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Particle escapes in an open quantum network via multiple leads
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Quantum escape of a particle from an end of a one-dimensional finite region to N semi-infinite leads is
discussed from a scattering theory approach. Depending on the potential barrier amplitude at the junction, the
probability P (t) for a particle to remain in the finite region at time t shows two different decay behaviors at long
times; one is proportional to N2/t3 and another is proportional to 1/(N2t). In addition, the velocity V (t) for a
particle to leave the finite region, defined from a probability current of the particle position, decays asymptotically
as a power of time ∼1/t , independent of the number of leads and the initial wave function. For a finite time, the
probability P (t) decays exponentially in time with a smaller decay rate for a greater number of leads, and the
velocity V (t) shows a time oscillation whose amplitude is larger for a greater number of leads. Particle escapes
from the both ends of a finite region to multiple leads are also discussed using a different boundary condition.
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I. INTRODUCTION

The escape of particles is a typical nonequilibrium phe-
nomenon in open systems. It is a current of particles from
a region where the particles were initially confined. The
concept of escape has been used to describe a variety of
physical phenomena, such as the α decay of a nucleus [1–3],
chemical reactions such as the Kramers’ escape problem [4–6],
and so on. Some dynamical properties, like chaos [7–9], the
recurrence time [10], the first-passage time [5,6], transport
coefficients [11–13], etc., have also been investigated via
the escape behavior of particles. Particle escapes have been
discussed in many types of systems, for example, stochastic
systems [4–6], classical billiard systems [7,8,14–16], maps
[9,10,17], and quantum systems [1–3,18–22].

Escape phenomena in open systems cause a decay of
various quantities due to the particle current from the region.
For instance, the probability for particles to remain in the
initially confined region, which we call the survival probability
in this paper, would decay in time, if particles continue to flow
out from the initial region. Such decay properties in escape
systems have led to some interesting results and hypotheses.
For example, in classical mechanical systems with a particle
escape via a small hole, the survival probability would decay
exponentially in time if the dynamics is chaotic, while it
would decay as a power for nonchaotic systems [7–10,15].
On the other hand, in many quantum-mechanical systems,
the survival probability decays as a power asymptotically in
time [3,18,20,22–24] with an exponential decay for a finite
time [3,20,22,23], and values of the power of the decay vary
due to initial conditions [25] or particle interactions [26–28],
and so on.

In this paper we discuss particle escape in quantum-
mechanical networks as an example of open dynamical sys-
tems. The quantum network system is also called the “quantum
graph” and is constructed by connecting finite and infinite
narrow wires like a network. It also has been widely used as
a model to describe mesoscopic transport such as Aharonov-
Bohm types of effects [29,30], resonance tunnellings [31,32],
current splitters [33–36], chaos and diffusion [37,38], and so
on. Steady electric currents in open quantum network systems
are described by quantum scattering theory [39–42]. This

kind of quantum system with narrow wires could be realized
experimentally as a combination of atomic or molecular wires
or as a graphlike structure on the surface of a semiconductor
using recent developments in nanotechnology [43–45].

An important feature of network systems is the effect of a
current splitter at a network junction. In order to consider
such a splitting effect of currents in quantum escapes as
simple and concrete as possible, we consider particle escapes
from a finite one-dimensional region with a length L via N

semi-infinite one-dimensional leads. The multiple leads are
connected at one end of the finite region with a potential
barrier of amplitude � at the junction, and we impose a fixed
boundary condition at another end of the finite region. We
use quantum scattering as an analytical method of describing
particle escape in such a quantum network, and we consider
the decay properties of two quantities that characterize the
quantum escape. The first decaying quantity is the survival
probability P (t) for the particle to remain in the finite region
at time t . We show analytically that after a long time the
survival probability P (t) depends on the number of attached
semi-infinite leads as the N2, i.e., limt→+∞ P (t)/[P (t)|N=1] =
N2, for � �= −h̄2/(2mL) (where m is the mass of the particle
and 2πh̄ is Planck’s constant). This means that at long times
the particle has a larger survival probability by connecting
more semi-infinite leads. Moreover, in this case, the survival
probability P (t) decays as a power ∼1/t3 at long times.
In contrast, in the case of � = −h̄2/(2mL) we obtain a
N−2 ratio limt→+∞ P (t)/[P (t)|N=1] = 1/N2 for the survival
probability P (t), meaning that after a long time a particle
escapes more by connecting more leads. Here, the survival
probability P (t) decays as a power ∼1/t asymptotically
in time, differing from the case of � �= −h̄2/(2mL). We
also discuss finite-time properties of the survival probability
numerically and show that for a finite time the survival
probability decays exponentially for a longer time with a
smaller decay rate by connecting more leads. As the second
decay quantity to investigate in quantum particle escape, we
consider the velocity V (t) for the particle to escape from the
finite region, which is introduced by the equation of continuity
for the particle position probability. We show analytically
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that the escape velocity V (t) behaves asymptotically in time

as V (t)
t→+∞∼ L/t for � �= −h̄2/(2mL) and V (t)

t→+∞∼
L/(3t) for � = −h̄2/(2mL), which are independent of the
number N of leads and the initial wave function, and so on.
It is also shown by numerical calculations that for a finite
time the escape velocity V (t) oscillates in time and takes a
larger magnitude for the oscillations for more attached leads.
Furthermore, by using a different boundary condition, our
scattering approach to quantum network systems also allows
us to discuss particle escape from a finite region of length 2L

with both ends connected to N semi-infinite one-dimensional
leads.

The outline of this paper is as follows. In Sec. II, the
quantum network system with a finite wire connected to mul-
tiple leads is introduced. Based on the equation of continuity
for particle position probability, we introduce a probability
current whose conservation imposes boundary conditions at
the junction of leads and at the terminated end of the finite
wire. These boundary conditions specify the scattering states
of this system, from which we describe the time evolution of
the wave function for the system. In Sec. III, we introduce the
survival probability P (t) from the particle position probability
and the escape velocity V (t) from the probability current in the
quantum network and discuss these decay properties. Finally,
we give some conclusions and remarks in Sec. IV.

II. QUANTUM SCATTERING APPROACH TO NETWORK
SYSTEMS WITH MULTIPLE LEADS

A. Quantum network system and boundary conditions

We consider quantum network systems consisting of a
finite one-dimensional segment with a length L whose end
is connected to N semi-infinite one-dimensional leads. (See
Fig. 1 as a schematic illustration of this network.) We call
the finite segment with the length L the region L(0) and also
call the n-th semi-infinite segment of lead the region L(n)

(n = 1,2, . . . ,N ). In each region L(n) we put the x(n) axis
of coordinates with the origin O at the junction of leads, in
which the positive direction of the x(n) axis is taken from the
origin O to the region L(n) (n = 0,1,2, . . . ,N).

We introduce the wave function �(n)(x,t) of a particle in
this quantum network at time t and position x ∈ L(n) for x > 0.
From the Schrödinger equation for the wave function �(n)(x,t)
with a real potential we derive the equation of continuity for
the particle position probability density

ρ(n)(x,t) ≡ |�(n)(x,t)|2 (1)

as

∂ρ(n)(x,t)

∂t
+ ∂ρ(n)(x,t)v(n)(x,t)

∂x
= 0, (2)

in which the local velocity v(n)(x,t) at the position x ∈ L(n)

and the time t is introduced as

v(n)(x,t) ≡ h̄

m
Im

[ ∂�(n)(x,t)
∂x

�(n)(x,t)

]
(3)

with the mass m of particle and Planck’s constant 2πh̄ [46].
Here, Im[X] means the imaginary part of X for any complex
number X.

0L
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FIG. 1. A quantum network with a junction for multiple leads. It
consists of a finite region L(0) with a length L and the semi-infinite
one-dimensional region L(n) (n = 1,2, . . . ,N ) connected to an end of
the region L(0). The x(n) axis of coordinates is taken in the region L(n)

with the origin O at the junction and its coordinate satisfies x(n) > 0
(n = 0,1,2, . . . ,N ). The coefficient a

(n)
(j,k) (b(n)

(j,k)) is the amplitude of
the incident wave to (the scattered wave from) the junction in the
region L(n) by use of a plain wave injected from the j -th lead with
wave number k.

To describe the quantum state at the junction O, we impose
the condition that the wave function of the system is continuous
at any position, including at the origin O so the boundary
conditions become

�(0,t) ≡ lim
x→+0

�(0)(x,t) = lim
x→+0

�(1)(x,t) = · · ·
= lim

x→+0
�(N)(x,t) (4)

which are satisfied at any time t . We further assume that there
is no net particle current source at the junction O, namely
limx→+0

∑N
n=0 ρ(n)(x,t)v(n)(x,t) = 0, leading to

lim
x→+0

N∑
n=0

v(n)(x,t) = 0 (5)

for the local velocity [Eq. (3)], noting that from Eq. (4) the
position probability density limx→+0 ρ(n)(x,t) is independent
of the region number n [47]. Using Eqs. (3) and (4), Eq. (5) is
rewritten as

lim
x→+0

N∑
n=0

∂�(n)(x,t)

∂x
= λ�(0,t) (6)

with a real constant λ [39,42,48]. It is important to note that
for the case of N = 1 the condition (6) is equivalent to the
boundary condition for a δ-function type of potential with the
amplitude h̄2λ/(2m) in a one-dimensional one-particle system.
In this sense, we regard the real constant

� ≡ h̄2λ

2m
(7)
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with the constant λ appearing in Eq. (6) as a potential barrier
amplitude at the junction O. Finally, we impose the condition
that there is no particle current source at the end x(0) = L of
the region L(0), so

v(0)(L,t) = 0, (8)

namely

∂�(0)(x,t)

∂x

∣∣∣∣
x=L

= μ�(0)(L,t) (9)

with a real constant μ, similarly to Eq. (6) [47,48].

B. Scattering states and matrix

We assume that the quantum network introduced in
Sec. II A consists of ideal leads, i.e., there is no potential in any
part of the region L(n), n = 0,1, . . . ,N except at the junction
and at the end x(0) = L of the region L(0). In this case, the
energy eigenstate 


(n)
(j,k)(x) at the point x in L(n) is presented

by use of a superposition of plain waves with wave number
k (>0) as



(n)
(j,k)(x) = a

(n)
(j,k)e

−ikx + b
(n)
(j,k)e

ikx, (10)

n = 0,1, . . . ,N , corresponding to the energy eigenvalue Ek =
h̄2k2/(2m). Here, we introduce the suffix j in the quantities



(n)
(j,k)(x), a

(n)
(j,k), and b

(n)
(j,k) to distinguish different states with

the same energy Ek as discussed later in detail. The constants
a

(n)
(j,k) and b

(n)
(j,k) in Eq. (10) are regarded as the amplitude of

the incident wave and the wave scattered from the junction
O, respectively. The (N + 1)-dimensional column vector
b(j,k) ≡ (b(0)

(j,k) b
(1)
(j,k) · · · b

(N)
(j,k))

T is connected to the (N + 1)-

dimensional column vector a(j,k) ≡ (a(0)
(j,k) a

(1)
(j,k) · · · a

(N)
(j,k))

T as

b(j,k) = Ska(j,k) (11)

with the scattering matrix Sk . Here, the notation XT denotes
the transpose of X for any vector X. In Eq. (11) we suppressed
the suffix j for the scattering matrix Sk , because as shown later
in Eq. (12) the scattering matrix is independent of the suffix j .
The energy eigenstate (10), which has nonzero value even in
the infinite region x(n) → +∞ of L(n), n = 1,2, . . . ,N , is the
scattering state of the quantum network system.

The scattering state (10) as a special example of the wave
function �(n)(x,t) must satisfy the conditions of Eqs. (4) and
(6), leading to the specific form of the scattering matrix Sk as

Sk = 2

N + 1 + i λ
k

U − I. (12)

Here, I is the (N + 1) × (N + 1) identity matrix, and U is
the (N + 1) × (N + 1) matrix whose elements are all given
by 1. [See Appendix A for an derivation of Eq. (11) with the
scattering matrix (12).] Noting the relation U 2 = (N + 1)U ,
the scattering matrix (12) is shown to be a unitary matrix
satisfying the relation

S
†
kSk = SkS

†
k = I (13)

with the Hermitian matrix S
†
k of Sk , supporting the relation

|b(j,k)|2 = |a(j,k)|2 by use of Eq. (11).

2L

FIG. 2. A quantum network with two junctions for multiple leads
at the both ends of the finite region with a length 2L.

On the other hand, the condition (9) leads to the relation

a
(0)
(j,k) = 1 + i

μ

k

1 − i
μ

k

e2ikLb
(0)
(j,k) (14)

between the amplitudes a
(0)
(j,k) and b

(0)
(j,k) for the scattering state

in the finite regionL(0). The condition (14) guarantees the same
magnitude |b(0)

(j,k)|2 = |a(0)
(j,k)|2 of the plain waves propagating

to the opposite directions with each other in the finite region
L(0). The relation (14) includes two special cases:

a
(0)
(j,k) = −e2ikLb

(0)
(j,k) for μ → +∞, (15)

a
(0)
(j,k) = +e2ikLb

(0)
(j,k) for μ = 0, (16)

meaning that the limit μ → +∞ imposes the fixed (Dirichlet)
boundary condition 


(0)
(j,k)(L) = 0 for scattering states and the

case of μ = 0 imposes the open (Neuman) boundary condition
at the end x(0) = L of the finite region L(0). It is important to
note that the open boundary case μ = 0 and the fixed boundary
case μ → +∞ can also describe states in the quantum network
consisting of a finite lead with a length 2L whose both sides are
connected to N multiple semi-infinite leads, as shown in Fig. 2.
Here, the open boundary case μ = 0 (the fixed boundary case
μ → +∞) corresponds to the quantum state described by the
wave function with the inversion symmetry (antisymmetry) at
the center of the finite region with the length 2L in such a
system.

From Eqs. (11), (12), and (14) the coefficient b
(n)
(j,k) is given

by

b
(0)
(j,k) = 2

∑N
n′=1 a

(n′)
(j.k)

N + 1 + i λ
k

+ (
N − 1 + i λ

k

) 1+i
μ

k

1−i
μ

k

e2ikL
, (17)

b
(η)
(j,k) = −a

(η)
(j.k) +

2
(
1 + 1+i

μ

k

1−i
μ

k

e2ikL
) ∑N

n′=1 a
(n′)
(j.k)

N + 1 + i λ
k

+ (
N − 1 + i λ

k

) 1+i
μ

k

1−i
μ

k

e2ikL

(18)

for η = 1, . . . ,N . Equations (14), (17), and (18) shows that the
coefficients a

(0)
(j,k) and b

(n)
(j,k), n = 0, . . . ,N are given from the

coefficients a
(n)
(j,k), n = 1, . . . ,N . We can still take any value

for a
(n)
(j,k), n = 1, . . . ,N , as the N incident wave amplitudes

from infinite regions x(n) → +∞, n = 1, . . . ,N , and this
arbitrariness leads to necessity of the suffix j to distinguish
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degeneracy of the energy eigenstates 

(n)
(j,k)(x) corresponding

to the energy Ek . In this paper, we introduce a
(n)
(j,k) as

a
(n)
(j,k) ≡ ςj δjn (19)

for n = 1,2, . . . ,N with a constant ςj . Equation (19) means
that the state 


(n)
(j,k)(x) is the scattering state produced by the

incident wave from the infinite region x(j ) → +∞ ofL(j ) only.
We define the inner products

〈X |Y 〉 ≡ lim
ε→+0

∫ L

ε

dx X(0)(x)∗Y (0)(x)

+ lim
ε→+0

N∑
n=1

∫ +∞

ε

dx X(n)(x)∗Y (n)(x)

=
N∑

n=0

∫
L(n)

dx X(n)(x)∗Y (n)(x) (20)

for any quantum states X and Y , whose values at the position x

in the regionL(n) are given by X(n)(x) and Y (n)(x), respectively.
Here, X∗ with the asterisk denotes the complex conjugate of
X for any complex number X. For this inner product (20) it is
essential to note that the scattering state 


(n)
(j,k)(x) satisfies the

orthogonal relation

〈
(j,k) |
(j ′,k′) 〉 = δjj ′δ(k − k′) (21)

for kk′ > 0. Here, we specified the constant ςj in Eq. (19) as

ςj ≡ 1√
2π

(22)

independently with respect to the suffix j = 1,2, . . . ,N , so
the coefficient of the term δjj ′δ(k − k′) in the right-hand side
of Eq. (21) becomes 1. The proof of Eq. (21) is given in
Appendix B.

C. Propagator and the time evolution of wave function

Now, we assume that the initial quantum state �(0) at t = 0
is expanded in the scattering states, as

�(n)(x,0) =
N∑

j=1

∫ +∞

0
dk A(j,k)


(n)
(j,k)(x) (23)

at the position x in L(n) with a constant A(j,k). From Eqs. (20),
(21), and (23) the constant A(j,k) is expressed as

A(j,k) = 〈
(j,k)|�(0) 〉 (24)

for k > 0. The initial condition (23) implies that the initial state
�(0) does not include bound states with a discretized energy
spectrum which are orthogonal to the scattering states [49].

The wave function of the system at time t > 0 is given by
applying the time-evolutional operator exp(−iĤ t/h̄) with the
Hamiltonian operator Ĥ to the initial state (23), and we obtain

�(n)(x,t) =
N∑

j=1

∫ +∞

0
dk A(j,k)e

−iEkt/h̄

(n)
(j,k)(x)

=
N∑

n′=0

∫
L(n′ )

dx ′ K (n,n′)(x,x ′; t)�(n′)(x ′,0) (25)

from Eqs. (20) and (24) and Ĥ

(n)
(j,k)(x) = Ek


(n)
(j,k)(x). Here,

the integral kernel K (n,n′)(x,x ′; t) is called the propagator [50,
51] and is given by

K (n,n′)(x,x ′; t) ≡
N∑

j=1

∫ +∞

0
dk 


(n)
(j,k)(x)
(n′)

(j,k)(x
′)∗e−iEkt/h̄.

(26)

In other words, we can calculate the propagator (26) via the
scattering state (10) with the coefficients (14), (17), (18), and
(19), leading to the wave function at time t from Eq. (25).

III. ESCAPE BEHAVIOR OF A PARTICLE VIA
MULTIPLE LEADS

A. Quantum escapes in a network system

In this section we consider the behavior of a particle that
escapes from the finite region L(0) to the semi-infinite regions
L(n), n = 1,2, . . . ,N . In order to discuss such phenomena, we
set the initial wave function at t = 0 to take nonzero value only
in the finite region L(0), i.e.,

�(n)(x,0) = 0 for n = 1, . . . ,N. (27)

From Eqs. (25) and (27) the wave function �(0)(x,t) in the
region L(0) at time t is expressed as

�(0)(x,t) =
∫ L

0
dx ′ K (0,0)(x,x ′; t)�(0)(x ′,0) (28)

by using the functions K (0,0)(x,x ′; t) and �(0)(x ′,0) for this
finite region only.

As shown in Appendix C, the propagator K (0,0)(x,x ′; t) is
expressed as

K (0,0)(x,x ′; t) =
∫ +∞

−∞
dk F (x,x ′; k)e−iτt k

2
. (29)

with τt defined by

τt ≡ h̄t

2m
. (30)

Here, F (x,x ′; k) is defined by

F (x,x ′; k) ≡ 2N

πC(k)

{
cos[k(x − x ′)] +

(
1 − μ2

k2

)
cos[k(x + x ′ − 2L)] + 2μ

k
sin[k(x + x ′ − 2L)]

1 + μ2

k2

}
(31)
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with

C(k) ≡
∣∣∣∣N + 1 + i

λ

k
+

(
N−1 + i

λ

k

)
1+i

μ

k

1−i
μ

k

e2ikL

∣∣∣∣
2

. (32)

It may be noted that the integral region of wave number k in the
right-hand side of Eq. (29) is (−∞,+∞), which is different
from in the right-hand side of Eq. (26).

Noting that the function (31) is an even function of k, we
expand it as

F (x,x ′; k) =
+∞∑
ν=0

Bν(x,x ′)k2ν (33)

with respect to k2, where Bν(x,x ′) is a function of x and x ′ and
is independent of k. Then, for t > 0 the k integral in Eq. (29)
can be carried out, and we obtain

K (0,0)(x,x ′; t) =
+∞∑
ν=0

Bν(x,x ′)
(2ν)!

22νν!

1 − i

iν

√
π

2τ 2ν+1
t

, (34)

noting 0! ≡ 1. Here we used the integral formula∫ +∞

−∞
dk k2νe−iτt k

2 = (2ν)!

22νν!

1 − i

iν

√
π

2τ 2ν+1
t

(35)

for ν = 0,1, . . . , which is derived from the τt derivative of the
equation

∫ +∞
−∞ dk e−iτt k

2 = (1 − i)
√

π/(2τt ) for t > 0 [52].
Equation (34) is an asymptotic expansion of the propagator
K (0,0)(x,x ′; t) with respect to 1/tν+1/2, ν = 0,1, . . . .

Under the initial condition (27) we describe the escape
behavior of a particle from the finite region L(0). As an
example of quantities that characterize such escape behavior,
we consider the quantity P (t) defined by

P (t) ≡
∫ L

0 dx ρ(0)(x,t)∫ L

0 dx ρ(0)(x,0)
. (36)

This is the ratio for a particle to survive in the finite region L(0)

at time t in comparison with that at the initial time t = 0 [53],
and we call this probability P (t) the survival probability in this
paper [54]. As another quantity to characterize particle escape
behaviors we also consider the local velocity for the particle
to escape from the finite region L(0), which is defined by

V (t) ≡ limx→+0
∑N

n=1 ρ(n)(x,t)v(n)(x,t)

ρ(0,t)

= − lim
x→+0

v(0)(x,t) (37)

with the probability density ρ(0,t) ≡ |�(0,t)|2 at the junction
O. Here, we used Eq. (5), and ρ(0,t) = limx→+0 ρ(1)(x,t) =
limx→+0 ρ(2)(x,t) = · · · = limx→+0 ρ(N)(x,t) from Eqs. (1)
and (4) to derive the second equation in the right-hand side of
Eq. (37) from its first equation. We call this velocity V (t) the
“escape velocity” in this paper. The survival probability (36)
and the escape velocity (37) can be calculated from the
wave function (28) only in the finite region L(0) via the
propagator (29) or (34), without information on the particle
in the semi-infinite region L(n), n = 1,2, . . . ,N .

In the following subsection, we consider properties of the
survival probability P (t) and the escape velocity V (t) mainly
in the fixed boundary case μ → +∞, while we give some

analytical arguments for P (t) and V (t) in the open boundary
case μ = 0 in Appendix D.

B. Asymptotic properties of particle escapes

In the fixed boundary case μ → +∞, the function (31) is
represented as

F (x,x ′; k) = 4N

π

sin[k(x − L)] sin[k(x ′ − L)]

C(k)
, (38)

where C(k) is given by

C(k) =
[
N + 1 − (N − 1) cos(2kL) + λ

sin(2kL)

k

]2

+
[

(N − 1) sin(2kL) − λ
1 − cos(2kL)

k

]2

. (39)

The expansion of the function (38) with respect to k2 as in
Eq. (33) differs for the cases where λL �= −1 and λL = −1,
so we consider these two cases separately below.

1. Fixed boundary case with λL �= −1

First, we consider the case of λL �= −1. For the func-
tion (38), the quantity Bν(x,x ′) as the coefficients of the
function F (x,x ′; k) with respect to k2ν in Eq. (33) is given
by

B0(x,x ′) = 0, (40)

B1(x,x ′) = N (x − L)(x ′ − L)

π (1 + λL)2
, (41)

B2(x,x ′) = −N (x − L)(x ′ − L)

6π (1 + λL)2

[
(x − L)2 + (x ′ − L)2

+ 2L2 3(N2 − 1) − λL(λL + 4)

(1 + λL)2

]
, . . . ,

(42)

concretely. By inserting these coefficients Bν(x,x ′), ν =
0,1, . . . into the formula (34) and using Eq. (28), we obtain
the wave function �(0)(x,t) in L(0) for t > 0 as

�(0)(x,t) = −N (x − L)(1 + i)�1

2
√

2π (1 + λL)2

1

τ
3/2
t

+ N (x − L)(1 − i)

8
√

2π (1 + λL)2

× 1

τ
5/2
t

[
(x − L)2�1 + �3

+2L2 3(N2 − 1) − λL(λL + 4)

(1 + λL)2
�1

]

+ · · · , (43)

where �ν is defined by

�ν ≡
∫ L

0
dx (x − L)ν�(0)(x,0). (44)

Equation (43) is the wave function for the fixed boundary
case μ → +∞ with λL �= −1 as an expansion of 1/tν+1/2,
ν = 1,2, . . ..

From Eqs. (1), (30), and (43) the survival probability (36)
at long times is expressed asymptotically as

P (t)
t→+∞∼ 2N2�1

3π (1 + λL)4

(
mL

h̄t

)3

(45)
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with the constant �1 ≡ �2
1/

∫ L

0 dx ρ(0)(x,0) determined by
the initial wave function �(0)(x,0) only. Equation (45) means
that the survival probability P (t) decays asymptotically as a
power of time as ∼t−3. Moreover, from Eq. (45) we obtain

lim
t→+∞

P (t)

P (t)|λ=0
= 1

(1 + λL)4
, (46)

lim
t→+∞

P (t)

P (t)|N=1
= N2, (47)

as far as the initial wave function �(0)(x,0) is independent of λ

and N . Equation (46) shows that the probability for a particle
to stay in the finite region L(0) becomes lower for a larger
potential barrier amplitude (7) at the junction O in the long
time limit, and this (rather counterintuitive) result, as well as
the asymptotic power decay ∼t−3 of P (t), has already been
shown for the one-lead case N = 1 in Ref. [20]. On the other
hand, Eq. (47) means that the probability for a particle to stay
in the finite region L(0) for multi semi-infinite leads becomes
N2 times higher than that for a single lead.

The first nonzero contribution to the survival probability
P (t) after a long time comes from the first term of the right-
hand side of Eq. (43). In contrast, the escape velocity V (t) is
an example of quantities in which a first nonzero contribution
after a long time comes from the second term of the right-hand
side of Eq. (43). Actually, by inserting the right-hand side of
Eq. (43) up to its second term into Eq. (3), and using Eq. (30),
we obtain

v(0)(x,t)
t→+∞∼ −L − x

t
(48)

asymptotically in time. Therefore, after a long time the escape
velocity (37) is represented as

V (t)
t→+∞∼ L

t
, (49)

meaning that, asymptotically in time, the escape velocity V (t)
decays as a power ∼t−1 and is independent of the number of
semi-infinite leads, the constant λ, and the initial wave function
�(0)(x,0), and so on. The velocity (49) can be regarded as a
constant velocity by which a classical mechanical particle in
an ideal wire remains inside a finite region with the length L

within the time interval t without an escape.

2. Fixed boundary case with λL = −1

Next, we consider the case of λL = −1, in which the
quantities Bν(x,x ′), ν = 0,1, . . . are represented as

B0(x,x ′) = (x − L)(x ′ − L)

πNL2
, (50)

B1(x,x ′) = − (x − L)(x ′ − L)

6πNL2

×
[

(x−L)2+(x ′−L)2−2L2

3

3N2−1

N2

]
, . . . , (51)

concretely, from Eqs. (33), (38), and (39). By inserting these
coefficients Bν(x,x ′), ν = 0,1, . . . of the function F (x,x ′; t)

with respect to k2 into Eq. (34), the wave function (28) in the
region L(0) for t > 0 is represented as

�(0)(x,t) = (x − L)(1 − i)�1√
2πNL2

1

τ
1/2
t

+ (x − L)(1 + i)

12
√

2πNL2

×
[

(x − L)2�1 + �3 − 2L2

3

N2 − 1

N2
�1

]
1

τ
3/2
t

+ · · · (52)

as an expansion with respect to 1/tν+1/2, ν = 0,1, . . . .
From Eqs. (1), (30), (36), and (52) we derive the survival

probability

P (t)
t→+∞∼ 2m�1

3πh̄N2Lt
(53)

asymptotically in time. It is important to note that the survival
probability (53) for λL = −1 decays in time as a power ∼t−1,
differing from the asymptotic power decay ∼t−3 for λL �= −1
as shown in Eq. (45). This difference in the decay powers
of the survival probability P (t) comes from the fact that the
zeroth-order term of the function of Eq. (39) with respect to k

disappears in the case of λL = −1, so the function B0(x,x ′)
becomes nonzero as in Eq. (50). We should also note that the
right-hand side of Eq. (45) for λL �= −1 diverges in the limit
λL → −1. In this way, we can regard the asymptotic power
decay ∼t−1 of the survival probability P (t) for λL = −1,
differing from that for λL �= −1 as a resonance. (This kind of
resonance occurs in the case of λ = 0 for the open boundary
case μ = 0, as shown in Appendix D). From the asymptotic
form (53) of the survival probability we obtain

lim
t→+∞

P (t)

P (t)|N=1
= 1

N2
(54)

for the N -independent initial wave function �(0)(x,0).
Equation (54) indicates that by connecting more leads to the
finite region L(0), the probability of a particle to stay in the
region L(0) for λL = −1 becomes lower after a long time, in
constrast to Eq. (47) for λL �= −1.

From Eqs. (3), (30), and (52) we derive the local velocity
v(0)(x,t) in L(0) as

v(0)(x,t)
t→+∞∼ −L − x

3t
(55)

asymptotically in time. Therefore, we obtain the escape
velocity (37) as

V (t)
t→+∞∼ L

3t
(56)

after a long time. Equation (56) shows that the escape velocity
V (t) for λL = −1 decays asymptotically in the same power
∼t−1 as in Eq. (49) for λL �= −1, although its prefactor L/3
is one-third that in the case of λL �= −1.

C. Finite-time properties of particle escapes

In this subsection, we consider the finite-time behavior
of particle escapes in the fixed boundary case μ → +∞ by
calculating the wave function �(0)(x,t) numerically. In order
to calculate the wave function �(0)(x,t) concretely for the fixed
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FIG. 3. (Color online) The survival probabilities P (t) as functions
of t for the fixed boundary case with λL �= −1 for N = 1 (the solid
red line), 2 (the dashed green line), 4 (the dotted blue line), 8 (the dash-
dotted purple line), and 16 (the dash-double-dotted cyan line). The
main figure is log-log plots of P (t) with the corresponding asymptotic
power decays shown in thin straight lines, and the inset is their linear-
log plots at short times. Here, and in all figures hereafter, we use
dimensionless units with L = 1, m = 1, and h̄ = 1.

boundary case, we specify the initial wave function in the finite
region L(0) as

�(0)(x,0) =
√

2

L
sin

(
σπ

L
x

)
, (57)

which is the σ -th eigenstate of a particle confined in the
finite region L(0) without semi-infinite leads (σ = 1,2, . . .)
[55]. Under the initial condition of Eqs. (27) and (57), from
Eqs. (28), (29), and (38) the wave function �(0)(x,t) in the
finite region L(0) at time t is represented as

�(0)(x,t) = 8σN
√

2L

∫ +∞

0
dk

e−iτt k
2

sin(kL) sin[k(x − L)]

C(k)[(kL)2 − (σπ )2]
,

(58)

with C(k) given by Eq. (39). By carrying out the
integral (58) with respect to k numerically, we calculate the
survival probability P (t) and the escape velocity V (t) at a
finite time t . In this subsection we chose the parameter values
as L = 1, σ = 1, m = 1, and h̄ = 1.

1. Fixed boundary case with λL �= −1

Figure 3 is the survival probabilities P (t) as functions of
time t for the fixed boundary case μ → +∞ with λL �= −1
under the initial wave function (57) for different numbers N =
1 (the solid red line), 2 (the dashed green line), 4 (the dotted
blue line), 8 (the dash-dotted purple line), and 16 (the dash-
double-dotted cyan line) of semi-infinite leads. Here, we used
the parameter value λ = 1, and the thin straight lines in this
figure show the asymptotic power decay (45) of the survival
probability for each value of N .

The main figure of Fig. 3 as log-log plots of P (t) shows that
the survival probability P (t) approaches a power decay (45)
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FIG. 4. (Color online) The absolute values |V (t)| of escape
velocities as functions of t for the fixed boundary case with λL �= −1
for N = 1 (the solid red line), 2 (the dashed green line), 4 (the dotted
blue line), and 8 (the dash-dotted purple line). The main figure is
log-log plots of |V (t)| with a thin straight line for the asymptotic
power decay, and the inset is linear-linear plots of the escape velocities
V (t) themselves at short times.

asymptotically in time. Such an approach of the probability
P (t) to the corresponding power decay occurs at later times
as the number of leads increases. [Therefore, the probability
P (t) for N = 16 in Fig. 3 should also approach the power
decay (45) at much later times than at those in this figure.]
We can also see in the inset of Fig. 3 as the linear-log plots of
P (t) that, at short times, the survival probability P (t) decays
exponentially ∼exp(−αt) in time with a positive constant α,
as shown especially in the cases of N = 4, 8, and 16. The
time period for such an exponential decay of P (t) is longer
for more leads, and its decay rate α is smaller for more leads.
One may notice that the survival probability does not decrease
monotonously in time and shows a time oscillation between
its exponential decay region and the power decay region. As
a tendency, the survival probability P (t) is higher for more
leads, although there are temporal exceptions for it by its time-
oscillatory behavior.

Figure 4 gives plots of the absolute values |V (t)| of the
escape velocities as the main figure, as well as the escape
velocities V (t) themselves as the inset, as functions of time
t for the fixed boundary case under the initial wave function
(57) for the different numbers of leads N = 1 (the solid red
line), 2 (the dashed green line), 4 (the dotted blue line), and
8 (the dash-dotted purple line). Here, we used the parameter
value λ = 1, and the thin straight line is the asymptotic power
decay (49) of the escape velocity.

It is shown in the inset of Fig. 4 that at short times the
escape velocity V (t) oscillates in time, rather than a simple
decay, and can even sometimes take a negative value. Such a
time-oscillatory behavior of V (t) continues for a longer time
for more leads, although its time-oscillating period seems to
be almost independent of N . At short times, the magnitude of
the escape velocity V (t) tends to increase for more leads.
For some values of N , such as for N = 1 in the inset of
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FIG. 5. (Color online) The survival probabilities P (t) as functions
of t for the fixed boundary case with λL = −1 for N = 1 (the solid
red line), 2 (the dashed green line), 4 (the dotted blue line), 8 (the dash-
dotted purple line), and 16 (the dash-double-dotted cyan line). The
main figure is log-log plots of P (t) with the corresponding asymptotic
power decays shown in thin straight lines, and the inset is their linear-
log plots at short times.

Fig. 4, a very rapid (but not abrupt) change of the escape
velocity V (t) from a positive value to the first negative value
as a function of t occurs, when the value of |�(0)(+0,t)| is
nonzero but very small at the time t , satisfying the condition
∂�(0)(x,t)/∂x|x=+0 = 0. (Note that time oscillations of V (t)
around the time t ≈ 10 in the main figure of Fig. 4 look to
be cut off in the middle occasionally, because of insufficient
calculation points there, but they actually reach the value of
zero by crossing the line V = 0.) After such a time oscillation,
the escape velocity V (t) converges rapidly to its asymptotic
power decay (49), which is independent of N .

2. Fixed boundary case with λL = −1

We now consider finite-time properties of particle escapes
for λL = −1 (so λ = −1 because of L = 1) in the fixed
boundary case μ → +∞. Figure 5 is the survival probabilities
P (t) as functions of time t for N = 1 (the solid red line), 2 (the
dashed green line), 4 (the dotted blue line), 8 (the dash-dotted
purple line), and 16 (the dash-double-dotted cyan line). The
thin straight lines in this figure show the asymptotic power
decay (53) of P (t) for each value of N .

As shown in the inset of Fig. 5 as the linear-log plots of
P (t), especially for large N = 8 and 16, at short times the
survival probability P (t) decays exponentially in time. Such
an exponential decay continues for a longer time for more
attached leads, and its decay rate is smaller for more leads.
After the exponential decay, the survival probability P (t)
shows a time-oscillatory behavior and then converges to its
asymptotic power decay (53), as shown in the main figure of
Fig. 5 as the log-log plots of P (t). In contrast with the case
where λL �= −1, the survival probability P (t) becomes lower
for larger N in this asymptotic power decay region, while it is
opposite in the exponential time-decay region.
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FIG. 6. (Color online) The absolute values |V (t)| of the escape
velocities as functions of time t for the fixed boundary case with
λL = −1 for N = 1 (the solid red line), 2 (the dashed green line),
4 (the dotted blue line), and 8 (the dash-dotted purple line). The main
figure is log-log plots of |V (t)| with a straight line for the asymptotic
power decay, and the inset is linear-linear plots of the escape velocities
V (t) themselves at short times.

Figure 6 is the absolute values |V (t)| of the escape velocities
as the main figure, as well as the escape velocities V (t)
themselves in the inset, as functions of time t for the fixed
boundary condition with λL = −1 in the case of N = 1
(the solid red line), 2 (the dashed green line), 4 (the dotted blue
line), and 8 (the dash-dotted purple line). The thin straight line
in this figure is the asymptotic power decay (56) of the escape
velocity V (t).

As shown in the inset of Fig. 6, the escape velocity V (t)
oscillates in time, first, as a time oscillation with positive values
and then as that with positive and negative values. Such an
oscillatory time region continues for a longer time for more
leads, although its time oscillating period seems to be almost
independent of N , and has a tendency for the absolute value
|V (t)| of the escape velocity to be larger for larger N for this
time period. (In the main figure of Fig. 6, the time oscillations
of V (t) look to be cut off in a middle, because of the small
number of calculation points. In the actual graphs the value of
|V (t)| goes to zero in a time-oscillatory region with positive
and negative values.) After such a time oscillation the escape
velocity V (t) converges rapidly to its asymptotic power decay
(56), which is independent of N .

IV. CONCLUSION AND REMARKS

In this paper, we have discussed particle escapes in an open
quantum network using a theoretical scattering approach. As a
concrete example with a current splitter as a feature of network
systems, we considered particle escape from an end of a finite
one-dimensional wire to N semi-infinite one-dimensional
leads. Properties of particle escape in such a quantum network
were discussed by using two kinds of quantities; one is the
probability P (t) for the particle to remain in the finite wire
at time t , the so-called survival probability, and the other is
the velocity V (t) for the particle to leave the finite region, the
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so-called escape velocity. Here, the escape velocity V (t) is
introduced from the probability current, based on the equation
of continuity for the particle position probability density. With
a fixed boundary condition at an end of the finite lead, for
the potential barrier amplitude � �= −h̄2/(2mL) the survival
probability P (t) depends on the number of attached semi-
infinite leads as limt→+∞ P (t)/[P (t)|N=1] = N2 and decays
as a power ∼1/t3 asymptotically in time. In contrast, for
the potential barrier amplitude � = −h̄2/(2mL) the survival
probability satisfies the relation limt→+∞ P (t)/[P (t)|N=1] =
1/N2, and it decays as a power ∼1/t at long times. On the
other hand, the escape velocity V (t) decays like CL/t asymp-
totically in time with the constant C which is independent of
the number of leads and the initial wave function �(0)(x,0),
and so on. It was also shown that for a finite time the survival
probability P (t) decays exponentially in time for a longer time
with a smaller decay rate for more attached leads and shows a
time-oscillatory behavior between the exponential decay time
region and the power decay time region. The escape velocity
V (t) shows a time-oscillatory behavior for a finite time, in
which as a tendency its value is higher for more attached leads
with a larger amplitude of time oscillations.

We described the dynamics of an escaping particle by a
quantum scattering theoretical approach. It may be noted that
although the time-dependent wave function of an escaping
particle is expanded by the scattering states in the open
network system it is nonzero only in a finite region for
a finite time and is normalizable, differing from stationary
quantum scattering states caused by incident plain waves from
infinitely far spatial regions. In order to construct concretely
the scattering states in the open network system, it is essential
to specify the boundary conditions at the junction of a finite
wire and multiple leads and at another end of the finite wire. We
specified these boundary conditions based on the probability
current given from the equation of continuity for the particle
position probability density. We imposed the conservation of
this current and the continuities of the particle wave function
at the junction, so the scattering matrix at the junction is
unitary and the scattering states satisfy the orthogonal relation
automatically. It is important to note that the condition of no
net current at the terminated end of a finite wire leads to a
group of boundary conditions specified by a parameter μ. In
this paper we mainly considered the case of μ → +∞, i.e.,
of a fixed boundary condition. However, by using the case
of μ = 0, i.e., of the open boundary condition, we can also
discuss particle escapes from a finite one-dimensional wire
whose both ends are connected with multiple one-dimensional
semi-infinite leads. In this case, for the initial state which
is antisymmetric with respect to reflection at the center of
the finite region, we get the same results of the survival
probability P (t) and the escape velocity V (t) as cases of
a fixed boundary condition. In contrast, for the initial state
which is symmetric with the reflection at the center of the
finite region, by using the open boundary condition μ = 0

we obtain limt→+∞ P (t)/[P (t)|N=1] = N2 and V (t)
t→+∞∼

3L/t for � �= 0, and limt→+∞ P (t)/[P (t)|N=1] = 1/N2 and

V (t)
t→+∞∼ L/t for � = 0, in which different behaviors of

P (t) and V (t) occur at a different value of � from that in the
antisymmetric initial state. As a remark it may be interesting if
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FIG. 7. (Color online) The escape velocities V (t) as functions of
t for the fixed boundary case with λ = 0 (the solid red line), 4 (the
dashed green line), 8 (the dotted blue line), and 12 (the dash-dotted
purple line).

we could clarify the physical meanings of particle escapes in
the case of other values of the parameter μ, i.e., a nonzero and
finite values of μ. We also note that the current used to specify
these boundary conditions is the current of probability density
of the particle position. In this sense, the escape velocity V (t)
based on this probability current at the junction is not the
particle velocity itself. The uncertain principle of quantum
mechanics forbids specification of the particle velocity at a
specific position of the particle.

As finite-time properties of quantum escapes, in this paper
we discussed mainly dependencies of the survival probability
P (t) and the escape velocity V (t) on the number N of attached
leads, but their dependencies on other parameters also express
some important escape properties. For example, the survival
probability P (t) decays exponentially for a finite time with
a smaller decay rate for a larger value of the parameter
λ proportional to the potential barrier amplitude, as known
already for the case of N = 1 [23,26]. As another example,
we show Fig. 7 for the escape velocities V (t) as functions of
time t for the fixed boundary case μ → +∞ with λ = 0,4,8,
and 12. Here, we chose the other parameter values as L = 1,
N = 4, σ = 1, m = 1, and h̄ = 1. This figure shows that the
escape velocity V (t) oscillates in time around a constant value
V0 at short times, and the value V0 is almost independent of
λ but the time period appearing such time oscillations around
the value V0 becomes longer for a larger value of the parameter
λ. Detailed dependencies of escape behaviors in quantum
networks via multiple leads on other parameters, such as λ,
μ, and σ , etc., will be discussed elsewhere.

In this paper we discussed briefly exponential decays of
the survival probability for a finite time, appearing especially
for a large number of attached leads as well as for a large
value of the potential barrier amplitude �. These exponential
decays would be related to the poles of the Green function or
the scattering matrix [3,19–21,23,38,51]. A detailed analysis
of such exponential decays of the survival probability as the
scattering resonance in particle escapes via multiple leads
remains as an important future problem.
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APPENDIX A: SCATTERING MATRIX

In this appendix we give a derivation of Eq. (11) with the
scattering matrix (12).

By inserting Eq. (10) into Eq. (4) we obtain

a
(0)
(j,k)+b

(0)
(j,k) = a

(1)
(j,k)+b

(1)
(j,k) = · · · = a

(N)
(j,k)+b

(N)
(j,k) = �(0,t).

(A1)

On the other hand, Eqs. (6) and (10) lead to

N∑
n=0

[
a

(n)
(j,k) − b

(n)
(j,k)

] = i
λ

k
�(0,t). (A2)

From Eqs. (A1) and (A2) we obtain
∑N

n=0[2a
(n)
(j,k) − �(0,t)] =

i λ
k
�(0,t), i.e.,

�(0,t) = 2

N + 1 + i λ
k

N∑
n=0

a
(n)
(j,k). (A3)

From Eqs. (A1) and (A3) we derive

b(j,k) = �(0,t)(11 · · · 1)T − a(j,k)

= Ska(j,k) (A4)

with the scattering matrix of Eq. (12). Therefore, we obtain
Eq. (11).

APPENDIX B: ORTHOGONALITY OF SCATTERING
STATES

In this appendix we give a proof of the orthogonality
relation (21) for the scattering state 


(n)
(j,k)(x).

We note the mathematical identity∫ +∞

0
dx eikx ≡ lim

ε→+0

∫ +∞

0
dx eikx−εx

= πδ(k) + iχ (k), (B1)

where δ(k) is the δ function

δ(k) = lim
ε→+0

1

π

ε

k2 + ε2
(B2)

and χ (k) is defined by

χ (k) ≡ lim
ε→+0

k

k2 + ε2
. (B3)

Using the function (B3) we obtain∫ L

0
dx eikx = (1 − eikL)

∫ +∞

0
dx eikx

= (1 − eikL)iχ (k), (B4)

where we used Eq. (B1) and the identity (1 − eikL)δ(k) = 0.
From the scattering state of Eq. (10) and the inner product

from Eq. (20) for quantum states, as well as Eqs. (11), (14),
(B1), and (B4), we obtain

〈
(j,k) |
(j ′,k′) 〉 = lim
ε→+0

∫ L

ε

dx 

(0)
(j,k)(x)∗
(0)

(j ′,k′)(x) + lim
ε→+0

N∑
n=1

∫ +∞

ε

dx 

(n)
(j,k)(x)∗
(n)

(j ′,k′)(x)

= π

N∑
n=1

[
a

(n)
(j,k)

∗a(n)
(j ′,k′) + b

(n)
(j,k)

∗b(n)
(j ′,k′)

]
δ(k − k′) + π

N∑
n=1

[
a

(n)
(j,k)

∗b(n)
(j ′,k′) + b

(n)
(j,k)

∗a(n)
(j ′,k′)

]
δ(k + k′)

− ia†
(j,k)[(S

†
kSk′ − I )χ (k − k′) + (S†

k − Sk′)χ (k + k′)]a(j ′,k′)

− ib
(0)
(j,k)

∗[(s∗
k sk′ − 1)χ (k − k′) + (s∗

k − sk′)χ (k + k′)]b(0)
(j ′,k′)e

−i(k−k′)L (B5)

in which sk is defined by

sk ≡ 1 + i
μ

k

1 − i
μ

k

. (B6)

Now, we note

N∑
n=1

[
a

(n)
(j,k)

∗a(n)
(j ′,k′) + b

(n)
(j,k)

∗b(n)
(j ′,k′)

]
δ(k − k′) = [

a†
(j,k)a(j ′,k′) + b†

(j,k)b(j ′,k′) − a
(0)
(j,k)

∗a(0)
(j ′,k′) − b

(0)
(j,k)

∗b(0)
(j ′,k′)

]
δ(k − k′)

= 2
[
a†(j,k)a(j ′,k′) − a

(0)
(j,k)

∗a(0)
(j ′,k′)

]
δ(k − k′)

= 2
N∑

n=1

a
(n)
(j,k)

∗a(n)
(j ′,k′)δ(k − k′)

= 1

π
δjj ′δ(k − k′) (B7)
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from Eqs. (11), (13), (14), (19), and (22). Moreover, using the
function of Eq. (B3), we note

∫
dk χ (k)X(k) = P̂

∫
dk

X(k)

k
(B8)

for any function X(k) of k, where we introduced the operator
P̂ as that to take the principal integral. In this sense, for the
scattering matrix (12) we obtain

(S†
kSk′ − I )χ (k − k′) + (S†

k − Sk′)χ (k + k′)

= P̂
[

(S†
kSk′ − I )

1

k − k′ + (S†
k − Sk′)

1

k + k′

]

= O (B9)

with the matrix O whose all elements are zero. Sim-
ilarly, for the quantity sk defined by Eq. (B6) we

obtain

(s∗
k sk′ − 1)χ (k − k′) + (s∗

k − sk′)χ (k + k′)

= P̂
[

(s∗
k sk′ − 1)

1

k − k′ + (s∗
k − sk′)

1

k + k′

]

= 0. (B10)

Inserting Eqs. (B7), (B9), and (B10) into Eq. (B5) we obtain

〈
(j,k) |
(j ′,k′) 〉 = δjj ′δ(k − k′) + π

N∑
n=1

[
a

(n)
(j,k)

∗b(n)
(j ′,k′)

+ b
(n)
(j,k)

∗a(n)
(j ′,k′)

]
δ(k + k′). (B11)

Noting that the second term of the right-hand side of Eq. (B11)
is zero for kk′ > 0, we obtain the orthogonal relation (21) of
the scattering states.

APPENDIX C: PROPAGATOR K (0,0)(x,x′; t)

In this appendix we show Eq. (29).
From Eqs. (10) and (14) we note



(0)
(j,k)(x)
(0)

(j,k)(x
′)∗ = ∣∣b(0)

(j,k)

∣∣2
[
eik(x−L) + 1 + i

μ

k

1 − i
μ

k

e−ik(x−L)

] [
e−ik(x ′−L) + 1 − i

μ

k

1 + i
μ

k

eik(x ′−L)

]

= 2
∣∣b(0)

(j,k)

∣∣2
{

cos[k(x − x ′)] + Re

[
1 − i

μ

k

1 + i
μ

k

eik(x+x ′−2L)

]}

= 4

π

cos[k(x − x ′)] +
(

1− μ2

k2

)
cos[k(x+x ′−2L)]+2 μ

k
sin[k(x+x ′−2L)]

1+ μ2

k2∣∣N + 1 + i λ
k

+ (
N − 1 + i λ

k

) 1+i
μ

k

1−i
μ

k

e2ikL
∣∣2

, (C1)

where we used Eqs. (17), (19), and (22). Here, Re[X] is the
real part of X for any complex number X. It is important to
note that the quantity (C1) is an even function of k, namely



(0)
(j,−k)(x)
(0)

(j,−k)(x
′)∗ = 


(0)
(j,k)(x)
(0)

(j,k)(x
′)∗. (C2)

By inserting Eq. (C1) into Eq. (26) for n = n′ = 0 and by
noting Eq. (C2) we obtain Eq. (29) with Eqs. (30) and (31).

APPENDIX D: ESCAPE BEHAVIORS IN THE OPEN
BOUNDARY CASE

In this appendix we discuss asymptotic escape behavior of
a particle in the open boundary case μ = 0. In this case, the
function (31) is represented as

F (x,x ′; k) = 4N

π

cos[k(x − L)] cos[k(x ′ − L)]

C(k)
, (D1)

where C(k) is given by

C(k) =
[
N + 1 + (N − 1) cos(2kL) − λ

sin(2kL)

k

]2

+
[

(N − 1) sin(2kL) + λ
1 + cos(2kL)

k

]2

. (D2)

In this case, the expansion of the function (D1) with respect to
k2 as in Eq. (34) differs between the cases of λ = 0 and λ �= 0,
so we discuss these two cases separately below.

1. Open boundary case with λ �= 0

In the open boundary case μ = 0 with nonzero potential
barrier with λ �= 0 at the junction O, the expansion coefficients
Bν(x,x ′), ν = 0,1, . . . of the function (D1) with respect to k2,
as in Eq. (33), are represented as

B0(x,x ′) = 0, (D3)

B1(x,x ′) = N

πλ2
, (D4)

B2(x,x ′) = − N

2πλ2

[
(x − L)2 + (x ′ − L)2

+ 2
N2 − 2λL − (λL)2

λ2

]
, . . . , (D5)

concretely. From the propagator of Eq. (34) with these
coefficients Bν(x,x ′), ν = 0,1, . . . , the wave function
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[Eq. (28)] for t > 0 is expressed as

�(0)(x,t) = −N (1 + i)�0

2
√

2πλ2

1

τ
3/2
t

+ 3N (1 − i)

8
√

2πλ2

[
(x − L)2�0

+�2 + 2
N2 − 2λL − (λL)2

λ2
�0

]
1

τ
5/2
t

+ · · · , (D6)

with �ν defined by Eq. (44).
From Eq. (D6) the survival probability P (t) is represented

asymptotically in time as

P (t)
t→+∞∼ 2N2�0L

πλ4

(
m

h̄t

)3

(D7)

with the constant �0 ≡ �2
0/

∫ L

0 dx ρ(0)(x,0) determined by
the initial wave function �(0)(x,0) only. Equation (D7) leads
to the relations

lim
t→+∞

P (t)

P (t)|N=1
= N2, (D8)

lim
t→+∞

P (t)

P (t)|λ=1
= 1

λ4
, (D9)

for the N - and λ-independent initial wave function �(0)(x,0).
Therefore, the N dependence (D8) of the asymptotic survival
probability for the open boundary case with λ �= 0 is the
same as that shown in Eq. (47) for λL �= −1 in the fixed
boundary case. In contrast, the asymptotic survival probability
is inversely proportional to λ4 in Eq. (D7), while in the fixed
boundary case with λL �= −1 it is inversely proportional to
(1 + λL)4 as shown in Eq. (45).

From Eqs. (3) and (D6) we also derive an asymptotic
expression of the local velocity v(0)(x,t) in the finite region
L(0) as

v(0)(x,t)
t→+∞∼ −3(L − x)

t
. (D10)

Therefore, the escape velocity (37) is given by

V (t)
t→+∞∼ 3L

t
(D11)

asymptotically in time, meaning that the escape velocity
decays as a power ∼t−1 as in the fixed boundary case, but
its value is 3 times as high as in Eq. (49).

2. Open boundary case with λ = 0

In the case of zero potential barrier with λ = 0, from
Eqs. (33) and (D1) we derive the quantities Bν(x,x ′), ν =
0,1, . . . as

B0(x,x ′) = 1

πN
, (D12)

B1(x,x ′)

= − 1

2πN

[
(x − L)2 + (x ′ − L)2 − 2L2 N2 − 1

N2

]
, . . . ,

(D13)

concretely in the open boundary case μ = 0. By using these
coefficients Bν(x,x ′), ν = 0,1, . . . and Eqs. (28) and (34),
the wave function �(0)(x,t) for t > 0 in L(0) is represented
as

�(0)(x,t) = (1 − i)�0√
2πN

1

τ
1/2
t

+ 1 + i

4
√

2πN

×
[

(x − L)2�0 + �2 − 2L2 N2 − 1

N2
�0

]
1

τ
3/2
t

+ · · · (D14)

with �ν defined by Eq. (44).
From Eq. (D14) the survival probability P (t) is represented

asymptotically in time as

P (t)
t→+∞∼ 2�0mL

πN2h̄t
. (D15)

Equation (D15) shows that the survival probability P (t) in
the case of μ = 0 and λ = 0 decays asymptotically as a power
∼t−1, as in Eq. (53) for the fixed boundary case with λL = −1.
Moreover, from Eq. (D15) we derive the relation with the same
as Eq. (54) for the λ- and N -independent initial wave function
�(0)(x,0).

From Eqs. (3), (30), and (D14) we derive the local velocity
v(0)(x,t) in the finite region L(0), which is asymptotically the
same as Eq. (48) in time. Therefore, in the open boundary case
with λ = 0 we obtain the same asymptotic escape probability
V (t) as Eq. (49).
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