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Convergent close-coupling calculations of helium single ionization by antiproton impact
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We apply the fully quantum-mechanical convergent close-coupling method to the calculation of antiproton
scattering on the ground state of helium. The helium target is treated as a three-body Coulomb system using
frozen-core and multiconfiguration approximations. The electron-electron correlation of the target is fully treated
in both cases. Though both calculations yield generally good agreement with experiment for the total ionization
cross sections, the multiconfiguration results are substantially higher at the lower energies than the frozen-core
ones. Calculated longitudinal ejected electron and recoil-ion momentum distributions for the single ionization of

helium are in good agreement with the experiment.
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I. INTRODUCTION

Collisions of antiprotons with atoms is generally a simpler
problem than for proton projectiles due to the absence of
electron-capture channels. Ignoring the possibility of antipro-
ton binding, the collision system has well-defined electronic
states. The antiproton-helium collision system is a prototype of
ion-atom scattering that needs to be solved before embarking
on treating more complex systems. Total [1-3] and differential
[4] ionization cross-section measurements exist to help in the
testing of theoretical approaches to the problem.

From the theoretical point of view the antiproton-helium
scattering system is a quantum-mechanical four-body prob-
lem, which cannot be solved analytically. At sufficiently high
energies simple first-order perturbation methods, namely, the
first Born approximation (FBA) and continuum distorted-
wave eikonal initial-state (CDW-EIS) approaches, can produce
reliable total ionization cross sections. At lower impact
energies various nonperturbative theoretical approaches have
been applied. Depending on the energy range there are some
discrepancies between the various theoretical approaches, and,
with experiment, it is still unclear if there is something
missing in the theory that is responsible for the remaining
discrepancies.

There are several approximations that may be applied to
the antiproton-helium collision problem. First, the antiproton
motion can be treated classically by means of straight-line
trajectories. This approximation is well accepted in ion-atom
collisions and its validity to reproduce correct integrated cross
sections for all processes involved in antiproton-hydrogen col-
lisions above 1 keV was recently demonstrated [5]. However, it
is still unclear if this approximation is equally satisfactory for
calculation of differential cross sections over a wide incident
energy range. A second approximation is applied in order to
avoid complications that arise from a complete description of
He wave functions. Ideally, the antiproton-helium scattering
must be treated as a four-body problem and the target wave
functions should be obtained by diagonalizing a full three-
body target Hamiltonian. The transition amplitudes in the
resulting coupled equations would carry indices describing
quantum states of each of the target electrons. This is far
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from practical even with present-day computational resources.
For this reason an often-used approximation is to treat
helium as a hydrogenlike target, and consequently to consider
only single-ionization processes. These can be classified into
two categories. The earliest ones employed the independent
electron approximation in the description of He assuming that
the single-electron process can be described with sufficient
accuracy even without the inclusion of electron correlation
effects [6-9]. More complex approaches [6,10-12] assumed
the static correlation of the outer electron with the inner
one constrained in the 1s orbital (frozen-core approximation),
yielding significantly different results, especially at low ener-
gies. This by itself already clearly indicates the importance
of electron correlation effects. With further advancement
of computing technology new sophisticated calculations by
Igarashi et al. [6], Pindzola et al. [13], Foster et al. [14], and
Guan and Bartschat [15] became available, where multiple
configurations were allowed for both target electrons. This
modification improved the He wave functions and yielded an
ionization potential of the ground state that is much closer to
its experimental value. The resultant ionization cross sections
also significantly changed from the values obtained in the
frozen-core approximation. In the present work we also adopt
the multiconfiguration model of the He target. The idea of
including double-continuum states in the description of He
structure is not feasible since in that case one runs into
the problem of mixing of single- and dounble-ionization
channels. This issue was addressed in Ref. [16], where the
effects of double-ionization channels on the single-ionization
cross section were investigated. Experimental and theoretical
progress in the field of antiproton-impact-induced ionization of
atoms and molecules was very recently reviewed by Kirchner
and Knudsen [17].

Our goal here is to develop a fully quantum-mechanical ap-
proach to antiproton-helium collisions based on the convergent
close-coupling method following the successful implementa-
tion for antiproton-hydrogen collisions [5,18]. This implies
the complete relaxation of the classical limitations imposed
on the relative motion of the heavy particles, i.e., the removal
of the straight-line approximation mentioned above. The total
scattering wave function is expanded in terms of pseudostates
describing the target states of He. Those pseudostates are
constructed via diagonalization of the He target Hamiltonian
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in an orthogonal Laguerre basis assuming that one of the
electrons (which is not involved in single ionization) is allowed
to occupy a limited number of orbitals while the other is
free to be in any other orbital necessary for convergence
of the final results. When the inner electron is limited to
just the 1s orbital of He™ we have the frozen-core (FC)
approximation, and when several inner orbitals are allowed we
have the multiconfiguration (MC) description. We emphasize
here that both FC and MC descriptions of the target explicitly
account for the electron correlation effects. After the basis set
expansion of the total wave function, the Schrédinger equation
is transformed into coupled-channel Lippmann-Schwinger
equations for the scattering amplitudes and solved in the
impact-parameter representation. As described in Ref. [5] the
impact parameter representation used in the present approach
is merely a transformation from the momentum-transfer
space into the mathematically equivalent impact-parameter
space. The momentum-transfer and impact-parameter repre-
sentations are complementary and, in principle, transform into
each other without any limitation or approximation.

The plan of the paper is as follows. In Sec. II we describe
our formalism for the fully quantum-mechanical treatment
of the antiproton-helium collision system. The results of the
frozen-core and multiconfigurational calculations as well as
the relevant discussion are given in Sec. III. Finally, in Sec. IV
we highlight the main results and draw conclusions from the
present work. We use atomic units throughout unless otherwise
specified.

II. FORMALISM

Consider scattering of an antiproton on the helium atom in
its ground state. The Hamiltonian for this system is written as

Hetr-—v2_2, 1 . 1
2u R |R—ri| [|R—r
where
HT=—1V2—£V2—£—E+; )
2" 27 o m r -

is the target Hamiltonian, p is the reduced mass of the
projectile-target system, and R, r, and r;, denote the positions
of the antiproton, electron 1, and electron 2 relative to the
nucleus of helium, respectively.

The total scattering wave function W for the system satisfies
the Schrodinger equation

(H — E)¥(X,x,x2) =0, 3)

where E is atotal energy and X, x 1, and x, are the coordinates
of the particles including spin. Within the nonrelativistic
approximation adopted in the present work, the total electronic
spin of He, S =0, is conserved throughout the collisions,
and consequently we need only to deal with ®(R,r,r>), the
spatial part of W(X,x,x,). Assuming that the possibility of
antiprotonic helium formation is negligible in the energy range
considered [19], we expand @ in terms of a set of N orthogonal
Laguerre-based He pseudostates ;:

N
O(R,r1,r2) ~ Y Fi(R)Yi(r1,ra), “)

i=1
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where F; are the expansion coefficients. The index i represents
a full set of quantum numbers describing the target state.

A. Helium pseudostates ¥;(ry,r>)

The helium space coordinate wave functions are con-
structed using the configuration interaction (CI) approach of
Fursa and Bray [20], namely,

Yilrira) = ) Cl ybu(r)dp(ra) {¥,(F) ® ¥, ()}, -
a.p

(&)

Here C (‘1 p are the CI coefficients which are found by diagonal-
izing the target Hamiltonian (2). To ensure antisymmetry of
the two-electron target states the following symmetry property
is satisfied by CI coefficients:

= (—1)letls=t Cha (6)

Wave functions ¢,(r) in Eq. (5) are the one-electron orbitals
which are used to build the two-electron basis. They are made
of the orthogonal Laguerre functions

20k — 1)!

Pulr) = <(2z+ 1+ k)!

) Qar) T exp(—=ar) L),

(7
+2

where Li’_ "(2\r) are the associated Laguerre polynomials
with A; being the characteristic falloff parameter. Finally, the
bipolar harmonics in Eq. (5) are defined through the spherical
harmonics Y;,, as

N @ Y, ¢}, =Y Cint o Yiam, F1)Yiym, (),

memg

lim; :
where C;" 1m, are Clebsch-Gordan coefficients.

Diagonalization of the target Hamiltonian Ht using the
helium wave functions ¥;(r,r;) yields negative and pos-
itive energy states ¢;. Presently, for the purpose of de-
scribing single ionization we restrict the upper limit of
one of the indices in Eq. (5) in order to prevent the
inner electron from ejecting. To be precise we include only
{1s,25,2p,3s,3p,3d,4s,4p,4d 4 f} Laguerre orbitals (7) for
the description of the inner electron excitations. In order
to obtain the exact He™ 1s orbital and accurately take into
account the short-range electron-electron correlations in the
ground and low-lying energy states, the falloff parameters of
the above orbitals are set equal to 2.0. The falloff parameters
of the rest of the orbitals are chosen to be equal to 1.0. To
maintain the orthogonality of the basis, the Gram-Schmidt
orthogonalization is performed. The other index representing
the one-electron states of the outer electron can be as large
as required to ensure convergence of the results. In this work
its upper limit is taken the same as N, i.e., the total basis
size Zi:(x)(”max — ) with npax and lix being the maximum
principal and orbital quantum numbers, respectively. As the
basis size increases, the negative-energy states become closer
to their eigenstates while the positive-energy ones provide an
increasingly dense discretization of the continuum. A basis
with np,x = 20 and /,x = 5 was sufficiently large to obtain
convergent results for the cross sections presented in this
work. With this basis we obtain an ionization potential of
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the helium ground state of 24.544 eV, which is very close to
the measured value of 24.586 eV. In order to demonstrate the
effect of the inner electron excitations on the single ionization
we also perform calculations assuming the FC approximation.
As already mentioned, in this approximation the inner electron
is always assumed to be in its 1s orbital; i.e., the upper limit
of the index B in Eq. (5) is equal to 1. The ionization potential
of the ground state in the FC approximation is 23.736 eV.

B. The coupled equations for the 7 matrix

Taking into account Eq. (5) we substitute expansion (4) into
Eq. (3) and get a set of integro-differential equations for the
expansion coefficients. Following Ref. [21] we transform them
into momentum-space coupled-channel integral equations for
transition matrix elements

Tri(qr.q) = Vi(qgr.q:)
N dq;
j=1

®)

where ¢; is the momentum of free particle i relative to the
center of mass of the bound pair in channel i. The effective
two-body free Green’s function in the intermediate channel j
is defined as

2 -1
o 4
Gi(q7) = (E+10— ﬁ —e,,-) )

and describes the free relative motion of antiproton j and
the He atom in state j with binding energy ¢;. The effective
potentials are given by

Viiqy.qi)
=(qsVrIVIVi)lg:)

:/derldrze_iq/RW;(rler)

2, 11 @Ry (e
X | —— et (ry,r
R IR—r| IR—r b

= /dRe”’RIfi(R), (10)

where the quantity p = ¢; — g is the momentum transfer.
The integral /7;(R) in Eq. (10) is defined as

il oy
o VAL el Cloo

Ifl(R) = x limiAp
o,B,y,0, 1L A
x YV* (R)(_l)ln+lﬂ+li+)\.<ﬂ|8> lﬂ l"‘ lf
A Lol
o0
x f drr2u, (R o)y (1), (1)
0
where [ = /2] + 1, and
5,\0 I"i
vx(R,r1)=2<—?+ 7 ) (12)

The set of coupled integral equations in momentum space
(8) is transformed into an impact-parameter representation.
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Details of the transformation of matrix elements into the
impact-parameter space can be found in Ref. [5].

C. Ionization cross sections

The total ionization cross sections can be obtained from the
integrated cross sections for the transitions to the open positive-
energy states. The integrated cross sections for any transition
o, are directly related to the transition matrix elements 7'y;:

1 oaqy 2
7= 4 [ 10utaranPag,,. 0y
where €2, represents the angular variables of the scattered

antiproton.

As far as the differential ionization is concerned, various
differential cross sections can be obtained using the ionization
amplitude. In our previous paper on differential ionization of
atomic hydrogen by antiproton impact [18], we described how
to generate the ionization amplitude from the transition matrix
elements T's;. The same technique can be applied here as well,
provided He is considered in the FC approximation, i.e., the
inner electron is always in its 1s orbital. Thus, in the frozen-
core approximation the ionization amplitude corresponding to
the ejected electron momentum « can be written as

Inax Ly

TX@Gra) =Y D Fim qr.qi)Ym ®), (14)
li=0mp=—Iy

where Fj., (qy.qi,x) is a function generated as a result
of an interpolation of «/2/7 (—i)"¢'%r S, 0)Tri(q 5.q;) on
a grid of the ejected electron energies. Here {n lym}
represents the full set of quantum numbers of the final state
f and oy, is the Coulomb phase shift of He in the static
exchange approximation. The function f, , («, ) in this case
is constructed from overlaps between the radial Coulomb wave
Uy, and the one-electron orbitals ¢,,f1f:

s, () = (brslrs) fo Uy, (¢, )u 1, (r)r*dr

+ (P15l 1) fo Uy, (k) (r)r*dr. (15)

Once the ionization amplitude is obtained we can immedi-
ately relate it to the fully differential ionization cross section
as

dSU(qfaqiaK) quK 2
—— = u-—|T, N DI 16
dEdS.dS, jz 0 1Te(q r.q:) (16)

By sequentially integrating the fully differential ionization
cross section over angular variables of the scattered antiproton
and the ejected electron we can find various double- and
single-differential-ionization cross sections. Such quantities
presently lack experimental investigation. Carrying out such
kinematically complete experiments is currently problematic
due to the difficulties related to the production of a stable high-
intensity antiproton beam. However, the recent development
of recoil-ion and ejected-electron-momentum spectroscopy
makes accurate measurements of differential cross sections
in the momenta of these particles possible. In fact, the recoil
ion carries as much information on the three-body ionization
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dynamics as the projectile and the ejected electron. Such a
pioneering experiment [4] on antiproton impact ionization of
He was already reported at 945 keV, which tabulates the single-
differential cross section as a functions of the longitudinal
recoil-ion and the ejected-electron momenta. These quantities
can be obtained from the double-differential-ionization cross
section d*o(qys,qi.k)/dEdS, if we employ the following
dynamic constraints required by the energy and momentum
conservation:

€fr — €0

Pr| = P — kK| = —KCOS@E, (17)
where p,| and k| are, respectively, the longitudinal momenta
for the recoil ion and the ionized electron, and pj is the longi-
tudinal projectile momentum transfer. With this we can write

d © 1 4
—U=/ - 29 4k (18)
dKH Kf/z K dEdQe

and
do _/6*1 o (19)
dpyy  Jo «kdEdQ,

The integration limits of Eq. (19) can be obtained from
Eq. (17) or

kT =vcosb, £ \/vz cos? 6, + 2(py v — |eol) (20)

with et = (k*)?/2.

III. RESULTS AND DISCUSSION

Here we present our numerical results for the grand total
as well as various differential single-ionization cross sections.
Figure 1 shows the total cross section for the single ionization
of helium under the impact of an antiproton with the incident
energy ranging from 1 keV to 1 MeV. Experimentally this

Andersen

12 r|Hvelplund

Knudsen

CCCFC

Igarashi FC =~ ---- b

McGovern FC e

Lee FC

0.8 |[Pindzola OAE X XX i
X

t 4

—_
T

T

cross sections (1 01¢ sz)

1 10 100 1000
energy (keV)

FIG. 1. (Color online) Total single-ionization cross section for
antiproton-helium scattering. Experimental data by Knudsen ez al. [1]
(A), Hvelplund et al. [3] (o), and Andersen et al. [2] (o). Various
frozen-core (FC) semiclassical close-coupling calculations are due
to Igarashi et al. [6], McGovern et al. [10], and Lee et al. [11].
The one-active-electron semiclassical close-coupling calculations are
due to Pindzola et al. [13]. The present frozen-core calculations are
denoted by CCC FC.
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process was studied on three occasions. Most recently the
group at CERN [1] conducted an experiment with antiproton
impact energies as low as 3.42 keV. These measurements
exhibit a quite slow fall of the cross section with the decreasing
impact energy. Two points of this data set at energies ~20
and 25 keV reasonably overlap with the earlier experiment by
Hvelplund et al. [3], which in turn is in overall agreement with
the oldest experiment by Andersen et al. [2]. The model curves
represent our frozen-core convergent close-coupling (CCC)
results as well as the results of semiclassical calculations by
Igarashi et al. [6], McGovern et al. [10], and Lee et al. [11]
utilizing a similar treatment of the target. Here we refer to
the presented calculations with the single acronym FC, since
they all start off by diagonalizing the helium Hamiltonian
in a suitable two-electron basis with the assumption that
the inner electron is always in the ground state. The only
difference is that different representations of the radial part of
the target wave function are used: Slater-type orbitals (STOs)
by Lee et al. [11], Sturmian functions by Igarashi et al. [6],
and Laguerre functions by McGovern et al. [10] and the
present fully quantum-mechanical model. The crosses show
the one-active-electron (OAE) calculations of Pindzola et al.
[13] with the Hartree local exchange potential. These results
are considerably larger than the other FC calculations as well as
the experiments. They concluded that the electron-correlation
effects of the target, not included in the OAE calculations,
play a significant role. The other calculations are in quite good
agreement with each other and the experiment over most of
the energy range. We next turn to MC results.

Figure 2 compares the experimental data with the cal-
culations which allow multiple configurations for the core
electron. Thus the current approach and that of Igarashi et al.
[6] includes double-excitation and single-ionization channels.
Whereas we allow the inner electron to take all excited
states with maximum principal quantum number ny.x < 4,
Igarashi et al. [6] limited the number of excited core states

09 T T
Andersen —o—
08 Hvelplund —e— i
’ Knudsen
CCC MC — ¢
07 r|cccEc S ]
= Igarashi MC -
S 0.6 ||Guan MC ——= B
2 Pindzola MC
[}
= 05
2
2 04
2
2 03
=]
5
02
0.1 1
0 1 1
1 10 100 1000
energy (keV)

FIG. 2. (Color online) Total single-ionization cross section for
antiproton-helium scattering. Experimental data by Knudsen ez al. [1]
(A), Hvelplund et al. [3] (o), and Andersen et al. [2] (o). Various
multiconfigurational (MC) semiclassical close-coupling calculations
are due to Igarashi ef al. [6], Guan and Bartschat [15], and Pindzola
et al. [13]. The present multiconfigurational calculations are denoted
by CCC MC. The CCC FC results are also presented.
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FIG. 3. (Color online) Ejected-electron longitudinal momentum
distribution for single ionization of helium by 945-keV antiproton
impact. Experimental data (e) and CDW and CTMC calculations are
due to Khayyat et al. [4]. CDW-EIS calculations are due to Fainstein
and Rodriguez [23]. The present frozen-core calculations are denoted
by CCC FC. First Born results are also shown.

to nmax = 3. In addition to the discrete doubly excited states,
the calculations by Foster et al. [14], Guan and Bartschat [15],
and Pindzola et al. [13] also include double-ionization states.
Apart from the results of Guan and Bartschat [15], which are
systematically lower, there is good agreement between the
various MC calculations over the entire energy range. What is
particularly interesting is the comparison with the FC results,
only given for the CCC theory. At energies above 100 keV
the MC results are a little lower than the FC ones. However,
at lower energies the MC results are substantially larger.
Following a similar study for electron scattering [22], we
might have expected that an increase in the ionization threshold
would result in a systematic drop of the total ionization cross
section. Perhaps this is still the case at energies above 100 keV,
but we are unable to find a definitive argument why the
MC-calculated cross sections should be above the FC ones at
low energies. We do note that, unlike in the electron projectile
case, the velocity of the antiproton near the ionization threshold
is much lower than the orbiting electron. Consequently the
comparison of the two projectiles is more appropriate at higher
energies than near threshold.

Figure 3 shows the ejected-electron longitudinal momen-
tum distribution in single ionization of helium by antiproton
impact at 945 keV. We compare our FC results with the
experimental data of Khayyat et al. [4] and other calculations.
Apart from the classical-trajectory Monte Carlo (CTMC)
calculations, there is good agreement between the various
theories and experiment. The CCC results are only a marginal
improvement on the Born approximation due to the relatively
high energy being considered.

The corresponding recoil-ion longitudinal momentum dis-
tribution is given in Fig. 4. Once more only the CTMC
approach clearly fails to describe the experiment. Perhaps the
CDW results show a systematic discrepancy at the positive
momentum values. The considered impact energy is so large
that even the simplest FBA is not significantly different from
the present results and other more sophisticated perturbation
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25 : : : :
" Khayyat =+
CCCFC —
Y CDW-EIS
2r N CDW —
— j | CTMC -
5 (/1% FBA -
8 AL AR
(o]
g 15f } 1
Qo I;
b
2
= 1t .
o
S
©
o
05 1
0 s B s

Py (a.u.)

FIG. 4. (Color online) Recoil-ion longitudinal momentum distri-
bution for single ionization of helium by 945-keV antiproton impact.
Experimental data (e) and CDW and CTMC calculations are due to
Khayyat et al. [4]. CDW-EIS calculations are due to Fainstein and
Rodriguez [23]. The present frozen-core calculations are denoted by
CCC FC. First Born results are also shown.

methods. Similar measurements, but at lower impact energies,
would be very helpful in testing the newly developed CCC
approach to antiproton-impact fully differential ionization.
To demonstrate how the Born and CCC results differ at
lower energies, in Fig. 5 we present He single ionization
by antiproton impact at energies of 100 and 300 keV. In
line with our expectations the differences between the CCC
FC and the first Born distributions increase as the impact
energy decreases. Interestingly, as we go down in the impact
energy the curves are developing a two-maxima structure
which is more pronounced at lower energies. We note that
the magnitude of the longitudinal momentum distribution gets
larger with decreasing incident energy.

Finally we report that, in addition to the longitu-
dinal momentum distributions, by carrying out a fully

CCCFC300keV — 7 N
FBA300keV - / IS
CCC FC 100 keV /

FBA 100 keV -

do/dx (1017 em%/a.u.)

0 . . .
-1 -0.5 0 0.5 1
K (a.u.)

FIG. 5. (Color online) Ejected-electron longitudinal momentum
distribution for single ionization of helium by antiproton impact
at various incident energies. Relevant first Born results are also
presented for comparison.
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X (106a.u.)

FIG. 6. (Color online) Three-dimensional plot of the triply
differential cross section for antiproton-impact single ionization of
helium at 100 keV. The scattering plane is defined by p = 0.6 a.u.
and the ejection energy of the electron is 5 eV. The arrow is pointing
in the direction of the momentum transfer.

quantum-mechanical CCC approach we can give any dif-
ferential cross section for the single ionization of He by
antiproton impact. This was shown recently in the case of
antiproton-hydrogen scattering [18]. In the present work we
limit our illustrative demonstration by giving in Fig. 6 the
three-dimensional distribution of the fully differential cross
section for the 100-keV antiproton-impact single ionization of
He with the ejected-electron energy of 5 eV and a momentum
transfer of p = 0.6 a.u. In this figure the antiproton is
incident in the z direction and scattered in the negative x
direction. Whereas the Born approach (not shown) produces
the rotationally symmetric angular distribution of the ejected
electrons around the momentum transfer p, in the CCC FC
approach, this distribution strongly deviates from the rotational

PHYSICAL REVIEW A 84, 062708 (2011)

symmetry. At this impact energy the postcollision interaction
becomes significant. Due to the strong repulsion of the ejected
electron from the scattered antiproton, the binary peak is
smaller than the recoil peak. Other differential cross sections
can be provided upon request.

IV. CONCLUSION

We applied the fully quantum-mechanical convergent
close-coupling method to the calculation of antiproton scatter-
ing on the ground state of He. The target is treated as a three-
body Coulomb system, with the inner electron being either
frozen into the He™ 1s orbital (frozen-core approximation) or
allowed to be described by a limited number of negative-energy
orbitals (multiconfiguration approximation). Consequently,
the electron-electron correlation of the target is fully treated in
both cases. It is found that the multiconfigurational treatment
of the target yields significantly higher total ionization cross
sections at lower impact energies than does the frozen-core
treatment. Agreement with the total ionization cross-section
measurements is satisfactory over most of the energy range,
with the lower energies inviting more investigation. The
frozen-core approach allows us to calculate fully differential,
as well as all other differential, single-ionization cross sec-
tions. Calculated longitudinal ejected-electron and recoil-ion
momentum distributions for the single ionization of helium
are in good agreement with the experiment.
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