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Calculation of intermediate-energy electron-impact ionization of molecular hydrogen and nitrogen
using the paraxial approximation
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We have implemented the paraxial approximation followed by the time-dependent Hartree-Fock method with a
frozen core for the single impact ionization of atoms and two-atomic molecules. It reduces the original scattering
problem to the solution of a five-dimensional time-dependent Schrödinger equation. Using this method, we
calculated the multifold differential cross section of the impact single ionization of the helium atom, the hydrogen
molecule, and the nitrogen molecule from the impact of intermediate-energy electrons. Our results for He and H2

are quite close to the experimental data. Surprisingly, for N2 the agreement is good for the paraxial approximation
combined with first Born approximation but worse for pure paraxial approximation, apparently because of the
insufficiency of the frozen-core approximation.
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I. INTRODUCTION

The electron-impact-ionization processes play a crucial role
in the physics of the high atmospheric layers, astrophysics,
radiation damage of biological objects, and controlled fusion
facility operation. That is why these processes remain a
subject of researcher’s interest for a long time (see, e.g.,
[1]). Modern research activity in this area is coherent with
the progress of experimental instrumentation based on the
coincidence technique providing multiple differential cross
sections (MDCSs). The (e,2e) experiments aimed at exploring
the ionization dynamics have experimental geometry different
from that of electron momentum spectroscopy [2,3] aimed
at getting information about the wave function of the tar-
get. MDCS data, for the experimental geometries providing
information about the dynamics of the ionization process,
were collected for (e,2e) on atoms [4–9] and diatomic
[10–15] and polyatomic molecules [14,16] for the cases of
fast- [4,10,11], intermediate- [7–9,13–16], and low-energy
incident electrons [5–7,12]. For the interpretation of these
results, theorists used both perturbative methods, based on
the approximate wave functions of the electron continuum
(see [17] and references therein), and ab initio methods, such as
convergent close coupling (CCC) [18], time-dependent close
coupling (TDCC) [19], external complex scaling (ECS) [20],
and R matrix with pseudostates (RMPS) [21]. Ionization of
diatomic molecules is a subject of special interest for both
theorists and experimentalists because this is a natural model
for demonstrating Young-type double-slit interference [11].
Recently, a large amount of experimental data on the ioniza-
tion of molecular targets by intermediate-energy (hundreds
of eV) electrons with small-energy electron ejection appeared
[13–16,22]. These data are hardly interpreted by the theory
since the correct (e,2e) description in such circumstances
requires correct consideration of higher terms of the Born
expansion for scattered electrons, the multicenter character of
the target, and the influence of the residual target electrons on
the ejected one. Direct calculations for intermediate-energy
electrons using ECS or TDCC require grids with a small step
and, as a consequence, huge computer resources, while the
CCC method at present was implemented in molecules only
within the single-center approximation [23].

In the present work a method is developed that is analogous
to the well-known paraxial approximation (PA) in waveguide
optics. It allows us to reduce the scattering problem solution
to the temporal evolution problem. Previously, we imple-
mented a restricted version of this method, i.e., the paraxial
approximation combined with the first Born approximation
(PA1B), for the calculation of the impact ionization of the
molecular hydrogen ion H2

+ [24] and the helium atom [25].
Here we implement the paraxial approximation without Born
expansion. To describe the evolution of the multielectron
target the time-dependent Hartree-Fock method with a frozen
core is proposed. As a result, the original problem of the
intermediate-energy electron scattering on a multielectron
target is reduced to the solution of a five-dimensional time-
dependent Schrödinger equation.

This paper is organized as follows. In Sec. II the derivation
of the paraxial equation for the scattering problem is briefly
described. Section III represents the time-dependent Hartree-
Fock method with a frozen core. In Sec. IV we describe the
numerical methods used to solve the obtained five-dimensional
time-dependent Schroedinger equation in the cases of one-
center and two-center targets. Finally, in Sec. V we present the
results of calculating the multifold differential cross sections of
the intermediate-energy electron-impact single ionization for
a helium atom, nonaligned and aligned hydrogen molecules,
and a nitrogen molecule in comparison with experimental data
and calculations by other authors.

II. PARAXIAL APPROXIMATION

The stationary Schrödinger equation describing a projectile
with the initial momentum ki and the coordinate r0 and a target
with a single active electron having the coordinate r1 has the
form (here and below we use atomic units where the Planck’s
constant h̄, the absolute value of electron charge e, and the
electron mass me equal unity, h̄ = |e| = me = 1)[

− 1

2μ
∇2

0 − qUi(r0) + Ĥi(r1) − q

|r1 − r0|
]
�(r0,r1)

=
(

k2
i

2μ
+ εi

)
�(r0,r1), (1)
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where εi is the initial target energy, Ĥi is target effective
Hamiltonian, Ui is the effective potential of the residual ion,
μ is the mass of the projectile, and q is the projectile charge.
If we represent the wave function as

�(r0,r1) = �̃(ρs ,z0,r1) exp(ikiz0), (2)

where ρs is a two-component vector composed from coor-
dinates of r0 perpendicular to ki , and neglect the second
derivative with respect to z0, then we arrive at an equation
akin to the time-dependent one:

i
∂ψ(r1,ρs ,t)

∂t

=
[
− 1

2μ
∇2

⊥− qUi(r0) + Ĥi(r1) − q

|r1 − r0|
]
ψ(r1,ρs ,t).

(3)

Here t = z0μ/ki is the time-like parameter, and ψ(r1,ρs ,t) =
�̃(ρs ,ki t/μ,r1) exp(iεi t) is the envelop function. The initial
condition has the form

ψ(r1,ρs ,t0) = ϕi(r1) exp(−iεi t0), (4)

where t0 → −∞. The distinction between the paraxial ap-
proximation and the well-known eikonal approximation is the
fact that the second derivatives with respect to the transverse
coordinates of a fast particle are not neglected.

The scattering amplitude can be expressed via the Fourier
component with respect to the incoming particle transversal
variables [see Eq. (15) in the Sec. IV]:

ψK⊥(r1,t) = 1

2π
e
i

K2⊥
2μ

t

∫
exp(−iK⊥ · ρs)ψ(r1,ρs ,t) dρs .

(5)

Here in the limit t → ∞, K⊥ is the transverse component of
the transferred momentum K, K⊥ = ks sin θs , where θs is the
scattering angle.

In Ref. [24] a simplified approach, based on the com-
bination of the paraxial approximation with the first Born
approximation (PA1B), was proposed. In this approach the
scattering problem reduced to the solution of a Schrödinger-
like inhomogeneous time-dependent equation:

i
∂ψK⊥ (r1,t)

∂t
= Ĥi(r1)ψK⊥(r1,t) + FK⊥(r1,t), (6)

with the initial condition ψK⊥ (r1,t0) = 0. The source term has
the form

FK⊥(r,t)

= − q

K⊥
exp

[
i

(
K2

⊥
2μ

− εi

)
t

]
e−K⊥|ki t/μ−z|+iK⊥·r⊥ϕi(r).

(7)

This approach is used here for verification and comparison
with the pure PA results.

The PA is valid when neglected second derivative of the
envelope function ψ(r1,ρs ,z0μ/ki) with respect to z0 is small.
It is equivalent to the condition [24]

K2
⊥/2μ + 	ε

Ei

� 1, (8)

where Ei = k2
i /2μ is the projectile energy, 	ε is the change

in the target energy after impact, and 	ε = Ee − εi in the case

of impact ionization, where Ee is an ejected electron energy.
Following Eq. (8), the PA is valid when both the angle of
scattering θs � 1 rad and the energy of the ejected electron
Ee � Ei .

III. FROZEN-CORE APPROXIMATION

Let us start with the time-dependent Hartree-Fock equation
for a system containing Ne electrons:

i
∂ψi(r,t)

∂t
= F̂

[{ψj (r′,t)}No

j=1

]
ψi(r,t) + v(r,t)ψi(r,t). (9)

Here the Fock operator for the set of orbital wave functions
{ϕj }No

j=1, No = Ne/2, is

F̂
[{ϕj }No

j=1

] = ĥ +
No∑
j=1

(2Ĵ [ϕj ] − K̂[ϕj ]),

where

ĥ = − 1
2∇2 + u(r)

is the single-electron Hamiltonian,

Ĵ [ϕ]ψ(r) =
∫ |ϕ(r′)|2

|r − r′| dr′ ψ(r)

is the Coulomb operator, and

K̂[ϕ]ψ(r) = ϕ(r)
∫

ϕ∗(r′)ψ(r′)
|r − r′| dr′

is the exchange operator. Let us assume that all orbital wave
functions except the ith one are frozen during a process, so
that

ψj (r,t) =
{

ψ(r,t), j = i,

ϕj (r) exp(−iεj t), j 	= i,

where the functions {ϕj }No

j=1 are solutions of the stationary
Hartree-Fock equation

F̂
[{ϕj }No

j=1

]
ϕi(r) = εiϕi(r). (10)

We can introduce an effective potential of the residual
molecular ion after the ith electron ejection:

wi(r) = 2
No∑
j=1

Ĵ [ϕj ] − Ĵ [ϕi] =
No∑
j=1

(2 − δij )
∫ |ϕj (r2)|2

r12
dr2.

The residual operator formally has the form

X̂i = F̂
[{ψj }No

j=1

] − [̂h + wi(r)]

= 2Ĵ [ψ] − Ĵ [ϕi] −
No∑
j=1

K̂[ψj ]

or

X̂iψ =
⎧⎨⎩Ĵ [ψ] − Ĵ [ϕi] −

∑
j 	=i

K̂[ϕj ]

⎫⎬⎭ψ,

but since Ĵ [ψ] describes the ejected electron counterpart with a
different spin value, whose state can be considered as constant

062701-2



CALCULATION OF INTERMEDIATE-ENERGY ELECTRON- . . . PHYSICAL REVIEW A 84, 062701 (2011)

during the process within the frozen-core approximation, we
get for the exchange operator

X̂i = −
⎧⎨⎩∑

j 	=i

K̂[ϕj ]

⎫⎬⎭ .

The correct introduction of this operator gives rise to an
integral equation. Since the exchange is essential only in the
case when an electron is located near a molecule, we can
introduce the approximate exchange operator

X̂N
i = −Î N

⎧⎨⎩∑
j 	=i

K̂[ϕj ]

⎫⎬⎭ Î N ,

where a projection operator in the subspace of the solutions in
Eq. (10) is

Î Nψ(r) =
N∑

k=1

ϕk(r)
∫

ϕ∗
k (r′)ψ(r′)dr′.

Then the effective Hamiltonian is

Ĥi = ĥ + wi(r) + X̂N
i . (11)

If N � No, then the approximate operator provides the correct
orbital energies for the ground state. In the present work
N = No was used, which means that we actually neglect the
exchange for the continuum states and the excited states. Hence
the effective potential of the ion has the form

Ui(r) = u(r) + wi(r). (12)

IV. NUMERICAL METHOD

The numerical scheme for time propagation is based on the
split method. This means that the perpendicular Hamiltonian
in Eq. (3),

Ĥ⊥ = − 1

2μ
∇2

⊥ + Ui(r0) + 1

|r1 − r0| + Ĥi(r1), (13)

is split to into three parts, for which the time propagation
was realized through the Crank-Nicolson method, except
for the target effective Hamiltonian (11), for which split-
ting was performed. The approximation of spatial operators
was performed using the discrete variable representation
(DVR).

The incoming electron transverse variables were repre-
sented in the cylindric coordinate system. For the angular
variable φs the wave function was expanded in the functions

ϕm(φ) =

⎧⎪⎪⎨⎪⎪⎩
1√
2π

, m = 0,

1√
π

cos mφ, m > 0,

1√
π

sin mφ, m < 0.

For the radial variable ρs the finite-element method (FEM)
on the Gauss-Lobatto quadratures (DVR) [26] was used, and
the Gauss-Radau quadrature [27] was used for the first finite
element to provide correct boundary conditions at ρ = 0.
After completing the step with the transverse part of the

incoming electron kinetic energy operator, the discrete Fourier
transformation was used to pass to the DVR in the angular
variable φs with the quadrature knots

ϕj = 2π

Nϕ

(j − 1), j = 1, . . . ,Nϕ,

so that the operator of the potential Ui(r0) + 1/|r1 − r0|
became diagonal. But, in order to avoid singularity at r1 = r0,
Neumann’s expansion [28], restricted to lmax = Nη − 1 and
mmax (see below), was used for 1/|r1 − r0|. To provide
the second-order precision, the sequence of the split steps
was alternated, i.e., the steps were performed as follows:
− 1

2μ
∇2

⊥, the inverse Fourier transformation with respect to φs ,

Ui(r0) + 1
|r1−r0| , 2Ĥi(r1), Ui(r0) + 1

|r1−r0| , the direct Fourier

transformation, − 1
2μ

∇2
⊥. Since the temporal grid step was

equal to τ , we got the wave function at the time moment
t + 2τ after both direct and inverse passing of all split layers.

To perform the split-step procedure with the target Hamil-
tonian in the case of one-center targets, the method in [29] was
used, but unlike the authors of [29], we used the FEM DVR
for the radial variable r , and the exterior complex scaling
method [30] was used to suppress nonphysical reflection from
the boundaries of the r grid.

Since the wave function converges extremely slowly with
the basic function number growth for the two-center targets
with large nuclear charges, in this case the prolate spheroidal
(elliptic) coordinates and the wave function expansion over the
basis [27]

�ijm(ξ,η,φ) =
√

8

R3
(
ξ 2
i − η2

j

)fmi(ξ )ςmj (η)ϕm(φ)

were used. Here i = 1, . . . ,Nr , j = 1, . . . ,Nη, m =
−mmax, . . . ,mmax, R is the distance between the nuclei (in
our code, the molecular axis orientation with respect to the
incoming direction ki could be chosen arbitrarily),

fmi(ξ ) =
⎧⎨⎩

fi(ξ ), odd m,

ξi√
ξ 2
i −1

√
ξ 2−1
ξ

fi(ξ ), even m,

where fi(ξ ) are the FEM DVR basic functions, composed
from pieces of the Lagrange polynomials, meeting the relation
fi(ξi ′) = δii ′/

√
wi , ξi and wi are the nodes and weights of

a quadrature composed from the Gauss-Radau quadrature
for the first finite element and the Gauss-Lobatto quadrature
for the remaining ones [27], and the boundary condition
at ρ = ρmax was Neumann’s condition [following Eq. (4),
limρs→∞ ∂

∂ρs
ψ(r1,ρs ,t) = 0]. The introduction of fmi(ξ ) pro-

vides the correct asymptotic behavior at ξ = 1 for odd m,
allowing us to save the Legendre function basic feature
fmi(ξi ′) = δii ′/

√
wi . The angular basis functions were the

Legendre functions

ςmj (η) = √
�j

Nη−1+|m|∑
l=|m|

P̄ m
l (ηj )P̄ m

l (η),

where ηj ,�j ,j = 1, . . . ,Nη are the nodes and weights
of the Gauss-Lobatto quadrature in the segment
η = [−1,1] and P̄ m

l (η) are the associated Legendre
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polynomials, which are orthonormal on the Gauss-Legendre
quadrature [29]. Two summands can be distinguished

in the Hamiltonian matrix. The first is the quasiradial
Hamiltonian,

H
mj

ξii ′ = 2

R2
√(

ξ 2
i − η2

j

)(
ξ 2
i ′ − η2

j

)[ ∫ ξmax

0
f ′

mi(ξ )(ξ 2 − 1)f ′
mi ′ (ξ )dξ + R(Z1 + Z2)ξiδii ′

]
,

with the matrix having a length half width s, where s is the finite-element order, and a rank Nr = sNFE + 1, where NFE is a
number of finite elements. The second is the quasiangular Hamiltonian,

Hmi
ηjj ′ = 2

R2
√(

ξ 2
i − η2

j

)(
ξ 2
i − η2

j ′
)

⎡⎣√
�j�j ′

Nη−1+|m|∑
l=|m|

P
m

l (ηj )l(l + 1)P
m

l (ηj ′) + R(Z1 − Z2)ηj δjj ′

⎤⎦ ,

which is the completely filled square matrix whose rank is Nη.
Therefore the Hamiltonian is being split into four parts: Ĥξ ,
Ĥη, Ush(r) = Ui(r) + Z1/|r1 − R/2| + Z2/|r1 + R/2| (one
contains the average potential of nonactive shells and all the
nuclei except the first two), and X̂i . After the steps for Ĥξ and
Ĥη had been completed, the transition to DVR was performed
for φ via the Fourier transformation in order to make the matrix
of the potential Ush(r) diagonal. The step with the approximate
exchange operator X̂i was performed as follows. The wave
function was expanded by the shell wave functions ϕn(r), and
then the part orthonormal to all of them was extracted:

Cn(t) =
∫

ϕ∗
n(r)ψ(r,t)dr;

ψrest(r,t) = ψ(r,t) −
N∑

n=1

Cn(t)ϕk(r).

The temporal step for the coefficients Cn was performed using
the Crank-Nicolson scheme:

C(t + τ ) =
[

I + iτ

2
X

]−1[
I − iτ

2
X

]
C(t),

where Ink = δnk and

Xnk = 〈ϕn|X̂i |ϕk〉 + 1 − δni

τ
δnk. (14)

We added large numbers 1/τ to all diagonal elements of
the matrix X, except the ith one (it corresponds to the
number of the active electron), in order to suppress the active
electron transitions to the states occupied by other electrons
(this transitions is prohibited by the Pauli principle). After
performing the step, the wave function part, which had been
changed because of the exchange, was added to a residual part:

ψ(r,t + τ ) = ψrest(r,t) +
N∑

n=1

Cn(t + τ )ϕk(r).

The final step order in the target electron evolution calculation
is Ush(r), X̂i , Ĥξ , 2Ĥη, Ĥξ , X̂i , Ush(r).

The ionization amplitude can be expressed via the Fourier
component (5) of the envelop function as [24]

f (�s,Ee,�e) = −iki lim
t→∞〈ke|ψK⊥(r,t)〉eiEet . (15)

Here ke is the momentum of the ejected electron, and Ee =
k2
e /2 and |ke〉 = ϕ

(−)
ke

(r) are the continuum wave functions of
the target. But we calculated the amplitude using an approach
suggested in Ref. [31] that does not require knowledge of the
continuum wave functions in the explicit form. This approach
is based on the time Fourier expansion of the probability flux
through the boundary

f = −iki

∫ T

t0

dt

∮
S

nSdS · j
[
ψK⊥(r,t),χ (−)∗

ke
(r)eiEet

]
. (16)

Here the probability flux vector is introduced,

j[ψ,ϕ] = i

2
[ψ∇ϕ − ϕ∇ψ], (17)

T is the time to which evolution is simulated, S is a closed
surface around the system [a sphere with the radius rS in the
case of spherical coordinates or an ellipsoid with the radius
ξS =

√
(2rS/R)2 + 1 in the case of spheroidal coordinates],

nS is its normal vector, and χ
(−)
ke

(r) is a function approaching

ϕ
(−)
ke

(r) at large r . In the present work we used an approximated

quasiclassical function for χ
(−)
ke

(r), and it differs from the exact

continuum function ϕ
(−)
ke

(r) by O(1/r2).
The problem with this method is that the wave function may

not approach zero at the boundary even at a large time value
T because the ionization with the ejection of very low energy
electrons and transitions to highly excited stationary states is
essential. Therefore, Eq. (16) yields a value oscillating with
the growth of T . We avoided this artifact by setting

ψK⊥ (rS,t > T )  ψK⊥ (rS,T ) exp[−iEeff(rS,T )(t − T )],

(18)
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where Eeff is certain complex “effective energy,” and then
calculating the integral for t ∈ (T ,∞) analytically. In this case
Eq. (16) turns into

f = −iki

∮
S

nS ·
{

j
[ ∫ T

0
eiEetψK⊥ (r,t)dt

− eiEeT

i(Ee − Eeff)
ψK⊥(r,t),χ (−)∗

ke
(r)

]}
dS, (19)

where the effective energy is calculated as

Eeff(rS,T ) = i

ψK⊥ (rS,t)

∂ψK⊥(rS,t)

∂t
. (20)

The validity condition of this approximation
|dEeff/dT |/E2

e � 1 at T → ∞ proceeds to [U (rS)/Ee]2 ∼
1/r2

S � 1, which coincides with the order of the accuracy of
χ

(−)
ke

(r).

V. RESULTS

To test the method, we calculated the triple differential cross
section (TDCS) of the helium single ionization by fast-electron
impact at the experimental parameters set [22]: the scattered
electron energy Ei = 500 eV, and the ejected electron energy
Ee = 37 eV and Ee = 74 eV; in the third experimental data
set [22] the ejection energy Ee = 205 is too large for the PA
calculation. In Fig. 1 one can see our PA and PA1B results, the
experimental data [22], and the CCC results from [22]. The
latter results are normalized to provide the best coincidence
with a binary peak in PA results since in [22] they are given
in arbitrary units. It is seen that our PA results coincide very
well both with the experiment and with the CCC data, though
CCC reproduces the recoil peak at Ee = 37 eV better, and at
Ee = 74 eV our results are indistinguishable from the CCC
results.

Further we calculated the TDCS of the single ionization
of a nonaligned H2 molecule by the fast-electron impact also
at the experimental parameters [22]. In Fig. 2, in addition
to the PA and PA1B results and the experimental data [22],
we present the results of the external complex scaling (ECS)
method accounting for the second term in the Born series in
dipole (2BD) approximation [32] and the molecular three-
body distorted wave (M3DW) coupled with an orientation-
averaged molecular orbital (OAMO) approximation results
[22]. The experimental data and the M3DW OAMO results
are normalized to provide the best coincidence with the
binary peak in PA results. Our PA results coincide with the
experimental ones better than those of M3DW OAMO both
in the binary-peak position and in the recoil-peak magnitude,
though the recoil peak is slightly underestimated in our results
at Ee = 37 eV. The ECS 2BD results [32] coincide well in
magnitude with the PA results but demonstrate strong under-
estimation of the angular shift with respect to the direction of
the momentum transfer vector K. The ECS 2BD method takes
into consideration only the second-order Born term bi-dipole
component, i.e., the contribution to the second-order Born term
that is linear with respect to both radius vectors of two target
electrons. The Hartee-Fock approximation is considered here,
taking into account the interaction of only one target electron
with the scattered electron but doing it exactly. Hence one can

0

0.05

0.1

0.15

0.2

0 45 90 135 180 225

(a)

(b)

270 315 360

0 45 90 135 180 225 270 315 360
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FIG. 1. (Color online) The TDCS of the He(e,2e) process as a
function of the ejection angle θe for ejection energies (a) Ee = 37 eV
and (b) Ee = 74 eV: our PA results (solid line), our PA1B results
(dashed line), the CCC results [22] (dotted line), and the experimental
data [22] (circles).

conclude that the main contribution to the angular shift is given
by the second Born term components, which depend only on
the coordinates of one electron. This can explain the failure
of the ECS 2BD in describing of the angular distribution of
ejected electrons in the H2 double ionization [32].

We calculated the TDCS for a nonaligned N2 molecule at
the experimental parameters [13,14]. The variational functions
[33] were used as the functions of the initial states of N2

orbitals. In Fig. 3 we show the PA and PA1B results together
with the experimental data [14], and we also show the TCC1B
results [22] for the ionization of an electron from an inner
2σg shell of N2. Since the PA1B result is much closer to the
experimental data than that of PA, the experimental data and
the TCC1B results are normalized to fit the PA1B results. We
suppose that such a discouraging PA failure is caused by using
the approximation of one active electron and, as a consequence,
neglecting the target interelectron correlation and the change in
the rest-electron state during the interaction with the incoming
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FIG. 2. (Color online) The TDCS of the H2(e,2e) process as a
function of the ejection angle θe for ejection energies (a) Ee = 37 eV
and (b) Ee = 74 eV: our PA results (solid line), our PA1B results
(dashed line), the ECS 2BD results (dotted line), the M3DW OAMO
results [22] (dot-dashed line), and the experimental data [22] (circles).

electron. In the first Born model, the target electron acquires
the escape velocity after a single act of momentum transfer
from the incident electron and rapidly leaves the molecule,
so other electrons have no time to change their state and the
frozen-core approximation is correct. High-order Born terms
include two-step processes: after the first momentum transfer
the electron can stay in the excited state (note that this is the
most probable for initially strongly bound internal electrons)
and can leave the molecule only after the second momentum
transfer. Certainly, during the first stage the other electron has
time to change its state. Since the interelectron correlation
leads to the growth of the average interelectron distance, it
should obviously lead to a decrease in the repulsion of the
ejected electron from the other target electrons in comparison
with the frozen-core approximation. So, in the intermediate
state of a two-step process, the active electron is actually
more strongly bound with the molecule than in the frozen-core
approximation and has less chance to leave the molecule after
the second impact. As a result, the ionization via two-step
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FIG. 3. (Color online) The TDCS of (e,2e) process on the 2σg

shell of N2 as a function of the ejection angle θe for ejection energies
(a) Ee = 37 eV and (b) Ee = 74 eV: our PA results (solid line), our
PA1B results (dashed line), the TCC1B results (dotted line), and the
experimental data (circles).

processes is strongly overestimated when using the frozen-core
approximation. In PA1B the two-step processes are omitted,
while in PA with a frozen core they are present and strongly
overestimated. Apparently, that is why the PA1B turned out to
be much closer to the experimental data than the PA.

Figure 4 shows the same results as in Fig. 3, but for the
ionization of the outer shells. We calculated the contributions
to the TDCS given by the ionization from the 3σg , 1πu, and 2σu

shells of N2 and summarized them with the coefficients 1, 0.78,
and 0.32, respectively, following [14]. Here the experimental
data and the TCC1B data are rescaled to fit the PA binary-peak
value. In this case our PA results are obviously closer to the
experimental points than those of the PA1B and the TCC1B,
though the PA notably underestimates the recoil-peak value
at Ee = 37 eV and the angular shift of the binary peak at
Ee = 74 eV. These distinctions seem to be associated with the
target outer-shell dynamics.

Also we calculated the TDCS of the ionization of aligned
H2 for the following experimental parameters [15]: the energy
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FIG. 4. (Color online) The same as Fig. 3, but for the ionization
from the outer shells.

of impact electron Ei = 200 eV, the scattering angle θs = 16◦,
and the ejected electron energy Ee = 3.5 eV (Fig. 5). Since the
incoming electron momentum ki = 3.83 is rather small and the
scattering angle is large, it can be considered to be a rigorous
test of the paraxial-approximation applicability limits. The
initial orientation of the molecule in Ref. [15] was measured
by registering the protons that appear due to the dissociation
of the residual H2

+ ion. Since the dominant channel of this
process is ground-state dissociation, we used the internuclear
distance R = 1.1 a.u. for H2, when this process is possible.
Figure 5, in addition to our PA results and the experimental
data [15], also demonstrates the molecular three-body distorted
wave (M3BDW) results and the three-Coulomb wave-function
approach for the helium target multiplied by the interference
factor (3CAIF) results from [15]. The experimental data are
normalized to binary-peak magnitude in our PA R = 1.1 curve
for θKR = 45◦. It is seen that our method yields values
of the binary- to recoil-peak magnitude ratio closest to the
experimental one compared to other theoretical methods. The
distinctions from the experiment may be a consequence of
neglecting the ionization dissociation via autoionizing states
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FIG. 5. (Color online) The TDCS of a (e,2e) process for an
aligned H2 as a function of the ejection angle θe for the angle
between the molecular axis and the momentum transfer direction,
(a) θKR = 0◦, (b) θKR = 45◦, and (c) θKR = 90◦: our PA results for
interatomic distances R = 1.1 (thick solid line) and R = 1.4 (thin
solid line), the M3BDW results (dashed line), the 3CAIF results
(dotted line), and the experimental data [15] (circles).
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in our method, whereas this process provides a significant
contribution to the ionization dissociation of the H2 molecule.

VI. CONCLUSION

We have calculated the TDCS of the intermediate-energy
electron ionization of the helium atom, the hydrogen molecule,
and the nitrogen molecule using the method based on the
paraxial approximation for the incoming electron and the
time-dependent Hartree-Fock method with a frozen core for
the target electrons. The comparison with the experimental
data shows that this method works very well for both helium
and H2 and quite well for N2 in the case of electron ejection
from outer shells. For the inner 2σg shell of N2 the agreement
is good for the PA1B but worse for pure PA, apparently
because of the insufficiency of the frozen-core approximation.
In contrast to the original scattering problem, PA can be
easily combined, for instance, with a time-dependent density

functional method, allowing us to calculate the evolution of
all electronic orbitals with an approximate account of the
interelectronic interaction with an acceptable cost of computer
resources. So we plan to develop a PA approach in this way.
We also plan to use the method (in its present form) to study
the dependence of the MDCS on the projectile charge sign.
The PA for a positron projectile would give results different
from those for an electron projectile, in contrast to the PA1B.
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