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Trimers in the resonant (2 + 1)-fermion problem on a narrow Feshbach resonance: Crossover from
Efimovian to hydrogenoid spectrum
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We study the quantum three-body free-space problem of two same-spin-state fermions of mass m interacting
with a different particle of mass M , on an infinitely narrow Feshbach resonance with infinite s-wave scattering
length. This problem is made interesting by the existence of a tunable parameter, the mass ratio α = m/M . By a
combination of analytical and numerical techniques, we obtain a detailed picture of the spectrum of three-body
bound states, within each sector of fixed total angular momentum l. For α increasing from 0, we find that the
trimer states first appear at the l-dependent Efimovian threshold α(l)

c , where the Efimov exponent s vanishes, and
that the entire trimer spectrum (starting from the ground trimer state) is geometric for α tending to α(l)

c from
above, with a global energy scale that has a finite and nonzero limit. For further increasing values of α, the
least bound trimer states still form a geometric spectrum, with an energy ratio exp(2π/|s|) that becomes closer
and closer to unity, but the most bound trimer states deviate more and more from that geometric spectrum and
eventually form a hydrogenoid spectrum.
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I. INTRODUCTION

The quantum few-body problem is the subject of a renewed
interest [1], thanks to the possibility of experimentally study-
ing this problem in a resonant regime with cold atoms close to
a Feshbach resonance [2]. In this resonant regime, the s-wave
scattering length a associated to the interaction among the
particles can be made much larger in absolute value than the
interaction range. This has, in particular, allowed the physicists
to study the Efimov effect in the laboratory, until now for three
bosons and for three distinguishable particles [3], that is, the
emergence for 1/a = 0 of an infinite number of trimer states
with an accumulation point at zero energy in the vicinity of
which the spectrum forms a geometric sequence. Whereas the
existence of an infinite number of bound states is common for
long-range interactions (vanishing for diverging interparticle
distance r12 as 1/r2

12 or more slowly), this is quite intriguing
for short-range interactions. Initially predicted by Efimov for
three bosons, this effect can actually take place in more general
situations [4], in particular, in the so-called (2 + 1)-fermion
problem if the extra particle is light enough [5].

What we call here the (2 + 1)-fermion problem consists
in the system of two same-spin-state fermions of mass m

interacting with a particle of mass M of another species. It is
assumed that there is no direct interaction among the fermions,
whereas there is a resonant interaction between each fermion
and the extra particle, that is, with an infinite s-wave scattering
length, 1/a = 0. Furthermore, it is assumed that this resonant
interaction is due to an infinitely narrow Feshbach resonance,
that is, of vanishing van der Waals range b → 0 and finite
effective range re.

This concept is most easily understood in a two-channel
model. In the open channel, the particles exist in the form of
atoms, and have a weak, nonresonant direct van der Waals
interaction corresponding to the background scattering length
abg ≈ b and the interaction range b. In the closed channel, the
particles exist in the form of a bound state of a fermion with
the other-species atom, the so-called closed-channel molecule
with radius ≈b. Due to a coupling � between the two channels,

which we shall define precisely later, the closed-channel
molecule is coherently converted into a pair of atoms in the
open channel, and vice versa. For an appropriate Zeeman
tuning (with a magnetic field) of the bare energy Emol of the
closed-channel molecule with respect to the dissociation limit
of the open channel, the s-wave scattering length a between
a fermion and the other-species atom is infinite. In this case,
in simple models, the effective range re is the sum of two
contributions [6]. The first one is, as expected, of the order of
the van der Waals length b. The second one is induced by the
interchannel coupling; it is expressed as −2R∗ [7], where the
Feshbach length R∗ is positive and scales as 1/�2:

R∗ = πh̄4

�2μ2
, (1)

where μ is the reduced mass of a fermion and the other-species
particle. When the interchannel coupling � is very weak, this
second contribution dominates over the first one, R∗ � b, and
this is the narrow Feshbach resonance regime. An example
under current theoretical and experimental investigation is the
case of the interspecies Feshbach resonances of the fermionic
6Li and the fermionic 40K, which are narrow: The Feshbach
length R∗ exceeds 100 nm, whereas the van der Waals length
is a few nanometers [8–10].

To obtain the infinitely narrow Feshbach resonance model,
here for 1/a = 0, one takes the mathematical limit of a
vanishing van der Waals range b with a fixed nonzero
interchannel coupling �. The s-wave scattering amplitude
between one fermion and the extra particle for a relative wave
vector k is then [7]

fk = −1

ik + k2R∗
. (2)

This implies the absence of two-body bound states, since fk

cannot have a pole for k = iq, q > 0. The model can, however,
certainly support trimer states since the (2 + 1)-fermion
problem is subjected to the Efimov effect for a large-enough
mass ratio m/M [4,5].
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The main motivation of the present work is to study the
spectrum of trimers for this problem in free space for 1/a =
0, in particular, to determine analytically the global energy
scale of the Efimovian part of the spectrum, related to the so-
called three-body parameter. This global energy scale is out of
reach of Efimov’s zero-range theory [4] but it was determined
analytically for three bosons for a narrow Feshbach resonance
in Refs. [11,12]. Here we shall generalize this calculation to
the present (2 + 1)-fermion problem. A second motivation
is to determine the low-lying states of each Efimov trimer
series, which, in principle, are not accurately described by
Efimov theory, and to look for possible trimer states that are
not related to the Efimov effect and may, thus, appear for lower
mass ratios.

The paper is organized as follows. After a presentation
of the model and the derivation of an integral equation à la
Skorniakov-Ter-Martirosian [13] for the three-body problem
in momentum space in Sec. II, analytical solutions of this
integral equation are obtained in limiting cases in Sec. III. In
the Sec. IV, we analytically explore the physics of the trimers;
of particular interest are the exact results on the global energy
scale in the Efimovian part of the spectrum, see Sec. IV B,
and the study of an hydrogenoid part of the spectrum in
the Born-Oppenheimer regime, see Sec. IV C. An efficient
numerical solution of the integral equation is used in Sec. V
to explore intermediate regimes not covered by the analytics.
We conclude in Sec. VI.

II. THE MODEL AND THE GENERAL MOMENTUM
SPACE EQUATION

A tractable though realistic description of a Feshbach
resonance is obtained with the so-called two-channel models,
where the particles exist either in the form of atoms in the
open channel or in the form of molecules in the closed channel
[2,14–20]. We use here the same free-space two-channel model
Hamiltonian H as in Ref. [21] written in momentum space in
second quantized form in terms of the fermionic annihilation
operators ck, the extra-particle annihilation operators ak and
the closed-channel molecule annihilation operators bk:

H = Hat + Hmol + Hat−mol + Hopen, (3)

with

Hat =
∫

d3k

(2π )3
[Ekc

†
kck + αEka

†
kak], (4)

Hmol =
∫

d3k

(2π )3

(
Emol + α

1 + α
Ek

)
b
†
kbk, (5)

Hat−mol = �

∫
d3k1d

3k2

[(2π )3]2
χ (k12)

[
b
†
k1+k2

ak1ck2 + H.c.
]
, (6)

Hopen = g0

∫
d3k1d

3k2d
3k3d

3k4

[(2π )3]4
χ (k12)χ (k43)

× (2π )3δ(k1 + k2 − k3 − k4)a†
k4

c
†
k3

ck2ak1 . (7)

Whereas the ck obey the usual free-space anticommutation
relations

{ck,c
†
k′ } = (2π )3δ(k − k′), (8)

the statistical nature (fermionic or bosonic) of the extra particle
and of the closed-channel molecule does not need to be
specified here, since there will be at most one of the particles
in the state vector. Simply, the ck and c

†
k commute with ak

and bk. In the kinetic energy terms of the atoms Hat and of
the closed-channel molecule Hmol, we have introduced the
free fermion dispersion relation Ek = h̄2k2/(2m) and the mass
ratio of a fermion to the extra particle:

α ≡ m

M
. (9)

The internal energy Emol of the closed-channel molecule is
counted with respect to the dissociation limit of the open
channel and is experimentally adjusted thanks to the Zeeman
effect by tuning of the external magnetic field. Hat−mol

represents the coherent interconversion of a closed-channel
molecule into one fermionic atom and the extra particle, due
to the coupling between the closed channel and the open
channel. It involves the interchannel coupling constant �

and is regularized by the momentum space cutoff function
χ , assumed to be real and rotationally invariant, that tends to
1 at zero momentum and that rapidly tends to zero at large
momenta with a width 1/b, where the interaction range b

is of the order of the van der Waals length. Note that the
argument of the cut-off function χ is the relative wave vector
of a fermion (of momentum h̄k2) with respect to the extra
particle (of momentum h̄k1):

k12 ≡ μ

(
k2

m
− k1

M

)
= k2 − αk1

1 + α
, (10)

where

μ = mM

m + M
(11)

is the reduced mass to preserve Galilean invariance. Finally,
Hopen models the direct interaction between atoms in the open
channel, in the form of a separable potential with bare coupling
constant g0 and the same cut-off function χ as in Hat−mol. This
direct interaction is characterized by the so-called background
scattering length abg. The inclusion of both Hat−mol and Hopen

allows us to recover the usual expression for the scattering
length as a function of the magnetic field B [2],

a(B) = abg

(
1 − �B

B − B0

)
, (12)

if Emol is taken to be an affine function of B. The quantity �B

is the so-called magnetic width of the Feshbach resonance.
We now derive from the model Hamiltonian a momentum

space integral equation à la Skorniakov-Ter-Martirosian [13]
for the three-body problem of two fermions and one extra
particle, closely following Ref. [21] downgraded from the
3 + 1 to the 2 + 1 case. In the search for bound states, we take
a negative eigenenergy, E < 0, and we express Schrödinger’s
equation 0 = (H − E)|�〉 for a ket of zero total momentum
and being the sum of general ansatz with zero or one
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closed-channel molecule, |�〉 = |ψ3 at〉 + |ψ1 at+1 mol〉, with

|ψ3 at〉 =
∫

d3k1d
3k2d

3k3

[(2π )3]3
(2π )3δ(k1 + k2 + k3)

×A(k1,k2,k3)a†
k1

c
†
k2

c
†
k3

|0〉,
(13)

|ψ1 at+1 mol〉 =
∫

d3k

(2π )3
B(k)b†−kc

†
k|0〉.

Thanks to the fermionic antisymmetry we can impose that
A(k1,k2,k3) is an antisymmetric function of k2 and k3. On the
contrary, a fermionic atom and a closed-channel molecule are
distinguishable objects and there is no exchange symmetry
constraint on the function B(k). Projecting Schrödinger’s
equation on the subspace with three atoms, and using E < 0,
we are able to express A in terms of B and of an auxiliary
unknown function B̃ obtained by a partial contraction of A:

B̃(k3)=
∫

d3k1d
3k2

[(2π )3]2
χ (k12)(2π )3δ(k1 + k2 + k3)A(k1,k2,k3).

More precisely,

A(k1,k2,k3) = �/2

E − (αEk1 + Ek2 + Ek3 )
× [χ (k12)D(k3) − χ (k13)D(k2)], (14)

where the convenient unknown function is actually D such
that

�D(k) = �B(k) + 2g0B̃(k). (15)

Plugging the expression (14) of A into the definition of B̃ gives
the first important equation,

2

�
B̃(k3) =

∫
d3k1d

3k2

[(2π )3]2
χ (k12)

(2π )3δ(k1 + k2 + k3)

E − (αEk1 + Ek2 + Ek3 )
× [χ (k12)D(k3) − χ (k13)D(k2)]. (16)

The second important equation is obtained by projecting
Schrödinger’s equation on the subspace with one atom and
one closed-channel molecule (in which case the direct open-
channel interaction cannot contribute):

2�B̃(k) = [Erel(k) − Emol]B(k), (17)

where we have introduced what we call the relative energy

Erel(k) = E −
(

Ek + α

1 + α
Ek

)
. (18)

This is indeed the relative energy of one of the fermions and of
the extra particle, knowing that the second fermion has a wave
vector k, since one subtracts in Eq. (18) from the total energy
E the kinetic energy Ek of the second fermion and the center-
of-mass kinetic energy of the first-fermion-plus-extra-particle.
One expresses B̃ in terms of D by elimination of B between
(15) and (17). One then eliminates B̃ between the resulting
equation and (16) to finally obtain a closed equation for D as
follows:

0 = μD(k3)

2πh̄2f [Erel(k3)]
−

∫
d3k1d

3k2

[(2π )3]2
(2π )3δ(k1 + k2 + k3)

× χ (k12)χ (k13)D(k2)

E − (αEk1 + Ek2 + Ek3 )
. (19)

The function f is related to the two-body T matrix for the
scattering of a fermion and of the extra particle [21],

〈kf |T (ε + i0+)|ki〉 = −2πh̄2

μ
χ (kf )χ (ki)f (ε + i0+), (20)

where the relative wave vectors ki , kf and the energy ε are
arbitrary (the T matrix is not necessarily on shell in that
expression).

The general expression of f is given in Ref. [21]. Here,
however, we shall concentrate on the limit of an infinitely
narrow Feshbach resonance. We thus take the zero-range limit
b → 0, in which case the cut-off function χ (of width ∝ 1/b)
tends to unity. It is assumed that there is no resonant inter-
action in the open channel, so the corresponding background
scattering length abg is O(b) and also tends to zero. On the
contrary, the interchannel coupling � is kept fixed to keep a
nonzero effective range, and Emol is adjusted to keep a fixed
value of the scattering length a. In this case, the function f for
a positive and fixed energy ε > 0 (so μb2ε/h̄2 → 0) simply
tends to the s-wave scattering amplitude fk on an infinitely
narrow Feshbach resonance [7]:

f (ε + i0+) = fk (21)

with

fk = − 1

a−1 + ik + k2R∗
. (22)

The Feshbach length R∗ is expressed in terms of the width �B

of the Feshbach resonance as [7]

R∗ = h̄2

2μabgμb�B
, (23)

where the differential magnetic moment between the closed
and open channels is μb = dEmol/dB taken for B = B0. In
Eq. (22), the relative wavenumber k = (2με)1/2/h̄ since the
energy is positive. For a negative energy, the function f has
the same expression (21) if one uses the analytic continuation
k = i(−2με)1/2/h̄ in fk [22].

It is convenient to represent the eigenenergy E in terms of
a wave number, setting

E = −h̄2q2

2μ
, (24)

where we recall that μ = mM/(m + M) is the reduced mass
and q � 0. Similarly, the relative energy is represented by a
wave number, Erel(k) = −h̄2q2

rel(k)/(2μ) leading to

qrel(k) =
[
q2 + 1 + 2α

(1 + α)2
k2

]1/2

. (25)

For an infinitely narrow s-wave Feshbach resonance with
a scattering length a, the integral equation resulting from
Schrödinger’s equation, the equivalent of the Skorniakov-Ter-
Martirosian equation [13] for our problem, is then

0 = [−a−1 + qrel(k) + q2
rel(k)R∗

]
D(k)

+
∫

d3k′

2π2

D(k′)
q2 + k2 + k

′2 + 2α
1+α

k · k′ . (26)

In that equation, for the sake of generality, we have kept an
arbitrary value of the scattering length a. In what follows, we
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shall restrict our study to the exact resonance location where
1/a = 0.

We shall also take advantage of rotational invariance to
reduce the integral equation to an unknown function of a
single variable only, as done in Ref. [13]. The eigenstates
of the Hamiltonian H may be assumed of a fixed total angular
momentum of angular quantum number l. Without loss of
generality one can also assume that the angular momentum
along the quantization axis z is zero. The corresponding ansatz
for D is, thus,

D(k) = Y 0
l (k)f (l)(k), (27)

where the notation Y
ml

l (k) stands for the spherical harmonics
Y

ml

l (θ,φ), where θ and φ are, respectively, the polar and
azimuthal angles of the vector k in a system of spherical
coordinates of polar axis z. The unknown function f (l) then
depends only on the modulus k of k. We see that this also fixes
the parity of the eigenstate to the value (−1)l . In the integral
over k′ in Eq. (26), we then perform the change of variable of
unit Jacobian,

k′ = RK, (28)

where R is the rotation in R3 defined by the Euler decompo-
sition of its inverse:

R−1 = Rz(−φ)Ry(θ )Rz(π − φ), (29)

where the notation Ri(α) stands for the rotation of an angle
α around the axis i ∈ {x,y,z}. This choice ensures that
k/k = Rez, where ez is the unit vector defining the z axis.
In the denominator of the integrand of (26), the scalar product
k · k′ is then transformed as kez · K, so the denominator is
invariant by rotation of K around z. In the numerator we
use the transformation of spherical harmonics under rotation,
see Eqs. (8.6-2) and (8.6-1) in Ref. [23], and the relation
[Yml

l (θ, − φ)]∗ = Y
ml

l (θ,φ):

Y 0
l (RK) =

(
4π

2l + 1

)1/2 l∑
ml=−l

Y
ml

l (k)Yml

l (K), (30)

which, in particular, allows us to pull out the factors Y
ml

l (k)
expected from rotational invariance. The integration over K is
then conveniently performed in spherical coordinates of polar
axis z. All the terms with ml �= 0 in Eq. (30) vanish in the
integration over the azimuthal angle of K. From the expression
of the spherical harmonics in terms of the Legendre polynomial
of degree l [23],

Y 0
l (K) =

(
4π

2l + 1

)−1/2

Pl(u = K · ez/K), (31)

we finally obtain the reduced integral equation to be solved in
the sector of angular momentum l, for 1/a = 0:

0 = [
qrel(k) + q2

rel(k)R∗
]
f (l)(k)

+
∫ +∞

0

dK

π
f (l)(K)

∫ 1

−1
du

Pl(u)K2

q2 + k2 + K2 + 2α
1+α

kKu
.

(32)

III. ANALYTICAL SOLUTIONS IN PARTICULAR CASES

Several remarkable analytical techniques are now available
to solve the three-body problem in some appropriate limiting
cases [5,11,12,24,25]. Whereas we do not know how to solve
Eq. (32) analytically in general, it is possible to find solutions
when there is an extra symmetry available, that is, scale
invariance. The most standard regime corresponds to the limit
R∗ → 0, in which case our model reduces to the so-called
zero-range or Bethe-Peierls model, where the interactions
are included via two-body contact conditions on the wave
function [26]. Since 1/a = 0, these contact conditions are
indeed scaling invariant, which allows us to fully solve the
problem [4,27]. Because the zero-range model is usually
solved in position space, it is interesting here to briefly show
the calculations in momentum space. In the regime of interest,
where the Efimov effect takes place, the zero-range model is,
however, not well defined, and an extra three-body condition
has to be introduced to make it self-adjoint [28], involving the
three-body parameter.

The relevant case here, therefore, is R∗ > 0. The existence
of such a finite-length scale characterizing the interactions
breaks the scale invariance. Fortunately, as shown in Ref. [12],
if one restricts the study to the zero-energy case E = 0,
equations such as Eq. (32) can still be solved analytically.
This gives access to the three-body parameter, and, thus, to the
characterization of the Efimov spectrum of trimers.

A. Zero-range case (R∗ = 0) at zero energy

For R∗ = 0 and at zero energy q = 0, the integral Eq. (32)
is manifestly scaling invariant: If f (l)(k) is a solution, the
function f

(l)
λ (k) = f (l)(k/λ) is also a solution, ∀λ > 0, and we

expect that the two functions f (l) and f
(l)
λ are proportional. We

thus seek a solution in the form of a power law,

f (l)(k) = k−(s+2). (33)

The form of the exponent results from the general theory (see
section 3.3 in Ref. [29]): For an N -body problem (here N = 3)
and for s to be a direct generalization of the exponent s0

introduced by Efimov [4], the exponent in Eq. (33) should be
−[s + (3N − 5)/2]. For convergence issues, it is simpler to
assume in explicit calculations that s = iS, where S is real.
By analytic continuation, the result, however, also extends to
real s, as also shown by the real-space calculation [30]. We
inject the ansatz [Eq. (33)] in Eq. (32) with q = 0, R∗ = 0,
and we perform the change of variable K = kex to obtain an
equation for s,

0 = �l(s), (34)

with the function

�l(s) ≡ (1 + 2α)1/2

1 + α
+

∫ 1

−1
duPl(u)

∫ +∞

−∞

dx

2π

e−iSx

cosh x + α
1+α

u
.

(35)
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Using contour integration and the Cauchy residue formula, the
integral over x may be calculated: Setting θ = arccos

(
α

1+α
u
)
,

so θ ∈ [0,π ], we obtain∫ +∞

−∞

dx

2π

e−iSx

cosh x + α
1+α

u
= sin(sθ )

sin(sπ ) sin θ
. (36)

Successive integration over u is simplified by taking θ rather
than u as integration variable, with a Jacobian that simplifies
with the factor sin θ in the denominator of Eq. (36). Following
[5] we then parametrize the mass ratio by an angle ν ∈]0,π/2[:

ν = arcsin
α

1 + α
= arcsin

m

m + M
, (37)

which leads to the remarkable property

cos ν = (1 + 2α)1/2

1 + α
. (38)

Also using arccos[α/(1 + α)] = π
2 − ν, we obtain

�l(s) = cos ν + 1

sin ν

∫ π
2 +ν

π
2 −ν

dθ Pl

(
cos θ

sin ν

)
sin(sθ )

sin(sπ )
. (39)

This can be further simplified, taking advantage of the parity
of the Legendre polynomial, Pl(−u) = (−1)lPl(u), for all u

by shifting the integration variable θ by π/2. Depending on
the even or odd parity of the angular momentum l this reduces
to

�l(s)
l even= cos ν + 1

sin ν

∫ ν

0
dθPl

(
sin θ

sin ν

)
cos(sθ )

cos(sπ/2)
, (40)

�l(s)
l odd= cos ν − 1

sin ν

∫ ν

0
dθPl

(
sin θ

sin ν

)
sin(sθ )

sin(sπ/2)
. (41)

Equation (41) will be quite useful to obtain analytical results
on the Efimovian trimer spectrum in the large α limit; see
Secs. IV A and IV B.

An explicit expression of �l(s) as a sum of a finite number
of simple functions of s may be obtained by representing the
function Pl

(
sin θ
sin ν

)
as a Fourier sum, that is, a sum of cos nθ ,

0 � n � l, n even, for an even l and a sum of sin nθ , 1 � n � l,
n odd, for an odd l. The coefficients are polynomials of
1/ sin ν that are simple to calculate analytically from the
known coefficients of the Legendre polynomials Pl(u) [31].
The resulting integrals over θ , e.g., of sin(nθ ) sin(sθ ), are
then straightforward to evaluate. We finally obtain the explicit
formula valid for arbitrary parity of l:

�l(s) = cos ν + 1

sin ν cos[(s + l)π/2]

×
l∑

n=0

cn

{
sin[(s + n)ν]

s + n
+ (−1)l

sin[(s − n)ν]

s − n

}
.

(42)

The coefficients cn are zero for l − n odd. For l − n even,

cn =
(

1 − 1

2
δn,0

)
(−1)(l+n)/2

(4 sin ν)l

×
(l−n)/2∑

k=0

(−4 sin2 ν)k(2l − 2k)!

k!(l − k)!
(

l−n
2 − k

)
!
(

l+n
2 − k

)
!
, (43)

where δij is the usual Kronecker δ.

Equation (42) has the interesting feature that the coefficients
are s independent, which makes the numerical evaluation
of �l(s) as a function of s particularly efficient. As a test,
it is, however, interesting to compare to the transcendental
equation for s obtained by the direct calculation à la Efimov
in position space. As detailed in Appendix A, introducing the
hypergeometric function 2F1 as in Ref. [32] to solve some
differential equation, we generalize the formulas of Ref. [32]
to an arbitrary mass ratio, a generalization that was done with
the adiabatic hyperspherical method in Ref. [33]:

�l(s) = cos ν + (−1)l sinl ν
�( l+1+s

2 )�( l+1−s
2 )

2π1/2�(l + 3
2 )

× 2F1

(
l + 1 + s

2
,
l + 1 − s

2
,l + 3

2
; sin2 ν

)
, (44)

where � is the � function. A variant of Eq. (44) will be quite
useful to obtain analytical results on the Efimovian trimer
spectrum in the large l limit; see Secs. IV A and IV B.

B. Zero-range case (R∗ = 0) at negative energy

Once the imaginary values of the Efimov exponent s are
determined by solution of the transcendental equation �l(s) =
0, which is possible for l odd and α larger than a critical
value α(l)

c , see Sec. IV A, one can determine the corresponding
Efimovian trimer solutions of the zero-range theory at arbitrary
energies, in free space and also in an isotropic harmonic trap,
using the general real-space formalism relying on separability
of the Bethe-Peierls problem in hyperspherical coordinates
[27,29,30]. Here we find it interesting to deduce from the
real-space solution the explicit form of the momentum-space
solution, restricting for simplicity to the values of the mass
ratio α and the (necessarily odd) angular momentum l such
that the Efimov effect takes place. This may be useful, for
example, to calculate the atomic momentum distribution of
the Efimov trimer states in the zero-range limit, as was done
for three bosons in Ref. [34].

The idea to obtain D(k) is to take the limit of the position
r1 of the extra particle and the position r2 of a fermionic atom
converging to the same location, with a fixed value of their
center-of-mass position and of the position r3 of the second
fermionic atom. According to the Bethe-Peierls framework,
the atomic wave function ψ(r1,r2,r3) shall then diverge as
1/r , with r = r1 − r2, with a factor depending on the Jacobi
coordinate x = r3 − (Mr1 + mr2)/(M + m):

ψ(r1,r2,r3)
x fixed∼
r→0

A(x)

r
. (45)

One then calculates A(x) in two different ways. First, one
uses the Efimov solution discussed in Appendix A: From
Efimov’s ansatz [Eq. (A1)] and from the solution F (R) ∝
Ks[(m̄/μ)1/2qR] of the hyper-radial Eq. (A6), where m̄ is an
arbitrary mass unit and Ks a Bessel function, one finds for a
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vanishing angular momentum along z,

A(x) ∝ Y 0
l (x)

Ks(Qx)

x
, (46)

where we have set

Q ≡ q

(
μam

μ

)1/2

= 1 + α

(1 + 2α)1/2
q = q

cos ν
, (47)

where μam is the reduced mass of one fermionic atom of
mass m and one pair of fermion-plus-extra-particle of mass
m + M . Second, after inspection of Eq. (13), one calculates
the atomic wave function ψ by taking the Fourier transform
of A(k1,k2,k3)(2π )3δ(k1 + k2 + k3), where A is given by
Eq. (14), taking the functions χ equal to unity. As expected,
the contribution involving χ (k12)D(k3) is the one leading
to a divergence of ψ for r → 0. Integration over k1 is
straightforward thanks to the factor (2π )3δ(k1 + k2 + k3).
Integration over k2 then can be done after the change of
variable k2 = k′

2 − α
1+α

k3 by use of

∫
d3k′

2

(2π )3

e−ik′
2·r

k
′2
2 + K2

= e−Kr

4πr
, (48)

where K = [q2 + 1+2α
(1+α)2 k

2
3]1/2 > 0. For r → 0, one approxi-

mates e−Kr/r with 1/r and one obtains

A(x) ∝
∫

d3k3

(2π )3
D(k3)eik3·x. (49)

We thus set, for an arbitrary choice of normalization leading
to a dimensionless function,

D(k) =
∫

d3x e−ik·xY 0
l (x)

Q2Ks(Qx)

x
. (50)

A first technique to calculate the integral in Eq. (50) is to
use the expansion of the plane wave on spherical harmonics:
According to the identity (8.7-13) in Ref. [23], the amplitude
of the function x → eik·x on the spherical harmonics Y

ml

l (x)
is 4πiljl(kx)[Yml

l (k)]∗, where the spherical Bessel function is
real and may be expressed in terms of the usual Bessel function
J :

jl(kr) =
(

π

2kr

)1/2

Jl+1/2(kr). (51)

It turns out that the integral over R+ of the product of a power
law and of two Bessel functions may be expressed exactly in
terms of the hypergeometric function 2F1, see relation 6.576(3)
in Ref. [31]:

D(k) = 2π3/2(−i)l(k/Q)lY 0
l (k)

∣∣� (
1 + l+s

2

)∣∣2

�(l + 3/2)

× 2F1

(
1 + l + s

2
,1 + l − s

2
,l + 3

2
; −k2/Q2

)
. (52)

This immediately shows that D(k) vanishes as kl for k → 0,
which is generically the case for a regular function of angular
momentum l. It also allows us to obtain the large momentum
behavior of D(k) [35],

D(k) =
k/Q→+∞

iπ2Q2

k2 cos(πs/2)
Y 0

l (k)

{(
2k

Q

)s
[

(l−1)/2∏
n=0

s − (2n + 1)

s + 2n

] [
1 + (l + s − 1)(l − s + 2)

4(1 − s)(k/Q)2
+ O(Q/k)4

]
+ c.c.

}
, (53)

which will play a crucial role in what follows to obtain the
three-body parameter at nonzero R∗. In particular, Eq. (53)
shows that k2D(k) is asymptotically an oscillating function of
k/Q that is log-periodic: The same pattern is reproduced when
k is multiplied by exp(2π/|s|). For k2D(k) to approach this
asymptotic oscillating function, the very stringent condition
k/Q � exp(2π/|s|) is, fortunately, not required; it is simply
sufficient that k/Q � 1 (for l and |s| not much larger than
unity).

A second technique to calculate Eq. (50) is to use spherical
coordinates of axis the quantization axis z. The integral over
the azimuthal angle φ is straightforward. The integral over the
modulus x can be performed if one uses the integral repre-
sentation 8.432(1) of the Bessel function given in Ref. [31],
Ks(z) = ∫ +∞

0 dt exp(−z cosh t) cosh(st). In the integral over
the polar angle θ , one replaces Y 0

l (x) by its expression in terms
of the Legendre polynomial Pl(u) with the variable u = cos θ ,
and one integrates by parts the factor 1/(cosh t + iku/Q)2 that
appeared after integration over x. The integral over t can then
be performed with contour integration:

∫ +∞

−∞

dt

2π

e−iSt

cosh t + i sinh β
= sin[S(β + iπ/2)]

i sinh(Sπ ) cosh β
, (54)

where S and β are real quantities. Changing to the variable
β = arsinh(ku/Q) in the integral over u, one obtains

D(k) = Y 0
l (k)

2iπ2Q2

k cosh(Sπ/2)

{
cos[Sarsinh(k/Q)]

(k2 + Q2)1/2

−1

k

∫ arsinh(k/Q)

0
dβ P ′

l

(
Q sinh β

k

)
cos(Sβ)

}
,

(55)

where we have set s = iS. Generalizing the technique of
Sec. III A to the derivative P ′

l of the Legendre polynomial
allows a direct evaluation of D(k) without the need of
hypergeometric functions.

C. Case R∗ > 0 at zero energy

In this subsection, as in the previous one, we restrict our
study to the case where an Efimov effect takes place: Based
on the results of Sec. IV A, the angular-momentum quantum
number l is odd and the mass ratio α is larger than the
corresponding critical value α(l)

c , so the function �l(s) has a
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single purely imaginary root sl = iSl with positive imaginary
part,

�l(iSl) = 0 with Sl > 0. (56)

As remarkably shown for three bosons in Ref. [12] the narrow
Feshbach resonance model can be solved analytically at zero
energy, which gives access to the three-body parameter, that is,
to the energy scale in the asymptotically geometric Efimovian
trimer spectrum.

The underlying idea of the solution is that, at zero energy
and after division of the overall Eq. (32) by a factor k, the
integral part of the resulting equation is strictly scale invariant.
If one takes as variable the logarithm of k rather than k, this
strict scale invariance corresponds to a translation invariance,
which suggests that the integral part is simply a convolution
product and leads one to perform a Fourier transform with
respect to ln k. More precisely, we use the following ansatz:

f (l)(k) = e−2x F (l)(x) with x = ln (kR∗ cos ν) , (57)

where the factor e−2x shall lead to a convolution kernel with
the desired even function and cos ν is a function of the mass
ratio given by Eq. (38). Dividing Eq. (32) for E = 0 by k,
injecting the ansatz of Eq. (57) into the resulting equation,
and, finally, multiplying by e2x , we obtain

0 = (1 + ex)F (l)(x) cos ν +
∫ +∞

−∞
dXKl(X − x)F (l)(X)

(58)

with the kernel

Kl(x) = 1

2π

∫ 1

−1
du

Pl(u)

cosh(x) + α
1+α

u
. (59)

As expected, Eq. (58) is the convolution product. We thus
introduce the Fourier representation of the function F (l) [36]:

F (l)(x) =
∫ +∞+i0+

−∞+i0+

dS

2π
eiSxF̃ (l)(S). (60)

We expect that the function F (l)(x) oscillates periodically for
x → −∞: When x → −∞, the momentum k tends to 0, and
it becomes much smaller than 1/R∗. One enters a universal
zero-energy, zero-range regime where solutions of the type
(33) are obtained, with s purely imaginary for an Efimovian
solution. According to Eq. (57), this implies that F (l)(x) has
plane-wave oscillations at x → −∞, with a wave number ±Sl

since both s = iSl and s = −iSl are roots of �l(s) = 0. More
precisely, we expect that there exist coefficients A± such that

F (l)(x) =
x→−∞ A+eiSlx + A−e−iSlx + o(1). (61)

This will be checked a posteriori. As a consequence, the
Fourier transform F̃ (l)(S) has singularities on the real axis.
More precisely, Eq. (61) leads to the natural conclusion that

F̃ (l)(S) has simple poles in S = ±Sl. (62)

This is why the integration contour in Eq. (60) is infinitesimally
shifted upward in the complex plane. This is a standard
procedure in physics; see, for example, the expression of
the unitary evolution operator as a Fourier transform of the
resolvent for a system with a time-independent Hamiltonian

[37]. In this Fourier representation, the convolution becomes
a product, and one needs to calculate the Fourier transform
K̃l(S) of the kernel function K . Exchanging the integration
over u and x, one then recovers exactly the integral in Eq. (35)
knowing that s = iS in that equation so

K̃l(S) = �(iS) − cos ν. (63)

The only subtle part is the determination of the Fourier
representation of the function x → exF (l)(x). Multiplying (60)
by ex gives

exF (l)(x) =
∫ +∞+i0+

−∞+i0+

dS

2π
ei(S−i)xF̃ (l)(S). (64)

This is not directly of the Fourier form of Eq. (60) because
S − i rather than S appears inside the exponential. Now, if the
integrand, that is, here, in practice, the function S → F̃ (l)(S),
is a meromorphic function with no singularities (no poles) in
the band 0+ � Im z � 1 + 0+, that is, 0 < Im z � 1, where
z ∈ C, we can shift the integration contour in Eq. (64) upward
by one unity along the vertical axis in the complex plane to
replace S − i with S. Under the hypothesis

F̃ (l)(z) has no singularities for 0 < Im z � 1, (65)

we thus have

exF (l)(x) =
∫ +∞+i0+

−∞+i0+

dS

2π
eiSxF̃ (l)(S + i), (66)

which is exactly of the Fourier functional form (60); that
is, the function S → F̃ (l)(S + i) is the Fourier transform of
the function x → exF (l)(x). This procedure is summarized on
Fig. 1, where the original [Eq. (64)] and shifted [Eq. (66)]
integration contours are plotted and where the locations of the
poles of F̃ (l)(z) are also indicated. Equation (58) then reduces
to

0 = F̃ (l)(S + i) cos ν + �l(iS)F̃ (l)(S) (67)

for all real S.
To solve Eq. (67) we follow Ref. [12]. We, first, introduce

the ansatz

F̃ (l)(S) = π

sinh[π (S + Sl)]
Cl(S), (68)

where we recall that iSl is the positive-imaginary-part root of
�l(s). The factor with the hyperbolic sine is carefully chosen
to give a minus sinus under translation S → S + i, a priori in-
troducing poles in z = −Sl , z = −Sl ± i, z = −Sl ± 2i, etc.,
for the function F̃ (l)(z). This does not introduce singularities in
the band 0 < Im z � 1 provided that the function Cl(z) tends
to zero for z → −Sl + i, a point to be checked a posteriori.
The unknown function Cl solves

Cl(S + i) cos ν = �l(iS) Cl(S) (69)

on the real axis. According to the expectation of Eq. (62), the
function Cl(S) has no pole in S = −Sl , since the 1/ sinh factor
in Eq. (68) already has a simple pole in S = −Sl , and Cl(S)
has a simple pole in S = Sl , since the 1/ sinh factor has no
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Re z

Im z

original contour shifted contour

S
l

-S
l

z=S+i+i 0
+

z=S+i 0
+

2

-2
0 1/2-1/2

v
0
+i

FIG. 1. (Color online) In the complex plane, illustration of the
procedure used to determine the Fourier transform of the function
x → exF (l)(x): Under the a posteriori checkable hypothesis of
Eq. (65) (no pole of F̃ (l)(z) in the gray area), one can shift the
integration contour in Eq. (64) upward by one unity along the vertical
axis to obtain the Fourier representation [Eq. (66)] of x → exF (l)(x).
(Circles) Poles of F̃ (l)(z) due to the function hyperbolic sine in the
denominator of Eq. (68). (Pluses) Poles of F̃ (l)(z) due to the factors
�(1 + iz − ivn), n � 0, in the numerators of the infinite product
(71). (Black crosses) Poles of F̃ (l)(z) due to the factor �(iSl − iz) in
Eq. (71). Colored crosses on the Im z < 0 part of the imaginary axis:
Poles of F̃ (l)(z) due to the factors �(−iun − iz) for n > 0 in Eq. (71)
[(red) n = 1; (blue) n = 2; (violet) n = 3; (cyan) n = 4]; from top
to bottom, n = 1 (three crosses), n = 2 (two crosses), two triplets
n = 1,2,3, and a quadruplet n = 1,2,3,4. The figure corresponds to
l = 1 and α = 20.

pole there [38]. As in Ref. [12] one then uses the Weierstrass
representation

�l(iS) = cos ν
∏
n∈N

S2 − u2
n

S2 − v2
n

, (70)

where the overall factor cos ν is the limit of �l(iS) for S → ∞;
see Eq. (42). In Eq. (70), u0 = Sl is the real positive root
of the function S → �l(iS), −u0 is the real negative root,
and the ±un, n � 1, are the purely imaginary roots of S →
�l(iS), Im un > 0. The un’s are sorted by ascending order
of their imaginary parts, and, for general values of the mass
ratio α, they form an irregular, aperiodic sequence. They, of
course, depend on the angular momentum l. On the contrary,
for general values of the mass ratio α, the poles of S → �(iS)
are found from Eq. (41) to simply be ±vn, with vn = i(2n +
l + 1) for all integers n � 0 [39]. Finally, one can check as in
Ref. [12] that the function Cl is given by the infinite product

Cl(S) = �(iSl − iS)�(1 + iS − iv0)

�(1 + iS + iSl)�(−iS − iv0)

×
∏

n∈N∗

�(−iS − iun)�(1 + iS − ivn)

�(−iS − ivn)�(1 + iS − iun)
, (71)

where we recall that the un and vn depend on l. In particular,
one can check that this expression vanishes for S → −Sl + i,
as required above Eq. (69), and has no pole in the band 0 <

Im z � 1 of the complex plane [40]. Together with Eq. (68),
this constitutes the desired solution at zero energy for R∗ > 0.

An important application of this result is to calculate the
previously mentioned low-k or x → −∞ behavior [Eq. (61)]
of the solution [41], which is a universal regime that has
to match the zero-range model. Since x < 0, in applying
the usual contour integration technique to Eq. (60), we
close the integration contour following a half-circle in the
lower part Im z < 0 of the complex plane. According to the
Cauchy residue formula, one gets for F (l)(x) a sum of terms
proportional to eiznx , where the sum is taken over all poles zn

of the integrand in the lower half-plane (see the pole locations
in Fig. 1). For x → −∞, the poles with a nonzero imaginary
part have a contribution that vanishes as O(ex), and the sum is
dominated by the two poles z = ±Sl on the real axis, which
are the only ones to give purely oscillating, nondecaying
contributions. The corresponding residues of F̃ (l)(S) can be
deduced from

F̃ (l)(S) ∼
S→−Sl

Cl(−Sl)

S + Sl

and F̃ (l)(S) ∼
S→Sl

[Cl(−Sl)]∗

S − Sl

.

(72)

The value of the first residue directly results from the ansatz
of Eq. (68) and the absence of pole of the function Cl(S) in
S = −Sl . If one further uses Eq. (69) for S → Sl , one finds for
the second residue [π/ sinh(2πSl)]Cl(Sl + i) cos ν/i�′

l(iSl).
Properties of the explicit form of Eq. (71) and of the � function,
as in Ref. [12], lead to Eq. (72) [42]. Finally, turning back to
the k variable and to the function D:

D(k) =
kR∗→0+

−i

(
Q

qR∗k

)2

Y 0
l (k)

{
[Cl(−Sl)]

∗(qR∗k/Q)iSl

+ c.c. + O(qR∗k/Q)} , (73)

where we recall that Sl > 0 and q/Q = cos ν as in Eq. (47).
The asymptotic form in the right-hand side of Eq. (73) is
satisfactory: It is indeed a superposition of solutions of the
zero-range model at zero energy; see Eq. (33). A first important
point is that it is actually a specific linear combination of the
solutions with exponents s = ±iSl , with relative amplitudes
depending on the Feshbach length R∗. This selection of the
right linear combination amounts to adjusting the three-body
parameter to its right value in the Danilov three-body contact
conditions [28]. Equation (73) thus constitutes a microscopic
derivation of this three-body parameter in the limit of an
infinitely narrow Feshbach resonance [11,12]. A second
important point is that the solution D(k) starts approaching
the log-periodic oscillatory asymptotic form (kR∗ cos ν)±iSl

as soon as kR∗ cos ν < 1, and there is no need to require
that kR∗ cos ν < e−2π/Sl . There is no need to require that the
oscillatory form has performed at least one oscillation to have
D(k) well approximated by it.

IV. ANALYTICAL RESULTS ON TRIMER STATES

In this section, we develop a physical application of the
particular analytical solutions of the previous section. From
the zero-energy and zero-range solution, we first determine, for
each value of the angular momentum l, the critical mass ratio
α(l)

c leading to the Efimov effect and the corresponding purely
imaginary Efimov exponent sl = iSl , with the convention
Sl > 0. Accurate asymptotic estimates for these quantities
are obtained and are compared to the Born-Oppenheimer
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approximation. Second, from a matching of the (E < 0,R∗ =
0) solution to the (E = 0,R∗ > 0) solution, we determine
the Efimovian part of the spectrum, in particular, the global
energy scale E

(l)
global appearing in that geometric spectrum. The

dependence of E
(l)
global on the mass ratio, close to the Efimov

threshold α → α(l)
c and arbitrarily far from it (α → +∞),

is studied. Also the variation of E
(l)
global with the angular

momentum l, in particular for α close to the critical mass
ratio α(l)

c , is analyzed. Third, using the Born-Oppenheimer
approximation expected to be asymptotically exact for a
diverging mass ratio, we show that the hydrogenoid character
gradually takes over the Efimovian character in that limit,
except in a vicinity of the E = 0 accumulation point (which
remains Efimovian).

A. Efimovian threshold α(l)
c and exponent sl

As a physical application of Eqs. (41), (42), and (44), we
determine the values of the mass ratio α and of the angular
momentum l such that the Efimov effect takes place; that
is, the transcendental equation �l(s) = 0 admits some purely
imaginary solutions.

A useful guide is the Born-Oppenheimer approximation [5]
that becomes exact in the limiting cases of vanishing or
diverging mass ratio α. It indicates that the Efimov effect
should take place for large-enough values of α and for
odd values of l. In the limit α → 0, the extra particle is,
indeed, infinitely massive, so the fermions see a fixed pointlike
scatterer with infinite scattering length, which does not support
bound states. In the opposite limit α → +∞, the extra particle
sees the very massive fermions as two fixed pointlike scatterers
of positions r2 and r3, with which it forms a single bound state,
of energy

ε0(r23) = − h̄2C2

2Mr2
23

(74)

in the zero-range Bethe-Peierls model, and with a wave
function that is symmetric under the exchange of r2 and r3.
Here the constant C obeys

C = exp(−C) so C = 0.567 143 290 409 . . . . (75)

It can be related to the Lambert function by C = W (1), and
it is sometimes called the � constant. Since the global state
vector is fermionic, this extra-particle wave function can be
combined in the Born-Oppenheimer factorized form with an
odd orbital fermionic part only. The effective potential seen
by the fermions is, thus, the sum of the Born-Oppenheimer
potential ε0(r23) and of the angular-momentum centrifugal
part h̄2l(l + 1)/(mr2

23). In three dimensions, the zero-energy
solution in that effective potential has to be written as r

s−1/2
23

to match the usual definition of the Efimov exponent which
is given in two dimensions [43]. We then obtain the Born-
Oppenheimer approximation for the root s,

s2
BO = (

l + 1
2

)2 − 1
2αC2 (l odd), (76)

to be used in the regime where s2
BO � 0. Interestingly, this

Born-Oppenheimer approximation can also be used for a
nonzero R∗ to obtain exact results on the non-Efimovian
low-energy trimers for α → +∞, as developed in Sec. IV C.
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FIG. 2. Values of the Efimov exponent s as a function of the
fermion-to-extra-particle mass ratio α = m/M for several values of
the angular momentum l. The modulus of s is shown only over the
interval of mass ratio where s is purely imaginary (that is, where
the Efimov effect takes place). This was found to occur only for odd
values of l, and for a single pair of ±s roots of �l(s) = 0. (Solid line)
Numerical result from the exact function �l(s) as given by Eq. (42).
(Dashed line) Born-Oppenheimer approximation [Eq. (76)].

Turning back to the exact equation �l(s) = 0: For a fixed
value of l, we expect that the solutions s of the transcendental
equation are continuous functions of the mass ratio α. The
critical values α(l)

c of α for the emergence of the Efimov effect
are, thus, such that �l(0) = 0. From a numerical calculation
of �l(s = 0) as a function of α ranging from 0 to +∞, we
indeed find, for even l, that �l(s = 0) has a constant positive
sign, which means the absence of the Efimov effect. For each
odd l, we find that �l(s = 0) changes sign once (from positive
to negative for increasing α). The resulting values of α(l)

c are,
for example,

α(l=1)
c = 13.60696 . . . , α(l=3)

c = 75.99449 . . .
(77)

α(l=5)
c = 187.9583 . . . , α(l=7)

c = 349.6384 . . . .

The critical mass ratio for l = 1 is given in Ref. [5] and in
Ref. [44] for l = 3 and l = 5. For larger l we have checked
that [α(l)

c C2/2]1/2 is indeed very close to the approximation
l + 1/2 resulting from Eq. (76). For these few odd values
of l, we then solve numerically �l(iS) = 0, where S > 0, to
obtain the Efimov exponent as a function of α for α > α(l)

c .
For each values of l and α > α(l)

c , it is observed that �l(iS)
for S > 0 is an increasing function of S, so a single pair of
±iSl imaginary roots is obtained. The results are shown as
solid lines in Fig. 2. For comparison, the Born-Oppenheimer
approximation of Eq. (76) is plotted as dashed lines in that
figure. As expected intuitively, it approaches the exact result
in the large l (and, thus, large α) limit.

One can, however, be more precise in the evaluation of the
accuracy of Eq. (76). For a fixed value sl = iSl of the Efimov
exponent, one can perform a large l expansion of the mass
ratio, as shown in Appendix D, to obtain

1
2C2

(
α − α(l)

c

) =
l→∞

S2
l [1 + O(1/l)], (78)
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where the critical mass ratio α(l)
c has the large l expansion

1
2C2α(l)

c =
l→∞

(
l + 1

2

)2 + � + O(1/l). (79)

� is, thus, the first correction to the critical mass ratio pre-
dicted by the Born-Oppenheimer approximation of Eq. (76).
Accidentally, it has a very small numerical value [45]:

� = 17 − C2

12
− 7

6

(
C + 1

C + 1

)
= −0.016 259 165 . . .

(80)

so the Born-Oppenheimer approximation for α(l)
c is, in practice,

quite good for large l. For α → +∞ for a fixed angular mo-
mentum l, one can also obtain from the results of Appendix E
the following asymptotic expansion for the imaginary root iSl

of �l(s):

S2
l =

α→+∞
C2

2
α −

(
l + 1

2

)2

+ δ + O(1/α), (81)

where the first two terms in the right-hand side consti-
tute the Born-Oppenheimer approximation and the angular-
momentum-independent constant δ differs from zero,

δ = 5

12
C2 + 4

3

C2

1 + C
+ 1

4
= 0.657 684 . . . . (82)

Note that Eq. (81) is not in contradiction with Eq. (78)
[combined with Eq. (79)] because the considered limits differ
totally; Sl/ l either diverges or vanishes. As s2 is a coefficient in
the Born-Oppenheimer potential, a suggestive picture obtained
from Eq. (81) is that the Born-Oppenheimer approximation has
an error O(α0) on the effective potential seen by the fermions.
Mathematically, Eq. (81) shows that the error on Sl due to the
Born-Oppenheimer approximation vanishes as 1/α1/2 and that
the approximation gets the correct leading term α1/2 and the
correct subleading term α0 (which turns out to vanish) in an
asymptotic expansion of Sl in powers of α1/2. These remarks
are useful for Sec. IV C.

B. Efimovian part of the trimer spectrum

In presence of the Efimov effect, we have obtained so
far two solutions to the integral Eq. (32) in limiting cases;
see Sec. III B for R∗ = 0,E < 0, and Sec. III C for R∗ >

0,E = 0. How can we then obtain an approximation for
the corresponding spectrum of trimers, which requires both
R∗ > 0 and E < 0?

Roughly speaking, and dropping, for simplicity, a possible
dependence on the mass ratio α of the various bounds, the
solution of Sec. III B is expected to constitute an accurate
approximation of the trimer solution at interparticle distances
much larger than R∗, that is, at momenta smaller than h̄/R∗.
In a symmetric manner, the solution of Sec. III C is expected
to well approximate the trimer solution at short-enough inter-
particle distances, smaller than 1/q, where the E < 0 wave
function only weakly departs from the zero-energy one. This
corresponds to momenta much larger than h̄q. There thus exists
an interval of momentum h̄k over which both limiting solutions
are close to the physical trimer solution, q � k � 1/R∗, if

qR∗ � 1. (83)

In this case, we can match the two limiting solutions,
as summarized in Fig. 3. Over this matching interval of
momentum, one has k � q so the solution of Sec. III B is in
its large k regime given by Eq. (53) with s = iSl . Over this
interval, one also has k � 1/R∗, so the solution of Sec. III C
is in its low-k regime given by Eq. (73). These two limiting
regimes are compatible (within an arbitrary normalization
factor) if q is of the form [46]

q(l)
n = q

(l)
globale

−πn/|sl |, n integer, (84)

where we recall that the Efimov exponent is sl = iSl ,
Sl > 0 and the trimer energy is E = −h̄2q2/(2μ), with
μ = mM/(m + M). Equation (84) is the expected geometric
Efimovian spectrum, and we have the explicit expressions for
the corresponding global wave number and energy scales:

q
(l)
global = 2

R∗
eθl/|sl | and E

(l)
global = − 2h̄2

μR2∗
e2θl/|sl |, (85)

where θl is the phase of the complex number

Zl = |Zl|eiθl ≡
[

l∏
n=1

(n − sl)

]
slCl(−Sl) (86)

and the function Cl(S) is given by Eq. (71). At fixed angular
momentum, the phase θl depends on the mass ratio α = m/M .
For α tending from above to the critical value α(l)

c , Sl → 0,
we show in Appendix B that Zl tends to a real and positive
number. We thus choose the usual determination θl = arg Zl in
that limit and extend it by continuity to all larger values of α.

0 q 1/R
*

solution E=-(/hq)
2
/2μ, R

*
=0

range of applicability of

its asymptotic range

its asymptotic range

solution E=0, R
*
>0

range of applicability of

matching interval

∞
k

FIG. 3. (Color online) Matching of two limiting solutions of the
integral Eq. (32), the solution E = −h̄2q2/(2μ) < 0,R∗ = 0 (see text
in black, in the upper half of the figure) given by Eq. (52) and the
solution E = 0,R∗ > 0 (see the text in red in the lower half of the
figure) deducible from Eqs. (27), (57), (60), (68), and (71), over a
common interval of values of k (the “matching interval,” blue segment
on k axis) where they are both in their asymptotic regimes, Eqs. (53)
and (73). This matching procedure leads to the Efimovian spectrum
formula (84) with a global scale given by Eq. (85). This procedure
makes sense when qR∗ � 1, and it is expected to be exact when
qR∗ → 0, that is, for the quantum number n tending to infinity for a
fixed (purely imaginary) Efimov exponent sl (as in Efimov’s historical
solution) or (less usually) for |sl | tending to zero at fixed quantum
number n � 1. For simplicity of the figure, we have dropped factors
slowly depending on the mass ratio α, such as cos ν; that is, we have
assumed that the angular momentum l and |sl | are not much larger
than unity.
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For the analytical developments that follow, obtained for
the global scale q

(l)
global in the limit of large angular momenta

for α − α(l)
c fixed, or in the limit of a large mass ratio at fixed

angular momentum, there is a more operational expression

for θl that does not require the determination of all the
roots and poles of �l(iS) to evaluate Cl(−Sl). As shown in
Appendix C, one has the series representation of the phase θl

of Zl :

θl = Im[ln �(1 + iSl) + ln �(1 + 2iSl) + 2 ln �(l + 1 − iSl) + ln �(l + 2 − iSl)]

+
∫ Sl

0
dS ln

[
�l(iS)

cos ν

S2 + (l + 1)2

S2 − S2
l

]
+

∑
k�1

(−1)kB2k

(2k)!

d2k−1

dS2k−1

{
ln

[
�l(iS)

cos ν

S2 + (l + 1)2

S2 − S2
l

]}
S=Sl

, (87)

where we recall that Sl is the positive root of the function
�l(iS) and the Bk are Bernoulli’s numbers, B1 = −1/2,B2 =
1/6, . . .. Since Eq. (87) was obtained from Stirling’s series,
which is an asymptotic series, we expect that Eq. (87) is also an
asymptotic series. We thus investigated numerically how many
terms one has to keep in practice to have good accuracy. Fig-
ure 4(a) shows that the zeroth-order approximation, consisting
in omitting all the terms in the sum over k in Eq. (87), already
gives, in practice, a sufficiently accurate approximation for the
global scale q

(l)
global. In Fig. 4(b), it is shown that the difference

between the exact value of θl , obtained from the infinite
product representation of Cl(−Sl), and the zeroth-order
approximation, omitting all k terms in Eq. (87), is nonzero but
is very accurately accounted for by the term k = 1 in Eq. (87).

From the zero-range theory by Efimov, it is expected that
the geometric form Eq. (84) of the spectrum is asymptotically
exact in the limit of a large quantum number, n → +∞; see
the constraint [Eq. (83)]. How large the values of n should be
to reach this geometric behavior will be evaluated numerically
in Sec. V [in the mean time, see the discussion that follows
Eq. (89)]. The advantage of the nonzero R∗ calculation is
that it also gives the global energy scale in the spectrum; see
the factor q

(l)
global in Eq. (84) explicitly given by Eq. (85). As

compared to the bosonic case [11,12], there is an additional
knob here, which is the mass ratio α. How does the global
energy scale vary with the mass ratio?

For α → α(l)
c : The behavior of the global energy scale close

to the critical mass ratio can be determined from the results of
Appendix B, where it is shown that θl vanishes linearly with
Sl :

lim
α→α

(l)
c

θl

|sl| = −ψ(l + 1) + 3ψ(1) − ψ(−iv0) − ψ(1 − iv0)

+
+∞∑
n=1

[
ψ

( − iuc
n

) + ψ
(
1 − iuc

n

)−ψ
( − ivn

)
−ψ

(
1 − ivn

)]
, (88)

where uc
n,n > 0 is the value of the complex root un of the

function S → �l(iS) at the critical mass ratio; the vn =
i(2n + l + 1), n � 0, are the poles of S → �l(iS); and the
function ψ(z) is the digamma function, that is, the logarithmic
derivative of the � function. As a consequence, the global
energy scale has a finite limit at the threshold for the Efimov
effect! We give here a few corresponding values obtained from
the rapidly converging formula (B6):

q
(l=1)
globalR∗ � 6.56577 × 10−2, q

(l=3)
globalR∗ � 6.12349 × 10−3

q
(l=5)
globalR∗ � 1.62809 × 10−3, q

(l=7)
globalR∗ � 6.48952 × 10−4.

(89)
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FIG. 4. (Color online) In (a) value of the global wave-number scale q
(l)
global of the Efimovian part of the spectrum [see Eq. (85)] as a function

of the difference of the mass ratio α from its critical value, for all odd angular momenta up to l = 7. (Thin solid lines) Exact result obtained
from Eq. (86) and from the infinite product representation Eq. (71) [the more rapidly converging form, Eqs. (C3) and (C5), was used in the
numerics]. (Thick dashed lines) Zeroth-order approximation omitting all the terms in the sum over k in Eq. (87). In (b) the (small) difference
between the exact θl and the zeroth-order approximation θk=0

l is plotted as thin solid lines, and the value θk=1
l of the k = 1 term of Eq. (87)

is plotted as thick dashed lines. In (c) the values of q
(l)
global resulting from the Born-Oppenheimer-plus-semiclassical approximation are shown

as dashed lines [see Eq. (106)], as functions of 1/(α − α(l)
c )1/2, showing how the l-independent α → +∞ limit is reached. The solid lines

correspond to the exact numerical data of (a) and the dotted straight lines correspond to the asymptotic expansion [Eq. (108)].
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At this threshold, |sl| → 0 so we expect that Eq. (84) actually
becomes exact for the quantum number n � 1, since q(l)

n R∗
tends to zero in that limit, whereas Eq. (84) is clearly invalid
for n � −1. The case n = 0 is dubious: Although q

(l)
0 R∗ does

not tend to zero at the threshold, it assumes very small values,
so maybe Eq. (84) still makes sense. We cannot, however, say
more at this stage, and the question of whether the quantum
number n = 1 corresponds to the ground trimer state (for a
given angular momentum l) will be answered in Sec. V.

For l → +∞: Another interesting question is to determine
how q

(l)
global depends on the angular momentum l at a fixed

distance of the mass ratio α from the critical value α(l)
c ,

that is, roughly at constant values of the Efimov exponent
sl . After a numerical evaluation of Eq. (85), as detailed in
Ref. [39], we found that q

(l)
global drops rapidly for increasing l,

roughly as 1/(α(l)
c )3/2. According to Eq. (76) the critical mass

ratio scales approximately as (l + 1/2)2, so we expect that
q

(l)
global approximately scales as 1/(l + 1/2)3, an approximation

that becomes rapidly excellent with increasing l as soon as l

exceeds unity; see Fig. 5.
The scaling of q

(l)
global as 1/l3 at a fixed distance from the

critical mass ratio can be obtained analytically for l → +∞
using Eq. (87) for the angle θl and Eq. (44) for �l(iS), as
detailed in Appendix D:

q
(l)
globalR∗

α−α
(l)
c fixed∼

l→+∞
(1 + C) e3γ

l3
exp

{
Im [ln �(1 + iSl) + ln �(1 + 2iSl)]

Sl

}
, (90)

where γ = 0.577 215 664 9 . . . is Euler’s constant and sl =
iSl , Sl > 0. In that limit, one can use the Born-Oppenheimer-
type relation, S2

l = (α − α(l)
c )C2/2, as shown by Eq. (78). The

asymptotic result [Eq. (90)] is plotted as a dashed line in Fig. 5
and well reproduces the large-l numerical results.

For α → +∞: The behavior of the global energy scale in
the limit of an infinite mass ratio (for a given l) is determined
in Appendix E. It is found that q

(l)
global has a finite limit, which

remarkably is also independent of the angular momentum l:

q
(l)
globalR∗ →

α→+∞ 2(1 + C) eJ = 3.31582 . . . , (91)
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FIG. 5. Dependence, with the angular momentum l, of the global
wave-number scale q

(l)
global in the Efimov trimer spectrum, as obtained

from the exact result (85). The figure shows the quantity q
(l)
globalR∗

multiplied by (l + 1/2)3, as a function of α − α(l)
c , for (odd) angular

momenta equal to l = 1, l = 3, l = 5, and l = 7, from bottom to
top. This quantity is observed to converge rapidly to a finite limit for
increasing l. The dashed line represents the analytical prediction (90)
for that limit. We recall that Eglobal = −h̄2q2

global/(2μ).

where C is defined by Eq. (75) and J is the integral

J =
∫ C

0
dx

[
1

C

1 + x

1 − xex
− 1

C − x

]
= 0.05630577 . . . .

(92)

As we shall see in Sec. IV C, for α → +∞, the low-lying part
of the trimer spectrum is hydrogenoid rather than Efimovian,
so Eq. (91) is relevant only for trimers with diverging quantum
number n.

C. Born-Oppenheimer approximation and hydrogenoid
trimer spectrum

As explained in Sec. IV A the Born-Oppenheimer approach
is a natural tool when the fermions become arbitrarily massive.
The extra particle then mediates an attractive interaction
potential ε(r23) between the heavy fermions, with r23 =
r2 − r3 the relative coordinates of the fermions. We calculate
this interaction potential on a narrow Feshbach resonance.
From Schrödinger’s equation for the relative wave function of
the two fermions,

Eψ(r23) = −h̄2

m
�r23ψ(r23) + ε(r23)ψ(r23), (93)

which is in the odd l sector due to fermionic antisymmetry,
we then determine the low-energy trimer states in the limit
α → +∞.

We first fix the positions of the fermions to r2 and r3.
Each fermion then acts on the extra particle as a fixed
scatterer of infinite scattering length, zero true range but finite
effective range re = −2R∗. The effect of such a scatterer is
then represented by modified contact conditions on the wave
function φ(r1) of the extra particle in the so-called effective
range approach [7,47]. For a bound state φ(r1) of eigenenergy

ε(r23) = −h̄2κ2

2M
, (94)
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where the dependence of κ > 0 on r23 is, for simplicity, omitted
in the writing, we impose the boundary conditions

φ(r1) =
r1→rn

An

[
1

|r1 − rn| − 1

aeff

]
+ O(|r1 − rn|) (95)

in the vicinity of each scatterer n = 2,3. The effective scat-
tering length is energy dependent, as 1/aeff = 1/a − k2re/2
for an incoming free wave of wave number k. Here the
true scattering length a is infinite, the effective range is
re = −2R∗ for a narrow Feshbach resonance, and k = iκ is
purely imaginary for a bound state, so 1/aeff = −κ2R∗. In
the presence of the contact conditions, the extra-particle wave
function obeys Schrödinger’s equation

ε(r23)φ(r1) = − h̄2

2M

[
�r1φ(r1) +

3∑
n=2

4πAnδ(r1 − rn)

]
,

(96)

where the Dirac terms are due to the 1/|r1 − rn| divergences.
The general solution is expressed in terms of the Green’s
function of the Laplacian at negative energy:

φ(r1) =
3∑

n=2

An

e−κ|r1−rn|

|r1 − rn| . (97)

The contact conditions [Eq. (95)] then impose (1 +
κR∗)A2,3 = A3,2e

−κr23/(κr23). This 2 × 2 system has a
nonzero solution only for the symmetric case A2 = A3, where
κ solves

1 + κR∗ = e−κr23

κr23
. (98)

The wave function φ(r1) is then symmetric under the exchange
of r2 and r3. As the Born-Oppenheimer ansatz for the total
wave function is ψ(r23)φ(r1; r2,r3), where the parametric
dependence of φ with the fermions positions is made explicit,
fermionic exchange symmetry indeed imposes ψ(−r23) =
−ψ(r23).

For a fixed r23, Eq. (98) looks difficult to solve. However,
one can see that, for each positive κ , it is solved by a single
positive r23 [48]. Furthermore, rewriting κ in the left-hand side
as (κr23)/r23, r23/R∗ may be expressed as an explicit function
of u = κr23, where u ranges from 0 to the numerical constant
C defined in (75):

r23

R∗
= u2

e−u − u
. (99)

This allows a straightforward plot and study of the Born-
Oppenheimer potential ε(r23). We reach, in particular, the
useful limiting cases

ε(r23) ∼
r23→+∞ − h̄2C2

2Mr2
23

, (100)

ε(r23) =
r23→0

− h̄2

2MR2∗

[
R∗
r23

− 2R
1/2
∗

r
1/2
23

+ O(1)

]
. (101)

The asymptotic behavior of Eq. (100) reproduces the Born-
Oppenheimer potential [Eq. (74)] obtained for the usual Bethe-
Peierls case R∗ = 0. For a large-enough α, and for each odd
values of the angular momentum l, it ensures that the spectrum

of Eq. (93) is indeed Efimovian in the limit of large quantum
number n, that is, for E → 0−. On the contrary, for fixed
quantum numbers n and l, the bound states of Eq. (93) for
increasing α = m/M are increasingly localized in the low r23

part Eq. (101) of the Born-Oppenheimer potential. This means
that the low-energy part of the spectrum is hydrogenoid; it
becomes asymptotically equivalent for large α to the known
spectrum of the hydrogen atom if one takes for the electron
mass me = m/2 and the CGS electron charge e such that e2 =
h̄2/(2MR∗). In terms of the wave number q introduced in
Eq. (24), we thus obtain the exact asymptotic result [49]

q(l)
n R∗ ∼

α→+∞

(
α

8

)1/2 1

n + l
, (102)

where the integer quantum number n start from n = 1 in each
odd angular momentum sector l, so the hydrogen spectrum
reads −mee

4/[2h̄2(n + l)2] with this convention.
Since the eigenfunctions of the hydrogen atom are well

known, it is possible to calculate the first correction to the
hydrogenoid spectrum, treating the 1/r

1/2
23 term in Eq. (101)

to first order in perturbation theory. The calculations are given
in Appendix F, and we present here only the following result:

q(l)
n R∗ =

α→+∞
(α/8)1/2

n + l

{
1 − R(l)

n

[
π (n + l)

2α

]1/2

+O

(
1

α

)}
,

(103)

where R(l)
n is a rational number given by

R(l)
n = (n − 1)!

(n + 2l)!

n−1∑
k=0

[
(2k)!

(k!)2

]2

× 4−(n+2l+k)

(2k − 1)2

[2(2l + 1 + n − k)]!

(n − 1 − k)!(2l + 1 + n − k)!
. (104)

An interesting question is to know whether Eq. (103), which
originates from the Born-Oppenheimer approximation, is still
exact [50]. The discussion below Eq. (82) allows us to hope so.
We shall present numerical evidence in Sec. V C that shows
that this is indeed the case.

Another interesting aspect is to determine if the Born-
Oppenheimer approximation, combined with a suitable semi-
classical [Wentzel-Kramers-Brillouin (WKB) type] approxi-
mation, is able to determine exactly the global scale q

(l)
global

in the large mass ratio limit. For a fixed angular momentum
l, using the technique presented in Ref. [51] and setting
here E = −h̄2Q2/m, we obtain the semiclassical quantization
condition [52]∫ rmax

rmin

dr

[
α

2
κ2(r) − (l + 1/2)2

r2
− Q2

]1/2

= (n − 1/2)π,

(105)

where rmin and rmax are the lower and upper roots of the
integrand and the quantum number n is any integer � 1. In
the large n limit, Q tends to zero exponentially fast (this is the
Efimovian part of the spectrum), so we can split the integral
in Eq. (105) into two intervals, the interval rmin < r < rint

where one can make the approximation Q � 0 and the interval
rint < r < rmax where the Born-Oppenheimer potential can
be replaced by its asymptotic expression [Eq. (100)]. The
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intermediate value rint simply has to satisfy R∗ � rint �
|sBO|/Q, where sBO is given by Eq. (76). The result then
does not depend on the specific value of rint and one finds
an approximation for the Efimovian spectrum for n → +∞:

q(l)
n R∗ ≈ 23/2|sBO|(C − umin)(1 + C)

C2(1 + α)1/2
eJcle−(n−1/2)π/|sBO|,

(106)

where we have performed the change of variable u = κ(r)r
in the integral over r and one has αu2

min/2 = (l + 1/2)2. The
quantity Jcl is defined by the integral

Jcl = −1 +
∫ C

umin

du

[(
2

u
+ 1 + eu

1 − ueu

)

×
(

u2 − u2
min

C2 − u2
min

)1/2

− 1

C − u

]
. (107)

Whereas, as expected [52], this semiclassical result is disas-
trously bad for α close to the critical value α(l)

c (it does not
predict a finite q

(l)
global at the Efimovian threshold), it becomes

increasingly accurate for increasing α − α(l)
c . When compared

to the exact numerical values of Fig. 4(a), we found that for
α − α(l)

c > 8, the error on q
(l)
global is already less than 10%. In the

limit α → +∞, the semiclassical result allows us to recover
exactly the quantum result of Eq. (91), since umin → 0 in that
limit and Jcl then tends to J of Eq. (92). Keeping the first
correction linear in umin in the semiclassical result, we even
get the refined estimate

q
(l)
globalR∗ =

α→∞ 2(1 + C) eJ

[
1 − πl

|sBO| + O(ln α/α)

]
.

(108)

As this amounts to keeping the first α−1/2 term in a large α

expansion, we can, again, hope that the Born-Oppenheimer
approximation (combined to the semiclassical one) gives the
exact result in Eq. (108) [53]. In Fig. 4(c) we have calculated
Jcl and, hence, the semiclassical value of q

(l)
global numerically

to show how it nicely interpolates between the large-α exact
data of Fig. 4(a) (that still strongly depend on l) and the l-
independent α → +∞ limit of q

(l)
global. Taking values of α as

large as those in Fig. 4(c) is straightforward in the semiclassical
formula, but it would be a numerical challenge for the exact
expression of Eq. (71) (not to mention real experiments).

V. NUMERICAL SOLUTION FOR TRIMER STATES

In this section, we proceed with the direct numerical
solution of the integral equation [Eq. (32)], looking for the
allowed bound-state energies E for various values of the
angular-momentum quantum number l. The motivation is to
look for trimer states that are not predicted (or not faithfully
predicted) by the analytical results of Sec. IV. First, in the
presence of the Efimov effect (l odd, α > α(l)

c ), the analytical
formula (84) is guaranteed to be asymptotically exact in the
large quantum number n → +∞ limit, but the numerics can
assess its accuracy for low values of n, n � 1 and can check
whether n = 1 in Eq. (84) corresponds to the ground-state
trimer for a given angular momentum. Second, it is, in
principle, possible that the narrow Feshbach resonance model

exhibits for 1/a = 0 non-Efimovian trimers, which would
appear for a mass ratio lower than α(l)

c . In single-channel
models, with real interaction potentials, such few-body bound
states were recently observed numerically [54,55] and their
emergence was related to few-body resonances [55] that one
may expect within the zero-range model when Eq. (34) has
a real root s between 0 and 1 [27,56]. To be complete,
let us mention that, for a finite and positive value of the
scattering length, we expect that there exist a finite number
of non-Efimovian l = 1 trimer states for mass ratios below
the critical mass ratio α(l=1)

c , as shown in Ref. [57]. These
interesting trimer states should have a vanishing energy right
at the Feshbach resonance (1/a = 0) so they shall not show up
in our numerical solution and their study is beyond the scope
of the paper.

A. Optimized numerical method

The general method to numerically find the bound-state
spectrum is to approximate the operator appearing in the
momentum-space integral equation by a matrix, after dis-
cretization and truncation of the momentum k, and to perform
a dichotomic or Newton search of the values of the energy
E < 0 such that the resulting matrix has a zero eigenvalue.
Here, we are dealing with the particular case of an infinitely
narrow Feshbach resonance with an infinite scattering length,
and a much more direct method can be used. The kernel in
Eq. (32) does not involve any interaction length, and it exhibits
h̄q as the only momentum scale, where the wave number q

is the unknown since E = −h̄2q2/(2μ). We can thus rescale
all wave numbers by q, setting ǩ = k/q,Ǩ = K/q, and we
introduce a reduced relative wave number

q̌rel(ǩ) ≡ qrel(qǩ)

q
=

[
1 + 1 + 2α

(1 + α)2
ǩ2

]1/2

. (109)

For convenience, we also write the unknown function f (l)(k)
as

f (l)(k = qǩ) = f̌ (l)(ǩ)

ǩq̌rel(ǩ)
, (110)

where the denominator shall ensure that the resulting integral
operator is Hermitian. After multiplication of Eq. (32) by
ǩ/qrel(k), we obtain

−qR∗f̌ (l)(ǩ) = 1

q̌rel(ǩ)
f̌ (l)(ǩ) +

∫ +∞

0

dǨ

π

f̌ (l)(Ǩ)

q̌rel(ǩ)q̌rel(Ǩ)

×
∫ 1

−1
du

Pl(u)ǩǨ

1 + ǩ2 + Ǩ2 + 2α
1+α

ǩǨu
. (111)

Remarkably, the dimensionless quantity −qR∗ is simply the
solution of an eigenvalue problem for a fixed operator. After
numerical discretization and truncation, one simply has to
diagonalize a real symmetric matrix once, which is a well-
mastered numerical problem, and each negative eigenvalue
of that matrix will provide a numerical approximation of the
quantity −qR∗ for the bound states. We expect the numerical
truncation to be accurate if the maximal value ǩmax of ǩ in the
numerical grid obeys, for each considered negative eigenvalue
−qR∗,

qǩmaxR∗ � 1, (112)
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FIG. 6. Numerical study of the Efimovian part of the spectrum: For an angular momentum l = 1, quantities qn (labeled in descending order)
from n = 1 (ground trimer state) to n = 8, as functions of the mass ratio α = m/M . We recall that the trimer energies are then En = −h̄2q2

n/2μ.
In (a) the numerical values are shown in log scale, restricting the figure to experimentally accessible values qR∗ > 10−3 (see text). In (b) the
absolute value of the deviation from unity of the ratio of the numerical qn to the analytical approximation (84). The solid (respectively dashed)
lines correspond to numerical values of qn larger (respectively smaller) than the analytical ones. For both (a) and (b), the vertical axis is in log
scale, and the curves n = 1 to n = 8 are from top to bottom.

to ensure that the effective range term in the two-body
scattering amplitude is well taken into account. For a given
numerical diagonalization, the negative eigenvalues −qR∗
that are larger than −1/ǩmax, thus, cannot be trusted. In
these estimates, we have dropped, for simplicity, a possible
dependence of the criteria on the mass ratio α [58].

In presence of the Efimov effect, the condition of Eq. (112)
is quite severe, as qR∗ may assume extremely small values.
The way out is well known: One simply has to use a logarithmic
scale, with the change of variable x = ln ǩ,X = ln Ǩ . To keep
the hermiticity of the operator, we reparametrize the unknown
function

f̌ (l)(ǩ = ex) = F̌ (l)(x)

ex/2
. (113)

Multiplying Eq. (111) by ǩ1/2 and performing these changes,
we finally obtain the numerically useful form [59]:

−qR∗F̌ (l)(x)

= F̌ (l)(x)

(1 + e2x cos2 ν)1/2

+
∫ +∞

−∞

dX

π

F̌ (l)(X)

[(1 + e2x cos2 ν)(1 + e2X cos2 ν)]1/2

×
∫ 1

−1
du

Pl(u) e3(x+X)/2

1 + e2x + e2X + 2uex+X sin ν
(114)

where we recall that ν = arcsin[α/(1 + α)]; see Eq. (37).
Another interesting feature of the form of Eq. (114), which
it shares with Eq. (111), is that the kernel remains bounded at
large momenta.

B. Efimovian results

We now present results obtained from a numerical solution
of the eigenvalue problem of Eq. (114) for not-too-large values

of the mass ratio so the trimer spectrum does not exhibit the
hydrogenoid character predicted in Sec. IV C. In the numerics,
we took for the variable x = ln ǩ a discretization with a
constant step dx = 0.09 over an interval from xmin = ln(10−2)
to xmax = ln(1015). We explored the interval of mass ratio
α = m/M from the small value 1/200 to the large value 200.

We, first, explored the case of even angular momenta.
According to the zero-range theory, numerical observation
of bound states in that case would reveal non-Efimovian
trimers. We went up to an angular momentum l = 12 without
finding any bound state: The minimal eigenvalues −qR∗
found numerically were positive and of the order of 10−15

or larger. We then explored odd angular momenta, looking
for non-Efimovian bound states for a mass ratio α < α(l)

c (and
α < 200). We went up to l = 13 without finding any.

At this stage, exploration of Efimovian physics remains.
The numerical results for the most bound trimer states are
shown for l = 1 in Fig. 6. In Fig. 6(a) we directly show
the obtained values of qR∗ as functions of the mass ratio
α, obviously in log scale for the vertical axis. This is useful to
estimate which trimer states may be accessed in an experiment.
An experimental limitation is that the scattering length a

is not infinite, which will suppress the too-weakly bound
trimers, that is, the trimer states with a too-small value of
q. According to Eq. (26) we see that if 1/|a| � q, the term
1/a is small as compared to the term qrel(k) for all values of k,
so the assumption 1/a = 0 should be a good approximation.
Assuming that producing in a controlled way a scattering
length larger than 100 μm (in absolute value) becomes
unrealistic, in particular for a narrow Feshbach resonance, we
thus take

|aexpt| � 100 μm (115)

and we impose q > 10/|a| ≈ 10/(100 μm). Since R∗ should
be much larger than the typical van der Waals length (typically
of a few nanometers), we take R∗ > 10 nm, so qR∗ >

10−3; hence, the interval of values on the vertical axis in
Fig. 6(a) [60].
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In Fig. 6(b), we show the ratios of the numerical values of
qR∗ to the values obtained from the approximation of Eq. (84)
as functions of the mass ratio. The numerical values are
numbered as n = 1 (ground-state trimer state), n = 2,3, . . .,
for q in descending order (that is, in ascending order of the
energies En = −h̄2q2

n/2μ). The numerical qn are then each
divided by the approximate qn of Eq. (84). For α close to α(l=1)

c ,
for example, α � 20, it is found that the ratio of numerical to
analytical values of the q’s is extremely close to unity: For
the ground trimer n = 1, the deviation is less than 10−3, and
for n = 2 and n = 3 it fluctuates between ±10−5, which is
probably due to numerical errors. Similar results are obtained
for larger odd values of l (not shown).

We have, thus, numerically obtained the important result
that the quantum number n = 1 in the analytical formula (84)
indeed corresponds to the ground trimer state (within each
subspace of fixed l). For not-too-large α − α(l)

c (away from
the hydrogenoid regime), the binding energy of the ground
trimer state thus does not correspond to the naive expectation
≈h̄2/(μR2

∗); it contains an extra factor exp(−2π/|sl|) that can
be tiny. There is numerical evidence that this also holds for
three bosons resonantly interacting on a narrow Feshbach
resonance [61]; the impossibility in the bosonic case to connect
the spectrum continuously to a Sl = 0 limit (and to study the
variation of the three-body parameter in that limit), however,
makes the statement more subjective than in the present
fermionic case.

To be complete, we have also calculated numerically the
eigenvectors x → F̌ (l)(x) corresponding to the eigenvalues
−q(l)

n R∗ in the case l = 1 for α = 14. According to Eqs. (110)
and (113), one has F̌ (l)(x) = e3x/2(1 + e2x cos2 ν)1/2f (l)(qex).
For k/Q � 1, that is, ex cos ν � 1 since Q = q/ cos ν,
we found that F̌ (l=1)(x) ∝ e5x/2 as deduced from Eq. (52)
(multiplied by i). For kR∗ cos ν � 1, that is, ex cos ν �
eπn/|s1|, where s1 = iS1 is the purely imaginary Efimov
exponent for l = 1, we found that F̌ (l=1)(x) ∝ e−5x/2, as
predicted by Ref. [41]. Finally, in the crucial intermediate
region q/ cos ν < k < 1/(R∗ cos ν), which corresponds to the
matching interval of the (E < 0,R∗ = 0) and (E = 0,R∗ > 0)
analytical solutions, see Fig. 3, we compared the numerics to
the analytical result deduced from Eq. (53) (multiplied by i)
as follows:

F̌ (l=1)(x) ∝ ex/2 sin[|s1|(x − x0)], (116)

where x0 = (arctan |s1|)/|s1| − ln(2 cos ν). From the numer-
ics, see Fig. 7, we found that x → e−x/2F̌ (l=1)(x) indeed
exhibits half an oscillation of the sinus for the ground trimer
n = 1 (the function remains positive everywhere), and a full
oscillation of the sinus for the first excited trimer n = 2 (the
function changes sign once).

These nodal properties were expected from the fact noted
in Ref. [59] that the matrix elements of the kernel in Eq. (114)
are strictly negative for l odd for all x and X, whereas the
diagonal element is strictly positive for all x. From a standard
variational argument, that formulates Eq. (114) in terms of the
extremalization of an “energy” functional for a fixed norm,
and that compares the “energy” of x → F̌ (l)(x) to the one of
x → |F̌ (l)(x)|, we conclude that the function F̌ (l)(x) for the
ground trimer state has a constant sign. As the other modes
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FIG. 7. For l = 1 and a mass ratio α = 14, the ground eigenvector
(n = 1) and first excited eigenvector (n = 2) of the eigenvalue prob-
lem [Eq. (114)], corresponding to the ground and first excited trimer
states. (Solid lines) Numerical results. (Dashed lines) Analytical form
[Eq. (116)], meaningful over the matching interval 1/ cos ν < k/q <

1/(qR∗ cos ν) whose meaning is explained in Fig. 3 and whose
borders are indicated by the vertical dotted lines. The expression
of D(k) in terms of F̌ (1)(x) and Y 0

1 (k) can be obtained from the
text, with x = ln(k/q). An overall factor exp(−x/2) was applied to
F̌ (1)(x) for convenience, and the resulting functions are normalized
to the maximal value of unity.

have to be orthogonal to the ground mode, this shows that
the ground trimer state is not degenerate and that the excited
trimer states have a sign-changing function F̌ (l)(x). We have,
thus, reached a fully consistent picture of the fact that n = 1
in Eq. (84) is indeed the ground trimer state.

C. Hydrogenoid results

We now explore numerically the trimer spectrum for
extremely large values of the mass ratio α. In this limit, the
low-energy trimers are no longer expected to be Efimovian:
According to the Born-Oppenheimer approach of Sec. IV C,
the spectrum for fixed values of the quantum numbers n and
l becomes hydrogenoid for α → +∞. To test the asymptotic
analytical formula (103), we plot in Fig. 8 the ratio of the
wave number q(l)

n [such that E(l)
n = −h̄2[q(l)

n ]2/(2μ)] to the
asymptotic prediction [Eq. (102)] as a function of 1/α1/2 for
l = 1 and a few values of n (we recall that n = 1 labels the
ground trimer state for fixed l). The prediction Eq. (103)
then corresponds to straight lines, and we indeed observe
that the numerical results approach these straight lines for
diverging α. This suggests that Eq. (103), obtained in the
Born-Oppenheimer approximation, is actually asymptotically
exact. As expected, for increasing n, the trimers become
spatially more extended, so a larger value of α is required
to make them hydrogenoid.

Some considered values of α in Fig. 8 are extremely large
(up to 106). This cannot be realized with atoms, and, as such,
a large mass ratio does not exist in the periodic table. Using
an optical lattice as suggested in Ref. [62] is possible if the
trimer states have a spatial extension much larger than the
lattice spacing. This may require unrealistically large values
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FIG. 8. (Color online) Numerical study of the hydrogenoid part
of the spectrum: For an angular momentum l = 1, wave numbers q (l)

n

for n = 1 (ground trimer state), n = 2, n = 3, and n = 4 (from top to
bottom), divided by the hydrogenoid asymptotic Born-Oppenheimer
prediction [Eq. (102)], as functions of 1/α1/2. (Solid circles)
Numerical results. (Straight lines) Asymptotic result [Eq. (103)],
including the first deviation of the Born-Oppenheimer potential from
the Coulomb form at short range. The color code is as follows: black
for n = 1, red for n = 2, green for n = 3, and blue for n = 4.

of R∗. A futuristic alternative is to replace the fermionic atoms
by large and round molecules that are cooled to their internal
(vibrational and rotational) ground state, that have a vanishing
total angular momentum in that ground state, that may be in
the class of fullerenes [63], and that would exhibit a narrow
Feshbach resonance with the extra atom.

VI. CONCLUSION

We have performed a detailed study of the quantum three-
body problem of two same-spin-state fermions of mass m

interacting in free space with a distinguishable particle of mass
M on an infinitely narrow Feshbach resonance, with a focus of
the three-body bound states (trimer states) of that system. The
interaction was assumed to be tuned right on resonance, with
an infinite s-wave scattering length a, which makes it possible
to obtain analytical results, since the only length scale left
in the problem is the so-called Feshbach length R∗ [7]. The
assumption 1/a = 0 also ensures that there are no two-body
bound states. This three-body problem, however, remains rich,
richer than,e.g., the problem of three resonantly interacting
bosons on a narrow Feshbach resonance [7,11,12], because
there is a tunable parameter left, which is the mass ratio
α = m/M of a fermion to the extra particle. The existence of
this tunable parameter raises the following three fundamental
questions on the trimer states within each sector of fixed total
angular momentum l.

First, does this system support trimer states for a mass
ratio α smaller than the minimal mass ratio αc required to
activate the Efimov effect [4]? Such non-Efimovian trimer
states may indeed emerge from three-body resonances recently
discovered numerically for a different interaction model
[54,55], with an Efimov exponent s having a real value

between 0 and 1 [27,56]. For the narrow Feshbach resonance,
our numerical answer to this question is negative.

Second, how does the Efimov trimer spectrum emerge
when the mass ratio α is varied across the critical value
αc (necessarily for l odd)? This is an intriguing question,
because there is no trimer state for α < αc (for fixed l) and
there is an infinite number of trimer states for α > αc. We
found that, for α tending to αc from above, the whole trimer
spectrum, including the ground trimer state (and not simply the
trimer states with large quantum number n) forms a geometric
sequence. This, of course, cannot be deduced from general
zero-range Efimov’s theory, which guarantees the geometric
nature of the spectrum only in the asymptotic region of large
quantum number n and cannot say anything about, e.g., the
model-dependent ground trimer state. We have also shown
that the global energy scale Eglobal in that spectrum has a finite
and nonzero limit for α → αc. This simply means that, at
the Efimovian threshold, the energy of the ground-state trimer
vanishes as Eglobal exp(−2π/|s|), the energy of the first excited
trimer vanishes as Eglobal exp(−4π/|s|), and so on, where the
modulus of the purely imaginary Efimov exponent s vanishes
as the square root of α − αc. This constitutes a complete picture
of the emergence of the Efimovian trimer states when the mass
ratio is varied across αc. The dependence of Eglobal on the mass
ratio α and on the angular momentum l was further studied
analytically by use of an efficient expression of Eglobal in terms
of an asymptotic series; see Eqs. (85) and (87).

Third, what is the nature of the most bound trimer
states, for example, the ground state, when the mass ratio
α becomes significantly larger than the critical value αc? As
already mentioned, Efimov’s theory cannot answer this model-
dependent question. For the narrow Feshbach resonance, we
found that the low-energy part of the spectrum becomes
asymptotically equivalent to a hydrogenoid spectrum for a
diverging mass ratio, that is, scaling as E0/(n + l)2, where
n � 1, l is odd and E0 = −mh̄2/(4MR∗)2, and we calculated
the first deviation from this hydrogenoid spectrum for a finite
α. As the hydrogenoid nature asymptotically takes over the
Efimovian nature of the trimer spectrum for α → +∞ (except
in a vicinity of the E = 0 accumulation point where the
spectrum remains geometric), in a continuous way when the
mass ratio is varied, this constitutes a crossover from an
Efimovian to a hydrogenoid spectrum.

We have also discussed to what extent all these predictions
for the (2 + 1)-fermion problem on a narrow Feshbach
resonance may be addressed experimentally with cold atoms,
the variation of the mass ratio being obtained by combining the
discrete tuning provided by the choice of appropriate species
for the fermions and the extra particle, with an additional
continuous fine tuning of the effective mass with an optical
lattice [62]. Reaching the large mass ratios required to observe
the hydrogenoid part of the spectrum is challenging, except for
the futuristic alternative of replacing the fermionic atoms with
massive and round molecules. On the contrary, the Efimovian
effect in our system may be reachable experimentally for
angular momentum l = 1, where the critical mass ratio is
only αc � 13.607, provided that the energy ratio exp(2π/|s|)
is not too large, that is, the mass ratio is far enough from
the critical value αc where |s| = 0. From the bound of
Eq. (115) on the achievable s-wave scattering length a with
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a magnetic Feshbach resonance, the ground-state trimer is
directly observable for α > 15, whereas directly observing at
least two Efimovian trimer states, to check the geometric nature
of the spectrum, requires α > 20. On a Feshbach resonance
as narrow as the one of 6Li with 40K, however, the bound of
Eq. (115) is probably too optimistic, if one does not implement
a magnetic field stabilization of metrologic quality [60].
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APPENDIX A: ZERO-RANGE SOLUTION
IN POSITION SPACE

In the case R∗ = 0, our three-body problem reduces to
the zero-range infinite scattering length problem that Efimov
solved in real space [4] with the ansatz for the three-body wave
function:

ψ(r1,r2,r3) = F (R)

R2

[
ϕ(α21)

sin(2α21)
Y

ml

l

(
r3 − αr2 + r1

1 + α

)

− ϕ(α31)

sin(2α31)
Y

ml

l

(
r2 − αr3 + r1

1 + α

)]
. (A1)

This contains two a priori unknown functions of single vari-
ables, F and ϕ. The various variables in this ansatz naturally
appear in appropriately normalized Jacobi coordinates. Using,
e.g., the convention of Appendix 3 in Ref. [29] (except for a
permutation of the indices), and taking as in Eq. (13) particle
1 as the extra particle of mass m1 = M , and particles 2 and
3 as the fermions of mass m2 = m3 = m, we define the un-
normalized Jacobi coordinates y1 = r3 − (mr2 + Mr1)/(m +
M) and y2 = r1 − r2, the generalized reduced masses μ−1

1 =
m−1 + (m + M)−1 and μ−1

2 = M−1 + m−1, and the hyper-
radius R � 0 such that m̄R2 = ∑3

i=1 mi(ri − C)2, where m̄

is an arbitrary unit of mass and C is the center-of-mass
position of the three particles. The conveniently normalized
Jacobi coordinates then are ui = (μi/m̄)1/2yi with i = 1,2,
so R2 = u2

1 + u2
2. This also puts Schrödinger’s equation in a

reduced form,
3∑

i=1

− h̄2

2mi

�ri
= − h̄2

2(2m + M)
�C +

2∑
i=1

− h̄2

2m̄
�ui

. (A2)

The angles α21 and α31 belong to the interval [0,π/2]. The
clever choice is tan α21 = u2/u1 and the similar formula for
α31 obtained by exchanging the role of particles 2 and 3.
Geometrically, this amounts to introducing polar coordinates
(R,α21) in the plane (u1,u2). Explicitly, this gives

tan α21 = |r1 − r2| cos ν

|r3 − (αr2 + r1)/(1 + α)| (A3)

tan α31 = |r1 − r3| cos ν

|r2 − (αr3 + r1)/(1 + α)| (A4)

where cos ν is given by Eq. (38). Since the second (Faddeev)
component in Eq. (A1) is deduced from the first one by a minus
sign and the exchange of particles 2 and 3, which ensures

the fermionic antisymmetry of ψ , it suffices to calculate the
action of �u1 + �u2 on the first component. This is quite
simple in spherical coordinates, since R and α21 depend
only on the moduli u1 and u2, and the factor involving the
spherical harmonic function is simply Y

ml

l (u1). Thanks to the
factor R2 sin(2α21) = 2u1u2 in the denominator, one is left
with the operator ∂2

u1
+ ∂2

u2
, that is, the Laplacian in the plane

(u1,u2), which has a simple expression in the polar coordinates
(R,α21). One finally finds that the ansatz [Eq. (A1)] separated
in hyperspherical coordinates solves Schrödinger’s equation if
ϕ solves the eigenvalue problem

−ϕ′′(α21) + l(l + 1)

cos2 α21
ϕ(α21) = s2ϕ(α21), (A5)

where s is a priori unknown, but the general theory of,
e.g., Sec. 3.3 in Ref. [29] guarantees that it coincides with
s defined in Fourier space by Eq. (33). As a consequence, the
R dependence of the ansatz also separates and the hyper-radial
function F (R) is found to solve a Schrödinger equation for a
fictitious particle in two dimensions experiencing an effective
1/R2 potential:

EF (R) = − h̄2

2m̄

[
F ′′(R) + 1

R
F ′(R)

]
+ h̄2s2

2m̄R2
F (R). (A6)

The Efimov effect appears for s2 < 0.
To determine the eigenvalue s2, one needs to specify the

boundary conditions for ϕ. For u1 → 0, ψ , in general, does
not diverge. Since sin(2α21) vanishes in the denominator, this
imposes

ϕ(π/2) = 0. (A7)

For u2 → 0, on the contrary, ψ diverges. More precisely,
the Bethe-Peierls contact conditions for an infinite scattering
length impose that, when particles 1 and 2 approach each other
for a fixed position of their center of mass C12, that is, r2 =
C12 − r/(1 + α) and r1 = C12 + αr/(1 + α) with r → 0, ψ

should behave as A/r + O(r) where A depends on C12 − r3.
In other words, there should be no nonzero contribution
behaving as r0. To calculate the r0 contribution from the first
Faddeev component, one has to expand ϕ(α21) to first order
in α21. In the second Faddeev component one can directly set
r = 0, that is, r1 = r2 = C12. From the angular representation
(37) for the mass ratio, we find arctan[(1 + 2α)1/2/α] = π

2 − ν

and

1

2
ϕ′(0) − (−1)l

ϕ
(

π
2 − ν

)
sin(2ν)

= 0. (A8)

To try to recover the function �l(s), we heuristically multiply
this condition by 2 cos ν/ϕ′(0) to pull out a first additive term
as in Eq. (42):

�l(s)
?= cos ν − (−1)l

ϕ
(

π
2 − ν

)
ϕ′(0) sin ν

. (A9)

Note that Eq. (A5) is independent of the mass ratio, and it
occurs in the problem of three spin-1/2 (same mass) fermions
and even in the case of three bosons. The solution of Eq. (A5)
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obeying Eq. (A7) was given in these contexts in Ref. [32] in
terms of a hypergeometric function. Reusing this solution

ϕ(α21) = cosl+1 α21

× 2F1

(
l + 1 + s

2
,
l + 1 − s

2
,l + 3

2
; cos2 α21

)
(A10)

leads to Eq. (44), which was checked numerically to coincide
with Eq. (42), so the question mark can be removed in Eq. (A9).
For completeness, we note that still another form of ϕ(α21), in
terms of a finite sum, was given in Ref. [30].

APPENDIX B: EFIMOVIAN SPECTRUM GLOBAL
SCALE AT THRESHOLD

At fixed angular momentum l, we evaluate the global scale
q

(l)
global in the limit α → α(l)

c . Since sl = iSl , Sl > 0, vanishes
in that limit, we can simply expand the complex number Zl

up to order Sl , neglecting terms O(S2
l ). The most difficult

part is the bit iSl Cl(−Sl), which we rewrite using Eq. (71),
�(2iSl) = �(1 + 2iSl)/(2iSl), as follows:

iSl Cl(−Sl) = �(1 + 2iSl)�(1 − iv0 − iSl)

2�(1)�(−iv0 + iSl)

×
∏

n∈N∗

�(−iun + iSl)

�(1 − iun − iSl)

�(1 − ivn − iSl)

�(−ivn + iSl)
.

(B1)

We, first, need to figure out to which order the roots un

depend on u0 = Sl (remember that the vn’s do not depend on
the mass ratio). To zeroth order, right on the critical mass ratio,
un = uc

n by definition. Making apparent the dependence of the
function �l with α, one has

�l(iun; α) = 0. (B2)

It is clear on Eq. (41) that �l is a regular function of α, so
�l(s; α) around α(l)

c varies to first order in α − α(l)
c and (B2)

simplifies to

�l

(
iun; α(l)

c

) = O
(
α − α(l)

c

)
. (B3)

We also note that �l(s; α) is an even function of s. For n = 0,
u0 = Sl and uc

0 = 0; since 0 is a double root of s → �l(s; α(l)
c ),

one has to expand Eq. (B3) to second order in un − uc
n to get

the leading contribution, and S2
l varies linearly in α − α(l)

c ,
as expected. For n > 0, uc

n �= 0 and iuc
n is a simple root of

s → �l(s; α(l)
c ), and one has to expand Eq. (B3) to first order

in un − uc
n to get the leading contribution so

un − uc
n = O

(
α − α(l)

c

) = O
(
S2

l

)
for n > 0. (B4)

To first order in Sl , we can thus replace the un’s in Eq. (B1) by
their values uc

n at threshold (for n > 0).
The last step is to expand the � functions in Eq. (B1) to

first order in Sl . For any real positive number x > 0, one has

�(x + iSl)

�(x)
= 1 + iSlψ(x) + O

(
S2

l

)
, (B5)

where ψ(z) = �′(z)/�(z) is the digamma function. One has,
in particular, ψ(1) = −γ , where γ = 0.577 215 664 9 . . . is
Euler’s constant, see, e.g., relation 8.362(1) in Ref. [31]. We

recall that, by definition, −iun for n > 0 and −ivn for n � 0
are real positive. Finally, the product over n in Eq. (86) may be
written as �(l + 1 − iSl)/�(1 − iSl) and expanded with the
same technique. All this leads to Eq. (88).

To reveal the convergence of the series in Eq. (88), it is
useful to introduce the function �(x) = ψ(x) + ψ(x + 1) −
2 ln x. Then �(x) = O(1/x2) for x → +∞ since ψ(x + 1) =
ln x + 1

2x
+ O(1/x2) according to relation 8.344 in Ref. [31].

Expressing ψ(x) + ψ(x + 1) as �(x) + 2 ln x for x = −iuc
n

and x = −ivn, and collecting all the logarithmic contributions

as the logarithm of the product
∏

n�1
(uc

n)2

v2
n

, which one can
relate to the curvature in s = 0 of the function �l(s; α) thanks
to Eq. (70), one obtains

θl

|sl| →
Sl→0+

−ψ(l + 1) + 3ψ(1) − ψ(−iv0) − ψ(1 − iv0)

+ ln

[
v2

0

2 cos ν
∂2
s �l(0; α(l)

c )

]
+

+∞∑
n=1

[
�

( − iuc
n

)− �(−ivn)
]
.

(B6)

As one expects that un/vn → 1 for n → +∞, with vn =
i(2n + l + 1), from the supposed convergence of the infinite
product in Eq. (70), the sum in Eq. (B6) is convergent.

In practice, it is found that the sum over n � 1 in Eq. (B6)
is so rapidly convergent that it gives a very small contribution
to the result. A useful, easy-to-evaluate approximation is, thus,

lim
α→α

(l)
c

q
(l)
global � − (l + 1)2

R∗ cos ν
e−2ψ(l+1)−ψ(l+2)+3ψ(1)∂2

s �l(0; α(l)
c ).

(B7)

The relative error introduced by this approximation is, at
most, �5 × 10−4 for the values of l (from 1 to 11) that we
have considered. Note that the approximation of Eq. (B7) is
equivalent to neglect all terms with k � 1 in Eq. (87) and to
take the limit α → α(l)

c .

APPENDIX C: ALTERNATIVE REPRESENTATIONS
OF THE FUNCTION Cl (S)

To determine q
(l)
global of Eq. (85), that is, the phase θl of the

complex number Zl in Eq. (86), in the large l limit for fixed
α − α(l)

c or in the large α limit for l fixed, the infinite product
form [Eq. (71)] for the function Cl(S) is inappropriate, even
numerically. We construct here more efficient representations,
in the same manner that led to Eq. (B6). Remarkably, the last
form that we construct does not rely on the roots and poles of
the function �l .

We split the function Cl(S) of Eq. (71) in parts whose phase
is easy(difficult) to evaluate. Since −iun is real for n > 0, and
S is real, using �(z)∗ = �(z∗) we rewrite the factors of Eq. (71)
as

�(−iS − iun)

�(1 + iS − iun)
= �(−iS − iun)�(1 − iS − iun)

|�(1 + iS − iun)|2 . (C1)

A similar rewriting can be performed on the factors involving
−ivn, n > 0, so, apart from an infinite product that is real
positive and does not contribute to the phase of Cl(S), we
identify a hard part Dl(S) that is the product of factors of the
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form �(z)�(z + 1), with z = −iun − iS in the numerator and
z = −ivn − iS in the denominator. We then set

�(z) = �(z)�(z + 1)

2πe2f (z)
with f (z) = z ln z − z. (C2)

Here we have the case where Re z > 0 so the branch cut of the
logarithm (on the real negative axis) and the poles of �(z) are
out of reach. Then

Dl(S) = e�l (S)
∏

n∈N∗

�(−iun − iS)

�(−ivn − iS)
(C3)

with

�l(S) = 2
∑
n∈N∗

[f (−iun − iS) − f (−ivn − iS)]. (C4)

According to the relation 8.344 in Ref. [31], �(z) = 1 +
O(1/z) at large |z| so one expects that the infinite product
in Eq. (C3) converges more rapidly than the original form
[Eq. (71)]. Furthermore, only the imaginary part of �l(S) is
required, and it can be expressed as the integral

Im �l(S) = −
∫ S

0
dS ′Rl(S

′) (C5)

with

Rl(S) = ln

[
�l(iS)

cos ν

S2 + (l + 1)2

S2 − S2
l

]
. (C6)

Equation (C5) holds for S = 0, since −iun and −ivn are all real
positive for n > 0. To check that it holds at nonzero S, one takes
the derivative of Eq. (C5) with respect to S, using f ′(z) = ln z

and f (z)∗ = f (z∗). One then recognizes the function �l(iS)
from its Weierstrass representation [Eq. (70)], also using v0 =
i(l + 1) and u0 = Sl .

It is possible to go further and to express the phase of
the infinite product in Eq. (C3) in terms of derivatives of
the function Rl(S). Relation 8.344 in Ref. [31] indeed gives
Stirling’s representation of ln �(z) as an asymptotic series in
1/z, and one also has the kth derivative for k � 1,

dk

dSk
[ln(−iun − iS)] = −ik(k − 1)!

(−iun − iS)k
, (C7)

and similar relations obtained by taking the complex
conjugate or by replacing un with vn. Finally, Dl(S) =
|Dl(S)| exp[iϕl(S)] with

ϕl(S) = −
∫ S

0
dS ′ Rl(S

′) −
∑
k�1

(−1)kB2k

(2k)!
R

(2k−1)
l (S), (C8)

where the B2k are the Bernoulli numbers and R
(2k−1)
l stands

for the (2k − 1)th derivative of the function Rl(S). The useful
statement is then that

Cl(−Sl)eiϕl (Sl )

�(2iSl)�(l + 1 − iSl)�(l + 2 − iSl)
is real positive (C9)

where we used the fact that Rl(S) is an even function of S

and, thus, ϕl(S) an odd function of S. Minor transformations

then lead to Eq. (87). In short, these results originate from the
lemma: For any x > 0 and S real,

Im[ln �(x − iS) + ln �(x + 1 − iS)]

= −
∫ S

0
dS ′ ln(x2 + S ′2)

−
∑
k�1

(−1)k
B2k

(2k)!

d2k−1

dS2k−1
ln(x2 + S2), (C10)

where, here again, the series is only asymptotic.

APPENDIX D: EFIMOVIAN SPECTRUM GLOBAL
SCALE AT LARGE ANGULAR MOMENTA

As we show here, asymptotically exact expressions of
q

(l)
global for a diverging angular momentum l can be obtained

analytically. This requires an asymptotic determination of the
function �l(iS). To this end, the most convenient starting point
is the expression for �l in Eq. (44). Since cos ν tends to zero
for α > α(l)

c in the large l limit, we rewrite this expression using
relation 9.131(2) of Ref. [31] that expresses a hypergeometric
function of the variable z in terms of hypergeometric functions
of the variable 1 − z. For S real we have the following:

�l(iS)

cos ν
= 1 + (−1)l sinl ν

[∣∣∣∣ �
(

l+1+iS
2

)
�

(
1 + l+iS

2

) ∣∣∣∣
2 1

2 cos ν

× 2F1

(
l + 1 + iS

2
,
l + 1 − iS

2
,
1

2
; cos2 ν

)

− 2F1

(
1 + l + iS

2
,1 + l − iS

2
,
3

2
; cos2 ν

)]
.

(D1)

For a fixed value of Sl , and, thus, considering α as a function
of Sl , we expect the asymptotic expansion in the large l limit:

cos ν = a1

l
+ a2

l2
+ a3

l3
+ · · · . (D2)

Using (D1) for fixed S, the calculation of the leading coefficient
a1 is straightforward, expressing each 2F1 function in terms
of its defining hypergeometric series, see relation (9.100) in
Ref. [31], and taking the large l limit in each term of the series.
For example, for any natural integer k,(

l+1
2

)2 · · · ( l+1
2 + k − 1

)2(
1
2

)
. . .

(
1
2 + k − 1

) cos2k ν

k!
→

l→+∞
a2k

1

(2k)!
, (D3)

(
l+2

2

)2 · · · ( l+2
2 + k − 1

)2(
3
2

)
. . .

(
3
2 + k − 1

) cos2k ν

k!
→

l→+∞
a2k

1

(2k + 1)!
. (D4)

The sum over k then generates cosh and sinh functions of
a1. Also, the � functions in Eq. (D1) may be expanded using
relation 8.344 in Ref. [31]. This lowest-order calculation gives
�l(iSl)/ cos ν = 1 − exp(−a1)/a1 + O(1/l). Since �l(iSl)
vanishes (to all orders), one obtains a1 = exp(−a1) so

a1 = C, (D5)

where C was introduced in Eq. (75) in the Born-Oppenheimer
context. This technique can be pushed, in principle, to any
order. We calculated a2 = −C/2 and a3. That Sl does not
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contribute to a2 (and contributes to a3 in the form of a term S2
l )

is due to the fact that Eq. (D1) is an even function of S and it
is always the ratio S/l that appears in the expansion. Turning
the expansion [Eq. (D2)] into an expansion for the mass ratio,
we obtain Eqs. (78), (79), and (80).

This large-l expansion technique can even be extended to
the case where Sl/ l = O(1) (which includes both the previous
case of Sl fixed and the new case Sl/ l fixed). To leading order,
one finds S2

l � (α − α(l)
c )C2/2 (as in the Born-Oppenheimer

approximation) and

�l(iS)

cos ν
� 1 −

exp
[−C

(
S2+l2

S2
l +l2

)1/2]
C

(
S2+l2

S2
l +l2

)1/2 . (D6)

This shows that �l(iS) is a function of S of width ∝ l in the
large l limit, so the derivatives in Eq. (87) tend to zero in that
limit and the contribution is dominated by the integral over
S. Setting xl ≡ Sl/ l, assumed to be bounded as we noted, we
then obtain an asymptotic expression for the global scale of
the Efimovian spectrum as follows:

ln
(
q

(l)
globalR∗/2

) =
l→+∞

Im [ln �(1 + iSl) + ln �(1 + 2iSl)]

Sl

− 3 ln l − 1

2
ln

(
1 + x2

l

) + 1

− arctan xl

xl

+
∫ xl

0

dx

xl

lnF(x)

+O

(
1

l

)
(D7)

with the function

F(x) ≡ 1

x2
l − x2

⎡
⎢⎣−1 + e

−C

(
1+x2

1+x2
l

)1/2

C
(

1+x2

1+x2
l

)1/2

⎤
⎥⎦ . (D8)

In the case where Sl has a fixed value for l → +∞, one has
that xl → 0 and one may approximate F by keeping terms
up to order x2

l and x2 inside the square brackets of Eq. (D8),
so F(x) = (1 + C)/2 + o(1). This gives Eq. (90). In the case
where xl is fixed to a nonzero value, Sl diverges for l → +∞
so the � functions in Eq. (D7) may be Stirling expanded,
leading to

ln(q(l)
globalR∗/2)

xl fixed→
l→+∞

ln
xl

(1 + x2
l )1/2

− arctan xl

xl

+
∫ xl

0

dx

xl

ln
[(

x2
l − x2

)
F(x)

]
. (D9)

Furthermore, if xl � 1, the first two terms in the right-hand
side of Eq. (D9) tend to zero, and the integral can be shown
to approach J + ln(1 + C), where J is the integral [Eq. (92)].
Remarkably, one then recovers for q

(l)
globalR∗ the same estimate

as in Eq. (91), which was obtained with a different limiting
procedure (Sl → +∞ for l fixed). This may be not surprising,
since Sl/ l � 1 in both cases, and this is obvious even in
a semiclassical picture, see the discussion below Eq. (107),
where the large α limit is reached for αC2/2 � (l + 1/2)2

(which implies Sl � l), irrespective of whether l is large.

APPENDIX E: EFIMOVIAN SPECTRUM GLOBAL SCALE
AT INFINITE MASS RATIO

The results [Eqs. (C9) or (87)] are quite useful to determine
q

(l)
global for α → +∞ for a fixed angular momentum l. One

simply needs an asymptotic expansion of �l(iS) for S large
of the order of Sl → +∞, which implies that S and 1/ cos ν

both scale as α1/2. For S → +∞ it is apparent that the integral
over θ in Eq. (41) is dominated by the contribution of a small
interval ending in θ = ν, since here s = iS. Approximating
sin(sθ )/ sin(sπ/2) ∼ exp[S(θ − π/2)], we see that the small
interval has a width scaling as 1/S. We then Taylor-expand
Pl(sin θ/ sin ν) around θ = ν up to second order in (θ − ν),
and we perform the integral over θ extending the lower bound
of the integral to −∞, which generates an expansion in powers
of 1/S. We can also consistently expand cos ν and sin ν up to
second order in π/2 − ν, since 1/S and π/2 − ν are of the
same order. If one sets ε = π/2 − ν, this gives

�l(iS)

cos ν
= 1 − e−εS

εS

[
1 + 2

3
ε2 − 1

2
l(l + 1)

×
(

ε

S
+ 1

S2

)
+ O

(
1

S4

)]
, (E1)

where we used Pl(1) = 1 and P ′
l (1) = l(l + 1)/2.

A first application of Eq. (E1) is an expansion of Sl in
powers of ε. Since �l(iSl) = 0, one finds to leading order
Slε = C, where C is given by Eq. (75). Going to next order
gives a correction of order ε2 to εSl . Expressing ε as a power
series in 1/α from cos ε = α/(1 + α) gives Eq. (81).

A second application of Eq. (E1) is the derivation of
the infinite-mass-ratio limit of q

(l)
global. To leading order,

�l(iS)/ cos ν is a function of εS and so is

Rl(S) � ln

[(
1 − e−x

x

)
x2

x2 − C2

]∣∣∣∣
x=εS

. (E2)

This means that the (2k − 1)th derivatives of Rl in Eq. (C8)
scale as ε2k−1 and are negligible. The integral over S ′ in
Eq. (C8) is a leading contribution that scales as Sl as revealed
by the change of variable x = εS ′. Moreover, the denominator
in Eq. (C9) contributes with a phase factor ∼exp(2iSl ln 2).
Using Eq. (86) one finally obtains Eq. (92).

APPENDIX F: FIRST CORRECTION TO THE
HYDROGENOID SPECTRUM

Within the Born-Oppenheimer framework of Sec. IV C, for
the hydrogenoid part of the trimer spectrum, we apply the first-
order perturbation theory to the 1/r

1/2
23 term of Eq. (101) that

we call here δV . In terms of the Bohr radius a0 = h̄2/(mee
2) =

4R∗/α, the normalized hydrogenoid wave function is [64]

ψ (l)
n (r23)

=
(

2

(n + l)a0

)3/2[ (n − 1)!

2(n + l)(n + 2l)!

]1/2

× e−r23/[(n+l)a0]

[
2r23

(n + l)a0

]l

L2l+1
n−1

[
2r23

(n + l)a0

]
Y

ml

l (r23),

(F1)
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where L
β
n is the usual Laguerre polynomial defined with the

convention of Ref. [31] (and not with the one of Ref. [64]).
After angular integration and the change of variable u =
2r23/[(n + l)a0], we obtain for the expectation value of δV

in that wave function

〈δV 〉 = h̄2α1/2

MR2∗

(n − 1)!

[2(n + l)]3/2(n + 2l)!

×
∫ +∞

0
du u2l+3/2e−u

[
L2l+1

n−1 (u)
]2

. (F2)

To evaluate this integral, we use the generating function
technique of Ref. [64]: We define

I (x,y) =
∫ +∞

0
du uβ+γ e−uϕβ(u,x)ϕβ (u,y), (F3)

where eventually we shall set γ = 1/2 and β = 2l + 1, and
where the generating function of the Laguerre polynomials L

β
n

for fixed β is given for |z| < 1 by relation 8.975(1) in Ref. [31]:

ϕβ(u,z) ≡
+∞∑
n=0

Lβ
n (u)zn = e−uz/(1−z)

(1 − z)β+1
. (F4)

On the one hand, since ϕβ is the generating function,

I (x,y) =
+∞∑

m,n=0

xmyn

∫ +∞

0
du uβ+γ e−uLβ

m(u)Lβ
n (u) (F5)

so we need the diagonal terms n = m in this series expansion.
On the other hand, from the explicit form of ϕβ ,

I (x,y) = �(1 + β + γ )
[(1 − x)(1 − y)]γ

(1 − xy)1+β+γ
, (F6)

it remains to expand, in a series of x and y using (1 − X)ν =∑+∞
q=0 Xq�(q − ν)/[�(q + 1)�(−ν)], where ν is a noninteger,

3 times to obtain, for a noninteger γ ,∫ +∞

0
du uβ+γ e−u

[
L

β

n−1(u)
]2

=
n−1∑
k=0

(
�(k − γ )

�(k + 1)�(−γ )

)2
�(β + γ + n − k)

�(n − k)
. (F7)

For γ = 1/2, β = 2l + 1, expressing the � function of integers
and half-integers in terms of factorials finally gives Eqs. (103)
and (104) [65].
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K. Góral, T. Köhler, and K. Burnett, Phys. Rev. A 72, 013610
(2005).
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dx = d(ln ǩ) < cos ν. Note that, from the usual definition
Pl(u) = (2−l/ l!) dl

dul [(u2 − 1)l], one can show (by l integrations
by part) that Ql(v) > 0 for v > 1 for l of any parity. The kernel
in Eq. (114) has, thus, positive matrix elements for l even and
negative for l odd.

[60] We estimate here the issue of magnetic field stabilization for
a narrow Feshbach resonance such as the one of 6Li-40K. The
1/a = 0 assumption imposes the filtering qR∗ > 10R∗/|a| on
our results, as we noted. The finite experimental value of the
scattering length is, according to Eq. (12), a ≈ abg�B/δB,
where δB is the experimental control on the magnetic field.
For the modest choice 10R∗/|a| = 10−1, which amounts to
restricting our Fig. 6(a) to qR∗ > 10−1, and taking typical
6Li-40K Feshbach resonance parameters, R∗ ≈ 100 nm, �B ≈
0.1 mT, abg ≈ 3 nm [8–10], we reach the condition δB ≈
30nT = 0.3 mG, which requires magnetic shielding but remains
accessible [66].

[61] L. Pricoupenko, Phys. Rev. A 82, 043633 (2010).
[62] D. S. Petrov, G. E. Astrakharchik, D. J. Papoular, C. Salomon,

and G. V. Shlyapnikov, Phys. Rev. Lett. 99, 130407 (2007).
[63] M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. van der Zouw,

and A. Zeilinger, Nature 401, 680 (1999).
[64] P. Caldirola, R. Cirelli, and G. Prosperi, in Introduzione alla

fisica teorica (Utet, Turin, 1982).
[65] The naive calculation of the integral of Eq.(F7) after expansion

of the polynomial in terms of the monomials uq gives a sum of
n2 terms that suffers the sign problem.

[66] F. Reinhard, Ph.D. thesis, University Pierre et Marie Curie,
2009, in Design and Construction of an Atomic Clock on an
Atom Chip, p. 84, available at [http://tel.archives-ouvertes.fr/tel-
00414386/fr/].

062704-24

http://dx.doi.org/10.1103/PhysRevC.47.1876
http://dx.doi.org/10.1103/PhysRevA.73.012701
http://dx.doi.org/10.1103/PhysRevA.73.012701
http://arXiv.org/abs/arXiv:1006.5186
http://dx.doi.org/10.1103/PhysRevLett.105.170403
http://dx.doi.org/10.1103/PhysRevLett.105.170403
http://dx.doi.org/10.1103/PhysRevLett.100.090405
http://dx.doi.org/10.1103/PhysRevLett.100.090405
http://dx.doi.org/10.1088/0953-4075/40/7/011
http://dx.doi.org/10.1103/PhysRevA.82.043633
http://dx.doi.org/10.1103/PhysRevLett.99.130407
http://dx.doi.org/10.1038/44348

