −1

Zeeman relaxation channels. The elastic cross sections are
weak dependence with the magnetic field which is thus not
reported in the figure for the sake of clarity. The first feature
is that the relaxation cross sections increase to infinity in
agreement with the Wigner law while the collision energy
vanishes. When the field increases, the low-energy cross
sections are substantially pushed up, but at higher energies the
cross sections are less sensitive to the field. The mechanism
has been explained by Tiesinga et al. [45] and Volpi and
Bohn [18], which is based on the removal of the degeneracy
of the initial and final channels when the field is applied. In
a finite magnetic field, the Zeeman transitions are determined
by the centrifugal barrier in the outgoing channel. When the
energy defect between the initial and final scattering states is
small, the height of the centrifugal barrier in the final state can
be larger than the initial energy of the system and the inelastic
collision is suppressed by the centrifugal maximum in the
outgoing channel. As the magnetic field increases, the energy
gap between the initial and final states becomes greater than the
centrifugal barrier, which may lead to escape over the barrier.
Suppression of inelastic collisions thus decreases and the
Wigner upturn point moves to higher energy with increasing
magnetic field. Eventually, the inelastic cross section reaches
a maximum at a field of about 1 T and starts to decrease again.
Another interesting feature of this figure is the monotonous
lowering of the two resonance peaks when the strength of the
field is increased while its position and width are conserved. It
can be understood as a simple consequence of the increase of
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FIG. 6. (Color online) Ratio of the cross sections for elastic
scattering and Zeeman relaxation in collisions of PH (N = 0, Mj =
1) with 3He atoms with different applied magnetic field.

the splitting between the N = 0, j = 1, and Mj = −1 and the
excited levels (N = 2, j = 1, 2 and Mj = 1) with increasing
field [19], resulting from the decrease of the coupling between
coupled Zeeman levels. This effect is amplified for B = 2 T
as the peak is more than two orders of magnitude smaller than
in the absence of a field.

In order to make definitive predictions as to the efficiency
of the buffer-gas loading, an analysis of the elastic-to-inelastic
ratio as a function of collision energy and magnetic field over
a wide range is needed. Figure 6 presents the ratios of cross
sections for elastic scattering and Zeeman relaxation in 3He-
PH collisions in several values of magnetic fields and collision
energies from 10−4 to 10 cm−1. We find that the ratio is always
more than 100 over the whole range of magnetic fields and
kinetic energies considered here, suggesting that evaporative
cooling of PH in a magnetic trap is likely to be efficient. It can
also be seen that, in the ultracold regime, the ratio increases
dramatically if the magnetic-field strength is reduced. Thus,
once the cooling process has started in the subkelvin regime
at relatively high magnetic field and continues toward lower
energies as the magnetic trap depth is decreased, the ratio will
remain very favorable for evaporative cooling to take place.
We also calculated the thermally averaged rate constants. The
elastic scattering rate constant is independent of the magnetic
field. It has a magnitude of the order of 10−10 cm3 s−1

at temperatures 0.5–1 K. The corresponding Zeeman rate
constants in this temperature range decrease from the order
of 10−13 to 10−15 cm3 s−1 as fields from 0 to 2 T.

It is instructive to compare the cross sections for Zeeman
relaxation in 3He-PH and 3He-NH collisions. Krems and
Dalgarno [19] demonstrated that collision-induced spin depo-
larization in 3�− molecules is mediated by a small admixture
of the anisotropic rotational state N = 2 in the rotational
ground state (N = 0) of the molecule due to the spin-spin
interaction. The collision-induced Zeeman relaxation cross
section is then predicted to scale as λ2

ss/B
2
e . This propensity

rule has been demonstrated by a subsequent experiment [13].
The ratio of λ2

ss/B
2
e for PH is about 20 times more than for NH.

FIG. 7. (Color online) Comparison of the cross sections for
Zeeman relaxation in 3He-PH (in solid curve) and 3He-NH collisions
(in dashed curve).

Figure 7 compares the cross sections for Zeeman relaxation in
3He-PH and 3He-NH collisions. The cross section for Zeeman
transitions in PH is more than two orders of magnitude larger.
The fact that the actual ratio is much larger (102–103) is due to
the different anisotropies of the He-PH and He-NH interaction
potentials. The equilibrium distance of PH is 2.687a0 and that
of NH is 1.96a0. The PH molecule is more stretched than NH
and the interaction potential of the He-PH complex is more
anisotropic than the He-NH potential.

Zero-energy Feshbach resonances (ZEF) are currently
used to produce condensates of diatomic molecules from an
ultracold gas of atoms [46]. Such resonances also appear in
collisions between atoms and molecules in the presence of an
applied magnetic field and could be potentially used to produce
ultracold complexes [24,47]. An s-wave scattering ZEF occurs
at which the bound-state energies cross a threshold if a L = 0
scattering channel is permitted by the constraints on parity
and MJ . This occurs only for thresholds corresponding to
Mj = MJ as shown by the arrow in Fig. 2. It can be seen

FIG. 8. (Color online) Elastic MS = −1 → M ′
S = −1 transitions

for 3He-PH collisions in the vicinity of an elastic Feshbach resonance
calculated at a kinetic energy of 10−6 cm−1.
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FIG. 9. (Color online) Eigenphase sum (a) and scattering length
(b) for elastic MS = −1 → M ′

S = −1 transitions for 3He-PH colli-
sions in the vicinity of an elastic Feshbach resonance calculated at a
kinetic energy of 10−6 cm−1.

that there is a 3He-PH bound state with MS = +1 that crosses
the MS = −1 threshold at about 10 900 G. A detailed scan
across a small range of fields in the vicinity and careful
extrapolation of the bound-state energies with magnetic field
give a more precise estimate of 10 917 G. Figure 8 shows
the cross section as a function of field in the vicinity of the
Feshbach resonance at a kinetic energy of 10−6 cm−1. The
corresponding eigenphase sum and scattering length are shown
in Fig. 9. For 3He colliding with PH (Mj = −1) at ultralow
kinetic energy, only elastic scattering can occur. For MJ = 0
and parity p = −1, the basis set gives five open channels
with L = 0,2, . . . ,8. Scattering into the L > 0 channels is
strongly suppressed by the centrifugal barriers. The cross
section shows a very large peak and the scattering length
passes through a pole at resonance. The line shape is analogous
to Fano line shapes [48] in bound-free absorption spectra
due to the interference between the bound and continuum.
The bound-state contribution rises from zero to a peak at
resonance while the continuum contribution drops from its
background value to zero and changes sign at resonance.

When there is only a single continuum channel, there is a point
near resonance where the bound and continuum contributions
cancel completely. It is the situation observed here. Fitting
the scattering length to the formula commonly used in atomic
scattering,

a(B) = abg

(
1 − �B

B0 − B

)
, (9)

gives position B0 = 10 917.111 G, width �B = 2 × 10−4 G and
background scattering length abg = 8.6 Å. For 4He colliding
with PH (Mj = −1), there is also a similar ZEF occurring at
B = 16 865.908 G.

As a final part of our discussion, we consider the sensitivity
of the elastic-to-inelastic ratio to the interaction potential. We
estimate the bounds on the accuracy of our potential to be
between –1.3% and +0.7% of the well depth. We therefore
performed test calculations using our interaction potential
multiplied by a factor F ranging from 0.95 to 1.05. The value
of the magnetic field represented is 0.01 T. The result is shown
in Fig. 10. The general pattern remains essentially the same;
only the low collision energy and the resonance regions are
more strongly modified, while the energy region above the
resonance is almost unchanged. The ratio values are found to
be a monotonous function of the multiplying factor F . As can
be seen, however, the calculated ratios exceed 100 for almost
all values of F and all energies considered. This demonstrates
that evaporative cooling of PH is feasible. Although we cannot
predict which value of F corresponds most closely to the
exact potential, we do expect that the sampled range of F

is indicative of the range within which the exact potential
lies, and hence we conclude that the probability for successful
evaporative cooling is relatively large.

FIG. 10. (Color online) Ratio of the elastic-to-inelastic cross
sections of PH (N = 0, Mj = 1) in collisions with 3He as a function
of collision energy using our model PES multiplied by a factor
F ranging from 0.95 to 1.05. The value of the magnetic field
represented is 10−2 T.
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V. CONCLUSION

We have completed a comprehensive study of the He-
PH complex. We have generated an accurate potential for
the He-PH interaction based on supermolecular ab initio
calculations incorporating the RCCSD(T) method, quintuple
ζ basis set, and the basis set superposition error correction.
The PES is weakly anisotropic and has two shallow minima
with comparable depths. The global minimum with energy
of –17.10 cm−1 locates at R = 7.65a0 and θ = 134.0◦, and
the second minimum is –16.88 cm−1 at R = 7.44a0 and
He-P-H collinear configuration. The bound energy levels of
the complex have been calculated including the molecular fine
structure. There are ten bound levels in the complex with 3He
while there are 13 bound levels in the complex with 4He. The
corresponding binding energies of the 4He-PH and 3He-PH
complexes are found to be –4.50 and −3.67 cm−1, respectively.
Future spectroscopic measurement of these energies will
provide a sensitive test of the potential surface. Bound-state
energy levels of 3He-PH as a function of magnetic field have
also been investigated and then were used to locate a narrow
zero-energy Feshbach resonance.

Based on the ab initio PES, we have used quantum mechan-
ical scattering calculations to investigate the projection-change
transitions in collisions of PH (X 3�−) with He atoms within
external magnetic fields at low and ultralow energies. We

focused on the calculation of elastic and inelastic cross sections
from low-field-seeking states with N = 0, Mj = 1 of PH
(3�−) at different magnetic fields and kinetic energies. We
found that the elastic cross section is weakly dependent with
the magnetic field while the Zeeman relaxation cross sections
rapidly increase with the magnetic-field strength at ultralow
collision energies. Since collision-induced spin depolarization
in 3�− molecules is mediated by a small admixture of the
anisotropic rotational state N = 2 in the rotational ground
state (N = 0) of the molecule, and the anisotropy is smaller
than the separation between the N = 0 and 2 states, it causes
relatively weak mixing during collisions and the scattering is
generally elastically dominated. The inelastic cross sections
are suppressed both at low energy and low field by the
centrifugal barrier in the exit channels. However, the ratio of
elastic to inelastic cross sections is high enough, over a wide
enough range of collision energy, magnetic field, and scaling
factor F of PES, indicating that helium buffer-gas loading and
evaporative cooling of PH is a good prospect.
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