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Radiative double-electron capture by bare nucleus with emission of one photon
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Calculation of the cross-section for the process of double-electron capture by a bare nucleus with emission
of a single photon is presented. The double-electron capture is evaluated within the framework of quantum
electrodynamics. The line-profile approach is employed. Since the radiative double-electron capture is governed
by the electron correlation, corrections to the interelectron interaction were calculated with high accuracy, partly
to all orders of the perturbation theory.

DOI: 10.1103/PhysRevA.84.062515 PACS number(s): 31.10.+z, 31.15.ac, 31.30.J−, 34.70.+e

I. INTRODUCTION

The processes of electron capture have been under intensive
investigation of the experimentalists and theoreticians during
the last decades. Still there are some disagreements between
the experimental and theoretical results.

One of the observed processes is the process of radiative
electron capture (REC) accompanied by the emission of one
photon. There are many experimental data available [1,2].
REC is the dominant electron-capture channel in fast collisions
of heavy ions with light target atoms. This process does not
depend strongly on the interelectron interaction.

Interelectron interaction becomes important in the process
of the capture of two electrons. There are two different types
of the processes with the capture of two electrons by the highly
charged ions (HCIs): double radiative electron capture (DREC)
and radiative double-electron capture (RDEC). DREC is a
two-step process in which two uncorrelated electrons are
captured in one collision and two photons are emitted. RDEC
is a one-step process where the momentum and the energy
of two correlated captured electrons are converted into the
energy and momentum of one emitted photon. The processes
of double electron capture were investigated experimentally in
Refs. [3–6] and theoretically in Refs. [7–10].

In experiments [3–6] RDEC was organized as a process
where two free (or quasifree) target electrons are captured
into a bound state of the projectile, e.g., into the empty K

shell of an ion, and the energy emerges with only one photon.
This process can be treated as the inverse process to double
photoionization. But in RDEC, unlike photoionization, the
bare nuclei should be used. The RDEC is a convenient tool to
investigate the electron-electron interaction in the processes
of the ion-atom collisions.

The first RDEC experiment [3] was performed with
11.4 MeV/u Ar18+ ions hitting a carbon foil at the UNILAC
in GSI in 1994. To obtain as much as possible a high rate
of double capture in one collision, a solid carbon target was
chosen. In this experiment the probability of the RDEC process
is very small. Experimental data give only the upper limit of
the value of the cross-section of the process: about 5.2 mb.
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Another RDEC experiment [5] was performed at the heavy-
ion storage ring (ESR) in GSI. Bare U92+ ions with an energy
of 297 MeV/u have been used in collisions with a gas of Ar
atoms. From the data obtained in this experiment we can only
conclude that the value of the cross-section is also very small:
less than 10 mb. The upper limit of the RDEC process was es-
timated to be significantly lower than measured previously [4].

A recent experiment [6] with 38 MeV O8+ ions shows that
there is some discrepancy between the experimental data and
theoretical prediction. In this experiment ions of the oxygen
O8+ move through a thin carbon foil.

The RDEC process was investigated theoretically in
Refs. [7–10]. In these works the calculations were performed
within nonrelativistic theory.

The process of double-electron capture is governed by
the interelectron interaction. We investigate radiative double-
electron capture (RDEC) by a bare nucleus followed by
emission of a single photon:

2e−(ε) + X(Z)+ → X(Z−2)+(1s1s) + γ (ω). (1)

The initial state is presented by two incident electrons 2e−
with the same energies ε and a bare atomic nucleus X(Z)+ with
the charge Z.

The final state is given by a two-electron ion in the ground
state X(Z−2)+(1s1s) and a single photon γ (ω). We are con-
cerned only with radiation of one photon, first, because in the
experiment [6] one photon is registered, and second, because
the radiation of one photon gives the major contribution to the
value of the cross-section of the process.

We consider a scenario where the momenta of the incident
electrons are the same for both electrons. This scenario
corresponds to the experimental situation [3,5,6]. The results
of our calculations are compared with available experimental
and theoretical data.

II. APPLICATION OF THE LINE-PROFILE APPROACH

Double-electron capture is a nonresonant process. However,
for its description we will apply the line-profile approach
(LPA) first developed for the resonant processes. The LPA
appeared to be a convenient tool for the description of the
nonresonant processes as well.

Within the framework of quantum electrodynamics
(QED) atomic electrons are interacting with the quantized
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electromagnetic field and with the quantum vacuum [11].
Accordingly, the set of electrons (together with the atomic
nucleus) is not a conservative system, and the concept of the
energy for this system needs to be carefully treated. Within
the LPA [12] the energy levels are associated with resonances
in the natural line profile for the process of resonant photon
scattering. In order to keep the characteristics of the energy
levels independent of the particular features of the process
of scattering, the resonance approximation is employed. The
resonance approximation consists of the description of the
resonance area of the natural line profile by the Lorentz contour
which is characterized by two parameters: position of the
resonance and its width. The energy levels are connected with
the corresponding resonances. The energy and width of an
energy level are determined by position of the resonance and
its width within the resonance approximation.

The amplitude of the process of photon scattering (the initial
and final states are assumed to be the ground state) can be
presented as a matrix element of a special operator [12,13].
This operator can be constructed with employment of the
QED perturbation theory. In general, this operator depends
on the photon frequency (ω) and can be considered as a
complex symmetric matrix (in some basis set) or as a quadratic
form reducible to a diagonal form. Within the resonance
approximation the eigenvalues of this matrix determine the
positions of resonances and their widths. The eigenvectors
of this matrix are used for calculation of the transition
probabilities. If we consider the probability of a particular
transition between two energy levels, we need to calculate
the amplitude of this process. The amplitude is derived as a
matrix element of the photon emission (absorption) operator
(also constructed with employment of the QED perturbation
theory) calculated on the eigenvectors corresponding to the
initial and final states. Application of the LPA to the evaluation
of energies and transition probabilities is presented in detail
in Refs. [12–14]. We note that the technique developed in
Refs. [12–14] can be used only for the bound electrons.

The aim of the present work is the evaluation of the cross-
section for electron capture. This process can be considered as
a transition

I → F, (2)

where the initial state (I ) in the case of REC processes
corresponds to the two electrons: a bound 1s electron and an
incident electron, i.e., continuum electron. The final state (F ) is
represented by two bound electrons in the j -j coupling scheme
configuration. In the case of RDEC the initial state corresponds
to the two continuum electrons and the final state is the same.
Since the initial state contains continuum electrons, the LPA
cannot be applied directly to these processes. However, we can
introduce an auxiliary bound electron system whose properties
are explicitly related to the properties of the original system.

We can consider the highly charged ion being confined
within a sphere of a large radius R. Then, all the energy
spectrum becomes discrete. If the radius of the sphere is large,
the wave function of an election confined within the sphere
(spherical box) and the wave function of an electron (with the
same energy) not confined within the sphere almost coincide.
Let the electrons have the energy ε > mec

2. Eigenvectors of
the Dirac equation for the point nucleus are well known [11].

The asymptotics (r → ∞) of the Dirac wave function for the
electron in continuum reads

ψεjlm(r) = 1

r

(
gε(r) �jlm(νr )

ifε(r) �j,2j−l,m(νr )

)
, (3)

gε(r) = Cg

√
ε + m

πp
cos[pr + φg(r)], (4)

fε(r) = Cf

√
ε − m

πp
sin[pr + φf (r)], (5)

where |Cg| = |Cf | = 1 and φg(r), φf (r) are the functions
smoothly depending on r = |r|, νr = r/r . The energy (ε)
and momentum (p) of the electron are connected as ε2 =
m2

ec
4 + p2, where me is the electron mass and c is the speed

of light. The continuum electron function is normalized to the
energy delta function. For the large radius R and coordinate
r the electron wave function for the ion enclosed within a
box is given by its asymptotic: Eqs. (4) and (5). Accordingly,
the difference between the nearest (discrete) values of the
momentum (	p) is defined by one half of the oscillation period
of the functions in Eqs. (4) and (5) at the border (r = R):
	pR = π . Then, the difference between the nearest values of
the energy (ε) is

	ε = p

ε
	p = pπ

εR
. (6)

The equations in this section should be understood in the
asymptotic sense; i.e., the equations are correct up to the terms
disappearing when R → ∞.

The wave function of the electron confined within the
sphere of radius R can be written as [11]

ψeR
(r) = 1

NeR

ψe(r) θ (R − |r|), (7)

where ψe(r) is given by Eq. (3),

(NeR
)2 = εR

pπ
= 1

	ε
(8)

is a normalization factor [ψeR
(r) is normalized to unity], and

θ (R − |r|) is the Heaviside step function. The normalization
factor NeR

is considered in detail in Appendix A [see Eq. (A5)].
Note that the function ψeR

(r) goes to zero at any r when
R → ∞ as

ψeR
(r) ∼ 1√

R
. (9)

At a fixed radius R the function ψeR
(r) describes a

discrete energy level. Technically, we can consider a resonance
corresponding to this level. So, the LPA can be applied to any
energy level of the HCI confined within a sphere of a finite
radius.

Reasoning by analogy with the system not confined within
a sphere, i.e., with a system which has a continuous part of
energy spectrum [11], instead of consideration of a single
energy level (eR), we have to consider all the energy levels
within some interval δε = [ε1,ε2]. The number of levels
within this interval is proportional to 1/R [see Eq. (6)]. The
integration over an interval [ε1,ε2] in the continuous spectrum
is equivalent to the summation over all the states (n) with the
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energy (εn) from the interval [ε1,ε2] in the discrete spectrum
(if the ion is enclosed within a sphere of radius R):∫ ε2

ε1

dε′ F (ε′) =
∑

εn∈[ε1,ε2]

F (n), (10)

where function F represents some physical property (e.g.,
cross-section). If the radius R goes to infinity, the number of
discrete states in the energy interval [ε1,ε2] goes to infinity and
the width of the energy interval containing only one state goes
to zero. Accordingly, if δε → 	ε, we can write

F (ε) = 1

	ε

∫
	ε

dε′ F (ε′) = 1

	ε
F (n) = (NeR

)2F (n), (11)

where εn = ε is the only discrete state inside the energy interval
	ε. Thus, the transformation from the continuous to discrete
spectrum results in the substitution of the continuous spectrum
wave function ψe by the function ψeR

and in an additional
factor 1/	ε = (NeR

)2 to the function F (cross-section), where
	ε is the distance between the nearest energy levels.

We conclude that the LPA can be generalized to the case
of continuum electrons in the initial or final states. We can
introduce an artificial bound electron state eR described by
the wave function ψeR

. The energies and the angular quantum
numbers of the continuum electron state ψe and the bound
electron state ψeR

are equal. If there is one continuum electron
in the initial or final states, the amplitude calculated with
functions ψe and the amplitude calculated with functions ψeR

are related as [15]

Ue = lim
R→∞

NeR
UeR

. (12)

If there are two continuum electron in the initial or final state,
the amplitudes are related as

Ue1e2 = lim
R→∞

Ne1R
Ne2R

Ue1Re2R
, (13)

where NeiR
is the normalization constant for the corresponding

electron given by Eq. (7). In this paper we will consider
electrons with equal energies; accordingly, we can set NeR

≡
Ne1R

= Ne2R
. We note that the limit R → ∞ is equivalent to

limit NεR
→ ∞.

So, we can generalize the LPA for calculation of the
amplitude of the process of the electron capture. We employ the
artificial bound electron states eR defined by Eq. (7) and apply
the LPA for calculation of the transition amplitude (UR), i.e.,
for the system where the continuum electrons are substituted
by the bound electrons eR . The amplitude of the electron
capture is given by Eq. (12) (if there is one continuum electron)
or by Eq. (13) (if there are two continuum electrons). The limit
R → ∞ can be evaluated numerically.

III. TWO-ELECTRON WAVE FUNCTIONS

The incident electron can be characterized by momentum
( p) and polarization or spin projection (μ), and described
by wave function ψ pμ(r). The energy (ε), momentum, and
electron mass (me) are connected as ε = √

p2 + m2
e , where

p = | p|. It is also convenient to introduce the electron wave

vector νp = p/| p|. The wave function of the incident electron
is normalized as∫

d r ψ+
p′μ′(r)ψ pμ(r)

= (2π )3δ( p′ − p)δμ′μ (14)

= (2π )3

pε
δ(ε′ − ε)δ(cos θ ′ − cos θ )δ(φ′ − φ)δμ′μ, (15)

where the set (p,θ,φ) represents the vector p in spherical
coordinates. This normalization corresponds to one particle
per unit volume.

The wave function of the incident electron (ψ pμ) can be
expanded in the complete set of wave functions (ψεjlm) with
the certain energy (ε), total angular momentum (j ), parity (l),
and projection of the total angular momentum (m) [11]

ψ pμ(r) =
∫

dε
∑
j lm

a pμ,εjlmψεjlm(r). (16)

Introducing the scalar product

ανpμ,j lm = �+
j lm(νp)vμ(νp), (17)

where �jlm(νp) is the spherical spinor [16] and vμ(νp) is
the unit spinor function, the scalar products a pμ,ε′j lm can be
presented in the form

a pμ,εjlm = (2π )3/2

√
pε

δ(ε − ε)eiϕεjl ανpμ,j lm. (18)

The phase ϕεjl is determined by the field of the nucleus [11].
The functions ψεjlm(r) are normalized as∫

d r ψ+
ε′j ′l′m′(r)ψεjlm(r) = δ(ε′ − ε)δj ′j δl′lδm′m. (19)

The wave function describing two incident electrons with
the certain momenta and polarizations can be written as

� p1μ1, p2μ2 (r1,r2) = 1√
2

det
{
ψ p1μ1 (r1),ψ p2μ1 (r2)

}
. (20)

We suppose that the initial state of the system is given by two
incident electrons with the equal momenta ( p) and the opposite
polarizations (μ1 = −μ2). Accordingly, the wave function of
the initial state is

� ini(r1,r2) = 1√
2

det
{
ψ pμ1=1/2(r1),ψ pμ2=−1/2(r2)

}
. (21)

IV. CROSS-SECTION

The amplitude of the process of electron capture (Uif ) is
defined via the S matrix [11]:

Sif = (−2πi)δ(Ef − Ei)Uif , (22)

where Ei , Ef are the energies of the initial and final states of
the system. Then, the transition probability is given by [17]

dwif = 2π
1

V 2
|Uif |2δ(Ef − Ei)

dk
(2π )3

, (23)

where Ei , Ef are the initial and final energies of the whole
system. The factor 1/V 2 corresponds to the densities of the
incident electrons, and V is the reaction volume. The wave
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functions of the incident electrons are normalized by the
condition: one particle per unit volume. The factor dk/(2π )3

gives the number of photon states with certain polarization
and momentum within an interval dk per unit volume:
dk/[nph(2π )3]; nph is the photon density. The emitted photon
is described by momentum (k), frequency (ω = |k|), and
polarization (λ). Normalization of the photon wave function
[A = (A0,A)], corresponding to one particle per unit volume,
is ∫

d rA(k,λ)+(r)A(k′,λ′)(r) = (2π )3 4π

2ω
δ(k − k′)δλ,λ′ . (24)

Accordingly, the photon density (nph) is set equal to unity.
The cross-section is connected with the transition probabil-

ity (23) as [11]

dσif = dwif

j
, (25)

where j is the current of the incident electrons. This current
is defined as j = nev, where ne = 1/V and v = p/ε are the
density and velocity of the incident electrons, respectively, in
the rest system of the nucleus.

In the experiments [3–6] the RDEC is considered as a
process where a bare nucleus goes through target atoms and
captures two electrons with emission of one photon. In our
theoretical model this process is considered in the rest frame
of the bare nucleus. Accordingly, the incident electrons are
located in the target atom. The reaction volume for one incident
electron is

V = VT

ZT
, (26)

where VT is the reaction volume the target atom and ZT is
the number of electrons in the target atom. We introduce the
reaction volume V ; within this volume the incident electron
interacts with the nucleus. If the system is enclosed into a
sphere of a large radius R, then the reaction volume for the
target atom (see Fig. 1) is represented by a cylinder whose
cross-section area is ST = πR2

T (RT is the target atom radius)
and the length is equal to 2R: VT = 2RST. The reaction volume
for one incident electron is

V = 2RS, (27)

where S is the area of the cross-section of the reaction volume
for one incident electron: S = ST/ZT. The volume V can be
expressed via the normalization constant NeR

[see Eq. (8)]:

V = 2πpN2
eR

S

ε
. (28)

Here, we took into account that the incident electrons have
the same energy, and therefore their normalization constants
(NeR

) are equal.
In this work we calculate the total cross-section of the

electron recombination, which means the integration over the
directions of the emitted photon (νk) and summation over
the photon polarization (λ). Then, we suppose that the incident
electrons have the same momentum (νp); hence, we can also
average over the electron momentum direction (νp).

It is convenient to make a decomposition Eq. (16) of the
continuum electron wave function with certain momentum

FIG. 1. In the experiments the bare nucleus is moving through
fixed target atoms. The present calculation is performed in the rest
frame of the bare nucleus. The system is enclosed in a sphere of
radius R. The bare nucleus is fixed in the center of the sphere. The
cylinder presents the reaction volume for the process of radiative
double-electron capture. The area of the cross-section of the cylinder
(ST = πR2

T) is given by the radius of the target atom (RT). The volume
of the cylinder is VT = 2RST. The reaction volume for one electron
is V = VT/ZT, where ZT is the number of electron in the target atom.

( p) and polarization (μ) over the electron wave functions with
certain energy (ε), total angular momentum (j ), parity (l), and
projection of the total angular momentum (m). The initial state
(two incident electrons) is decomposed over the two-electron
functions in the j -j coupling scheme.

Accordingly, the cross-section can be written down as [15]

σif = lim
NεR

→∞
ω2

(2π )2

[
ε

p

1

4π
N4

εR

ε

2πpN2
εR

S

]

×
∫

dνk dνp|Ui,kλs |2, (29)

where the photon frequency (ω) is defined by the energy
conservation law. The factor ε/p in the square brackets comes
from the current of the incident electrons. The factor 1/4π

represents the average over the direction of the momentum of
the incident electrons (νp); we suppose that the momenta of
the incident electrons are equal. The factor N4

εR
, according

to Eq. (13), shows that in the amplitude the one-electron
wave functions (ψεRjlm) are normalized to unity [see Eq. (7)].
The last factor in the square brackets is the contribution
of the volume given by Eq. (28). The first subindex (i) of
the amplitude represents the initial state Eq. (21). The other
subindices represent the final state: The subindices kλ describe
the emitted photon; the subindex s = (JsMsns1js1 ls1ns2js2 ls2 )
corresponds to the two-electron configuration in the j -j
coupling scheme:

�JMn1j1l1n2j2l2 (r1,r2)

= N
∑
m1m2

C
j1j2
JM (m1,m2)

[
ψn1j1l1m1 (r1)ψn2j2l2m2 (r2)

−ψn2j2l2m2 (r1)ψn1j1l1m1 (r2)
]
, (30)

where C
j1j2
JM (m1,m2) are the Clebsch-Gordan coefficients. The

normalization constant N is equal to 1/
√

2 for nonequivalent
electrons and to 1/2 for equivalent electrons.

Expansion of the one-electron wave function with certain
momentum and polarization over the wave functions with
certain total angular momentum and parity [see Eqs. (16) and
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(18)] and integration over the direction of the momentum of
the incident electrons yield

σif = lim
NεR

→∞
ω2

(2π )2

[
ε

p

1

4π
N4

εR

ε

2πpN2
εR

S

(
(2π )3

εp

)2
]

×
∑

J,M,j1�j2,l1�l2,j3�j4,l3�l4

AJMεRjl l1εRj2l2εRj3l3εRj4l4

×
∫

d2νk UJMεRjl l1εRj2l2,kλsU
∗
JMεRj3l4εRj3l4,kλs, (31)

where coefficients AJMεRjl l1εRj2l2εRj3l3εRj4l4 are defined in Ap-
pendix B. The last factor in the square brackets in Eq. (31)
comes from the expansion of the one-electron wave func-
tion over the wave functions with certain momentum and
polarization (see Appendix B). The matrix element of the
recombination amplitude is calculated with two two-electron
wave functions: (JMεRjlεRj ′l′) for the initial state and s for
the final state.

V. CALCULATION OF THE AMPLITUDE

Following the notations employed in Ref. [12], we intro-
duce the photon emission matrix elements

A
(k,λ)
ud =

∫
d r ψ̄u(r)γ μA(k,λ)

μ (k)ψd (r) (32)

and the one-photon exchange matrix elements

Iu1u2d1d2 (�) =
∫

d r1d r2 ψ̄u1 (r1)ψ̄u2 (r2)γ μ1
1 γ

μ2
2

× Iμ1μ2 (�,r12)ψd1 (r1)ψd2 (r2). (33)

The indices ui , di designate one-electron Dirac states; Dirac
matrices γ

μi

i act on the one-electron functions ψdi
(r i). The

photon wave function A(k,λ) is defined by Eq. (24). Function
Iμ1μ2 (�,r12) looks like

Iμ1μ2 (�,r12) = δμ10δμ20

r12
(34)

−
(

δμ1μ2

r12
ei�r12 + ∂

∂x
μ1
1

∂

∂x
μ2
2

1

r12

1 − ei�r12

�2

)
× (1 − δμ10)(1 − δμ20), (35)

if the Coulomb gauge is employed, or

Iμ1μ2 (�,r12) = gμ1μ2

r12
ei�r12 , (36)

if the Feynman gauge is employed. Tensor gμ1μ2 is the metric
tensor; δμ1μ2 is the Kronecker delta; r12 = |r1 − r2|. Repeated
indices imply summation.

The amplitudes presented in Eq. (31) are defined by the
Feynman graphs depicted in Fig. 2. These amplitudes are
proportional to the following expressions:

ξ1 =
∑

n

ξ1,n =
∑

n

Au2nIu1nd1d2

εu1 + εn − εd1 − εd2

, (37)

ξ2 =
∑

n

ξ2,n =
∑

n

Iu1u2nd2And1

εu1 + εu2 − εn − εd2

. (38)

Here, ξi corresponds the contributions of the left (i = 1) and
the right (i = 2) graphs in Fig. 2 , respectively. The indices

d1

u1

d2

u2

n

k0, e0

d1

u1

n

d2

u2

k0, e0

FIG. 2. The Feynman graphs representing the first-order inter-
electron interaction corrections to the process of electron recombi-
nation. The internal wavy line denotes the exchange by the photon
between two electrons. The indices d1, d2 correspond to the initial
one-electron states of a system; u1, u2 correspond to the final states.
The index n corresponds to the intermediate one-electron states.

d1,d2 correspond to the continuum electrons of the initial state.
The indices u1,u2 correspond to the bound electrons of the final
state. The index n may correspond to any state of the Dirac
spectrum.

If we consider an ion enclosed within a sphere of radius
R, then for the states corresponding to the continuum we can
write [see Eqs. (6) and (9)]

ψε(r) ∼ 1

R1/2
, 	ε ∼ 1

R
, (39)

where 	ε is the distance between two closest energy levels.
The asymptotics (R → ∞) of the matrix elements Aud and
Iu1u2d1d2 are investigated in Appendix A. Here, we will
investigate the behavior of the terms ξi (i = 1,2) with various
values of the intermediate electron state n when R → ∞.

If n belongs to the discrete part of the spectrum, the
terms ξi,n contain two wave functions of electrons from the
continuous part of the spectrum: d1 and d2 states. Employing
Eqs. (A18) and (A11) for ξ1,n and Eqs. (A9) and (A19) for ξ2,n

we can write

ξi,n ∼ 1

R
, i = 1,2. (40)

The denominators in Eqs. (37) and (38) do not contain any
smallness in this case.

If n belongs to the continuous part, then in the general case

ξi,n ∼ 1

R2
, i = 1,2. (41)

Formulas (A19), (A11), (A10), and (A20) are used for ξ1,n and
ξ2,n, respectively. The denominators in Eqs. (37) and (38) are
supposed not to contain any smallness. Consider now three
special cases when Eq. (41) is violated. The first case is when
the energy of the intermediate electron state n is equal to the
energy of the incident electron (εn = εe): Then, application of
Eqs. (A19) and (A17) yields

ξ1,n ∼ ln(R)

R2
. (42)

The denominator in Eq. (37) does not contain any smallness.
For description of the two other cases it is convenient to
introduce a continuum electron ẽ with the energy

εẽ = εe + εe − ε1s . (43)
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The second special case is when the energy of the intermediate
state n is equal to the energy of the electron ẽ (εn = εẽ); then
ξ1,n → ∞. Here, the energy of the intermediate two-electron
state (ε1s + εn) is equal to the energy of the initial two-electron
state (εe + εe). The last case is when εn ≈ εẽ. If εn is the
next state to εẽ (i.e., εn = εẽ ± 	ε), then

ξ1,n ∼ 1

R
. (44)

Here, formulas (A19) and (A11) are used for Au2n and Iu1nd1d2 ,
respectively. The denominator in Eq. (37) is set to 	ε given
by Eq. (6). Consider the contribution of the states contained
in the interval (εẽ,εẽ + δε], where δε is a small finite value
which does not depend on R. The number (K ≈ δε/	ε) of
intervals 	ε composing the interval δε is proportional to R.
Accordingly, we get

∑
εn∈(εẽ,εẽ+δε]

ξ1,n ∼
K∑

k=1

1

kR
∼ ln(R)

R
. (45)

Note that the terms given by Eqs. (40)–(42), (44), and (45)
vanish (faster than R−1/2 or faster than N−1

εR
) in Eq. (31) when

NεR
→ ∞. Accordingly, they do not contribute to the limit

in Eq. (31). The nonvanishing terms come from the second
special case where εn = εẽ. In this case the denominator in
Eq. (37) is equal to zero and the standard perturbation theory
is not applicable. However, the two-electron configuration
(eR,eR)J representing the initial state and the two-electron
configuration (1s,εn)J , where J is the total angular momen-
tum, can be considered as quasidegenerate ones.

We have introduced the artificial electron state (ẽ) by the
condition εẽ + ε1s = εe + εe. The subindex R at ẽR indicates
that the corresponding wave function is normalized to unity
over the sphere of radius R. The configuration (1s,ẽR)J has the
same energy as the configuration (eR,eR)J . The contribution of
these configurations can be calculated within the framework
of the LPA. The configurations (1s,ẽR)J and (eR,eR)J are
considered as quasidegenerate ones.

Within the LPA [12] we compose the matrix V :

V = V (0) + 	V. (46)

The matrix V (0) is a diagonal matrix and it includes the
one-electron Dirac energies corresponding to a certain con-
figuration. The matrix 	V includes the one-photon exchange
corrections as well as other corrections which can be omitted
here. The matrix V can be written in a block form

V =
[

V11 	V12

	V21 V22

]
, (47)

where the block V11 contains matrix elements constructed on
the configurations mixing with the reference state (the initial
or final state). The mixing configurations define the set g.
The block V22 contains matrix elements calculated with all the
other configurations; the blocks 	V12, 	V21 contain matrix
elements constructed on one configuration from the set g and
one not included in the set g.

Consider the set g including only two configurations
(1s,ẽR)J and (eR,eR)J given by the two-electron wave func-
tions of the noninteracting electrons in the j -j coupling

scheme (�(0)
(1s,ẽR )J

and �
(0)
(eR,eR )J

, respectively), where J is the
total angular momentum. Then, the block matrix V11 is a 2 × 2
matrix

V11 =
[

(V11)11 (	V11)12

(	V11)21 (V11)22

]
. (48)

Note that the matrix 	V is composed of one-photon exchange
matrix elements which include continuum electron wave
functions; therefore, they vanish when R → ∞. Accordingly,
(V11)11 = (V11)22 and (	V11)12 = (	V11)21 → 0, when R →
∞. The eigenvectors of the matrix V11 are

b1 ≈ 1√
2

(
1

1

)
, b2 ≈ 1√

2

(−1

1

)
. (49)

The eigenvectors (�) of the operator V̂ (represented by the
matrix V ) can be constructed with employment of perturbation
theory [12]. In the zeroth order of perturbation theory, the
eigenvectors (�(eR,eR )J and �(1s,ẽR )J ) are combinations of the
two-electron wave functions of the noninteracting electron in
the j -j coupling scheme (�(0)

(1s,ẽR )J
and �

(0)
(eR,eR )J

)

�
(0)
(eR,eR )J

= (b1)2�
(0)
(eR,eR )J

+ η(b1)1�
(0)
(1s,ẽR )J

, (50)

�
(0)
(1s,ẽR )J

= η(b2)2�
(0)
(eR,eR )J

+ (b2)1�
(0)
(1s,ẽR )J

. (51)

The factor η = ±1 defines which eigenvector corresponds to
the (eR,eR)J configuration. It can be determined by the sign
of the mixing element (	V11)12.

The wave function �
(0)
(eR,eR )J

is proportional to R−1 (or
to N−2

εR
), and therefore its contribution vanishes in Eq. (31)

when NεR
→ ∞. The wave function �

(0)
(1s,ẽR )J

is proportional
to R−1/2 (or to N−1

εR
) because it contains only one continuum

electron. Accordingly, the contribution of the eigenvectors
�(eR,eR )J , �(1s,ẽR )J is given by the contribution of the wave
function �

(0)
(1s,ẽR )J

. Note that the admixture of the (1s,ẽR)J
configuration to the (eR,eR)J configuration leads to a growth
of the amplitude with factor NεR

. This growth is compensated
by the additional factor 1/V in the transition probability for
the RDEC process [see Eqs. (23) and (28)].

We can conclude that, if we take into account the interelec-
tron interaction (the one-photon exchange corrections in all
orders of the perturbation theory) between the 1s, eR , and ẽR

electron states, the amplitudes of the processes

e + e → (1s1s) + γ (ω) and 1s + ẽ → (1s1s) + γ (ω)

are connected as

U [e + e] = ηU [1s + ẽ]. (52)

This equation is valid up to the terms disappearing when
NεR

→ ∞.

VI. NUMERICAL METHODS

The Dirac spectrum is constructed in our work in terms of
B splines [18,19]. The ion is placed into a spherical box with
a radius RB = 70/(αZ) (in the relativistic units), where Z is
the nuclear charge and α is the fine-structure constant. The B
splines used in our calculations are of order 8 and we employed
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a grid with 60 nonzero knots. The generated electron spectrum
is discrete and finite.

The eigenvector and the corresponding eigenvalue (i.e.,
energy), which is the closest to the energy of the continuum
electron (εẽ), are replaced by the wave function of the electron
confined within the spherical box of radius R [Eq. (7)] and by
the energy εẽ, respectively. The electron states of the generated
spectrum, which are close to the substituted electron state (en),
are designated as en−1 and en+1. Extension of the number of
the knots and the size of the box reduces the effect of the
substitution of the continuum electron state (εẽ) by the en

state. After some variations and tests with different conditions
(the number of knots and the number of states when we sum
over the Dirac spectrum) we choose the number of knots and
the size of the box to be large enough not to influence the
accuracy of the computing.

In the present paper we consider the RDEC to the ground
state (1s1s) and to the low-lying single excited states (the KL

shell). The contribution of the KL-shell states is determined by
contribution of the (1s2s)0 configuration. The contribution of
the other states does not exceed 1% of the total cross-section.
We also consider only the main channel of the RDEC: capture
with emission of the electric photons with J = 1.

The LPA [12,15] is employed for calculation of the
amplitude of the RDEC. In the framework of the LPA we
fix a set of electron states and construct a set g of all possible
two-electron configurations in the j -j coupling scheme built
on this set of electron states. We introduce ns-, np-electron
states as the electron states in the B spline approximation
whose energy is closest to the energy of the continuum electron
state εẽ. The electrons included into the set g are the 1s-,
2s-, 2p-, ns-, np-, (n ± 1)s-, and (n ± 1)p-electron states.
The (n ± 1)s, (n ± 1)p are electron states in the B spline
approximation next to the ns-, np-electron states.

In the numerical calculations we construct the matrix V

in a special way to include the contribution of the mixing
configurations [12,15]. The matrix V is calculated with
application of the QED perturbation theory

V (ω) = V (0) + 	V = V (0) + V (1)(ω) + · · · . (53)

In a physical sense the ω is the frequency of the scattered
photon and the matrix V depends on the value of the ω.
The matrix V (0) is composed with one-electron Dirac energies
corresponding to a certain configuration. The matrix V (1)(ω)
includes the first-order QED corrections, such as self-energy
(SE) and vacuum polarization (VP) corrections and one-
photon exchange corrections. In our work the matrix V (ω)
contains only V (0) and V (1)(ω); the last one includes only
one-photon exchange corrections:

	V
1ph
u1u2d1d2

= I
(∣∣εu2 − εd2

∣∣)
u1u2d1d2

(54)

[see Eq. (33)]. Within the framework of the LPA the con-
tribution of the one-photon exchange correction is taken
into account to all orders of the perturbation theory for the
configurations from the set g.

The amplitude of the transition from the initial state I to the
final state F with emission of one photon with the frequency
ω0 can be written as [12]

UI→F = [�(ω0)]�F �I
, (55)

where �(ω0) is the operator of emission of the photon,
and �I and �F are the eigenvectors of the matrix V (ω)
corresponding to the I and F states, respectively. The operator
�(ω0) is evaluated with employment of the QED perturbation
theory (see, Refs. [12,15]). In a zero-order approximation
this operator coincides with the photon emission operator
(A(k0,λ0)∗). In this work we consider only the one-photon
exchange corrections to the operator �. According to [15],
it reads

� = �(0) + �(1) + eO(α2). (56)

The zero-order matrix element is

�
(0)
u1u2d1d2

= 2eA
(k0,λ0)∗
u1d1

δu2d2 , (57)

where A(k0,λ0)∗
n1n2

are the matrix elements of the emission operator
which includes the photon wave function Eq. (24).

It is convenient to write the matrix V in a block form

V =
[
V11 V12

V21 V22

]
=

[
V

(0)
11 + 	V11 	V12

	V21 V
(0)

22 + 	V22

]
, (58)

where the block V11 is composed entirely with the states from
the set g and the block V22 does not contain states from
the set g. The blocks V12 and V21 are constructed with one
configuration from the set g and with another one not included
in the set g.

The matrix V11 can be diagonalized numerically (nonper-
turbatively):

V
diag

11 = BtV11B, (59)

where B is an orthogonal matrix and Bt is the transposed
matrix. Since in general V is a complex symmetric matrix, the
matrix B is a complex orthogonal matrix

BtB = I, (60)

where I is a unit matrix (Iij = δij ) of the appropriate
dimension.

The eigenvector of the matrix V can be written as [12]

�ng
=

∑
kg∈g

Bkgng
�

(0)
kg

+
∑
k /∈g

lg∈g

(	V21)klg

Blgng

Eng
− E

(0)
k

�
(0)
k + · · · ,

(61)

where Eng
are the eigenvalues of the matrix V11 and E

(0)
k

are the sums of the Dirac energies. The functions �(0) are the
two-electron functions in the j -j coupling scheme. The indices
kg , lg run over configurations from the set g, while the index
k runs over configurations not included in the set g, i.e., over
all the other two-electron configurations. The first term on the
right-hand side of the expression Eq. (61) can be considered
as the zero order of the applied perturbation theory; the second
term corresponds to the first order.

The cross-section is given by Eq. (31), where the amplitude
U enters as its squared absolute value. Employing Eq. (61),
the amplitude U can be presented as U = U (0) + U (1) + · · ·.
Accordingly, the squared absolute value of U can be written
as |U |2 = |U (0)|2 + 2 Re{U (0)U (1)} + |U (1)|2. The last term
corresponds to the second-order corrections and, in principle,
can be omitted. Still we prefer to keep it. We consider the
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TABLE I. Radii (in pm) and areas of the cross-sections of the
reaction volumes for one incident electron (in kilobarns) for the C
target atom.

RA
T SA RK

T SK

133 919 14 31

contribution of this term as an estimate of magnitude of the
higher order corrections.

To compare our results with experiment we use in our
calculation the model of two electrons which are moving along
the same direction with equal momentum.

The calculation was performed with different gauges for
the exchange photon (the Coulomb and Feynman gauges)
and emitted photons (the transverse and nontransverse gauges
[12]). A small deviation of the gauge invariance took place.
It is explained by the fact that the set of Feynman graphs that
we take into account is not gauge invariant beyond the lowest
QED PT order. The magnitude of the deviation is determined
by the magnitude of the higher order corrections.

VII. RESULTS AND DISCUSSION

In our work we calculate the cross-section for double-
electron capture by a bare nucleus followed by emission of
the photon. We calculate the cross-section for three different
experiments and present our results in Tables III–VII. We
consider the scenario in which two electrons are going along
one line and have the same value of the momentum p. In
our model the incident electrons are considered as Dirac
continuum electrons. According to Eqs. (23) and (25) the
cross-section of the RDEC process depends on the volume of
reaction. In the RDEC experiments the captured electrons are
initially located on an atom. We consider two approximation
for the experiments: (1) We suppose that the electrons are
distributed homogeneously in the atom (σ RDEC,A); (2) we
neglect all the electrons of the atom except the K-shell
electrons and suppose that the electrons are distributed
homogeneously within the sphere of the K-shell radius of the
atom (σ RDEC,K).

In Tables I and II we present the radii and areas of the
cross-sections of the target atoms (see Sec. IV) used for the
calculation of the RDEC cross-section. The radius RA

T is
the radius of the target atom. The area of the cross-section
of the reaction volume for one electron (SA) is calculated as
SA = π (RA

T )2/ZT, where ZT is the charge of the nucleus of
the target atom. The area SA is employed in the case of the
first approximation. The radius RK

T is the radius of the K shell
of the target atom. In the case of the second approximation
the area of the cross-section of the reaction volume for one

TABLE II. Radii (in pm) and areas of the cross-sections of the
reaction volumes for one incident electron (in kilobarns) for the Ar
target atom.

RA
T SA RK

T SK

188 617 3.0 1.4

TABLE III. Cross-section (in barns) for RDEC process O8++C,
σ RDEC

(1s1s) contribution.

Experiment Theory

σ RDEC
(1s1s) [20] σ RDEC

(1s1s) [9] σ
RDEC,A
(1s1s) [this work] σ

RDEC,K
(1s1s) [this work]

3.2(1.9) 0.15 0.55 0.019

electron (SK) is set to SK = π (RK
T )2/2. In the case of the

second approximation (σ RDEC,K) the expressions for the RDEC
probability and cross-section Eqs. (23), (25), and (31) get an
additional factor (RK

T /RA
T )3 (ratio between the volume of the K

shell and the volume of the whole target atom). Accordingly,
the values of σ RDEC,A and σ RDEC,K differ by a factor

SA

SK

(
RK

T

RA
T

)3

. (62)

First, we consider the case of the RDEC process when
the ion of oxygen with the energy 38 MeV is hitting a
carbon foil. The density of the carbon foil is of the order of
1017 particles/cm2. We present the results of our calculation
for the RDEC process O8++C in Tables III–V. In Table III
we present the data for the RDEC process to the ground state.
The first column presents the experimental value of the cross-
section, and the second gives the results of the nonrelativistic
calculation [9]. The last two columns present our results. Data
for the cross-section of the RDEC process to the (1s2s) state
are given in Table IV. The RDEC to the (1s2s) determines
actually the contribution of the RDEC to all single excited
states of the KL shell since the contributions of the states
higher than (1s2s) are quite small. The total cross-section of
the RDEC for oxygen (σ RDEC = σ RDEC

(1s1s) + σ RDEC
(1s2s) ) is presented

in Table V. The experiment of the RDEC in collisions of O8+
ions with carbon was reported in Ref. [6], although the most
detailed description of the experiment is presented in Ref. [20].
We note that the the experimental data [20] for the separate
contributions of the (1s1s) and (1s2s) configurations were
defined with the use of the calculations [7,9]. This explains
the good agreement between the ratio of these contributions
defined in Ref. [20] and in Refs. [7,9].

The RDEC experiment for argon was performed with
11.4 MeV/u Ar18+ ions hitting a carbon foil at the UNILAC in
GSI in 1994 [3]. The thickness of the target was 4–10 μg/cm2.
In this experiment the probability of the RDEC process is very
small. Experimental data give only the upper limit of the value
of the cross-section of the process: about 5.2 mb. The results
of the calculations for RDEC process Ar18++C are presented
in Table VI.

TABLE IV. Cross-section (in barns) for RDEC process O8++C,
σ RDEC

(1s2s) contribution.

Experiment Theory

σ RDEC
(1s2s) [20] σ RDEC

(1s2s) [7] σ
RDEC,A
(1s2s) [this work] σ

RDEC,K
(1s2s) [this work]

2.2(1.3) 0.105 0.05 0.002
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TABLE V. Total cross-section (in barns) for RDEC process
O8++C, σ RDEC contribution.

Experiment Theory

σ RDEC [20] σ RDEC [7,9] σ RDEC,A [this work] σ RDEC,K [this work]

5.5(3.2) 0.26 0.61 0.021

The RDEC experiment for uranium was performed at the
heavy-ion storage ring (ESR) in GSI [5]. Bare U92+ ions with
an energy of 297 MeV/u have been used in collisions with
a gas of Ar atoms. The density of the gaseous Ar target was
5 × 1012 particles/cm2. The data obtained in this experiment
provide only the upper limit of the cross-section: less than
10 mb. The upper limit of RDEC process was estimated to be
significantly lower than measured previously [4]. The results of
the calculations for the RDEC process U92++Ar are presented
in Table VII.

Comparison of the results for the RDEC cross-section
reveals disagreement between the experimental and theoretical
data. The disagreement between the experimental data and our
results can be explained by the model, which we employed
for description of the target used in the experiments [3,4,6].
This model is rather rough. In the experiments the captured
electrons are initially the bound electrons of atoms of either
carbon foil [3,6] or argon gas [4]. In our model the incident
electrons are considered as Dirac continuum electrons. In
particular, we do not take into account the bound energy of
the target electrons. We also suppose that the electron density
in the target atoms is homogeneous. The disregard of the bound
energy should exaggerate the results. The assumption that the
electrons in the target atom are distributed homogeneously
should also change the results; however, it is difficult to
estimate its influence.

The disagreement between the theoretical results obtained
in Ref. [9] and our results is not clear. In principle, the models
employed for description of the target electrons are rather simi-
lar. Reference [9] presents nonrelativistc calculation, while our
calculation is fully relativistic. However, the relativistic effects
cannot explain the present disagreement. We note that the
volume of reaction (where the incident electrons interact with
the bare nucleus) is defined differently in these calculations. In
our calculation the reaction volume is a cylinder (see Fig. 1),
while in Ref. [9] the reaction volume is a sphere of radius RT,
where RT is the radius of the target atom in its rest frame.
We also note that the ratios between the cross-sections of
the RDEC to the ground state (1s1s) and to the KL shell
(1s2s) (see Tables III and IV) obtained in these calculations
are different. According to our calculation the total RDEC
cross-section is determined by the RDEC to the ground state,

TABLE VI. Cross-section (in millibarns) for RDEC process
Ar18++C, σ RDEC

(1s1s) contribution.

Experiment Theory

σ RDEC
(1s1s) [3] σ RDEC

(1s1s) [9] σ
RDEC,A
(1s1s) [this work] σ

RDEC,K
(1s1s) [this work]

�5.2 3.2 120 4.3

TABLE VII. Cross-section (in millibarns) for RDEC process
U92++Ar, σ RDEC

(1s1s) contribution.

Experiment Theory

σ RDEC
(1s1s) [5] σ RDEC

(1s1s) [9] σ
RDEC,A
(1s1s) [this work] σ

RDEC,K
(1s1s) [this work]

<10 2.5 × 10−2 1.73 0.31 × 10−2

while the results of [7,9] predict that the main contribution to
the RDEC is given by the capture to the excited states.

The model of quasifree electrons employed in this calcu-
lation is rather rough for description of experiments [3,6],
where relatively light bare nuclei (Z = 8,18) move through
carbon foil (Z = 6). Experiments where the target atoms are
much lighter than the bare nucleus (e.g., experiment [4]) are
preferable. This model would be also good for description of
experiments with electron beams. The small relative velocity
between the bare nucleus and electrons and the presence of the
magnetic field could enlarge the cross-section [21].
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APPENDIX A: ASYMPTOTICS OF MATRIX ELEMENTS

The asymptotics of the Dirac wave functions for electrons in
the continuum is given by Eqs. (3)–(5). These wave functions
are normalized to the Dirac delta function with respect to the
energy [Eq. (19)]. In case of the normalization of the wave
functions of the continuum electrons to unity over a sphere of
radius R the normalization integral reads(

NεR

)2 =
∫

r�R

d r ψ+
εj lm(r)ψεjlm(r). (A1)

Employing Eqs. (3)–(5) and performing integration over the
angular variables (νr ) we get

(NεR
)2 =

∫ R

0
dr [|gε(r)|2 + |fε(r)|2] (A2)

=
∫ R

0
dr

(
ε + m

πp
cos2[pr + φg(r)]

+ ε − m

πp
sin2[pr + φf (r)]

)
(A3)

=
∫ R

0
dr

(
ε

πp
+ ε + m

2πp
cos[2pr + 2φg(r)]

+ ε − m

2πp
sin[2pr + 2φf (r)]

)
. (A4)

The first term of the integrand does not depend on R; its
contribution is proportional to R. The last two terms contain
the sine and cosine functions; the absolute value of their
contribution does not exceed a value not dependent on R.
So, we can write(

NεR

)2 = εR

πp
[1 + O(R−1)]. (A5)

062515-9



CHERNOVSKAYA, ANDREEV, AND LABZOWSKY PHYSICAL REVIEW A 84, 062515 (2011)

Accordingly, the wave function of the continuum electron
normalized to the Dirac delta function and the one normalized
to unity over the sphere of radius R are connected by
Eqs. (7) and (8).

Consider the asymptotics (R → ∞) of the one-photon
exchange matrix elements (Iu1u2d1d2 ) given by Eq. (33). For
this purpose we can restrict ourselves by the Coulomb part of
the function Iμ1μ2 (�,r12), which looks like

Iμ1μ2 (�,r12) = δμ10δμ20

r12
. (A6)

It is convenient to employ the decomposition

1

r12
=

∞∑
k=0

rk
<

rk+1
>

Pk

(
νr1νr2

)
, (A7)

where r< = min(r1,r2), r> = max(r1,r2), Pk(x) is the Legen-
dre polynomial, and νr1νr2 is the scalar product of vectors
νri

= r i/ri (i = 1,2). For investigation of the asymptotics we
can also retain only the term with k = 0 in the decomposition
Eq. (A7). So, we get

Iu1u2d1d2

=
∫

r1�R

d r1

∫
r2�R

d r2 ψ+
u1

(r1)ψ+
u2

(r2)
1

r>

ψd1 (r1)ψd2 (r2).

(A8)

We assume that all the electron wave functions are normalized
to unity over the sphere of radius R. Accordingly, every
continuum electron wave function has got a normalization
factor 1/NεR

and it is proportional to 1/
√

R [see Eq. (9)].
We will investigate the asymptotics (R → ∞) of the matrix
element Eq. (A8) for various electron states n.

At first we will suppose that the electron states u1, u2

correspond to bound electrons (e.g., 1s-electron state); the
electron state d1 (we will designate it as n) can be any state of
the Dirac spectrum; the electron state d2 describes a continuum
electron. If the electron state n corresponds to a bound electron,
then there is only one continuum electron (d2) containing factor
1/

√
R in the matrix element. Accordingly, we get

Iu1u2nd2 ∼ 1

R1/2
. (A9)

If the electron state n corresponds to a continuum electron,
then there are two continuum electrons (n and d2) containing
factor 1/

√
R in the matrix element

Iu1u2nd2 ∼ 1

R
. (A10)

Now, we will suppose that the electron states d1, d2

correspond to continuum electrons with the same energies
equal to ε, the electron state u1 corresponds to a bound electron
(e.g., 1s-electron state), and the electron state u2 (we will
designate it as n) can be any state of the Dirac spectrum. If
the electron state n corresponds to a bound electron, then there
are only two continuum electrons (d1 and d2) containing factor
1/

√
R in the matrix element. Accordingly, we get

Iu1nd1d2 ∼ 1

R
. (A11)

If the electron state n corresponds to a continuum electron
(different from the electron d2), then there are three continuum
electrons (d1, d2, and n) in the matrix element. It yields

Iu1nd1d2 ∼ 1

R3/2
. (A12)

We have to select a special case when the electron state n

coincides with electron d2. The matrix element Iu1nd1d2 can be
written as

Iu1nd1d2

=
∫

r1�R

d r1 ψ+
u1

(r1)ψd1 (r1)

[
1

r1

∫
r2�r1

d r2 ψ+
n (r2)ψd2 (r2)

+
∫

r1�r2�R

d r2 ψ+
n (r2)

1

r2
ψd2 (r2)

]
. (A13)

If the wave function ψn is equal to ψd2 , then the last term in
the square brackets is∫

r1�r2�R

d r2 ψ+
n (r2)

1

r2
ψd2 (r2)

=
∫

r1�r2�R

d r2 ψ+
d2

(r2)
1

r2
ψd2 (r2) (A14)

= N−2
d2

∫ R

r1

dr2
1

r2

[|gd2 (r2)|2 + ∣∣fd2 (r2)
∣∣2]

, (A15)

where the asymptotics of the gd2 and fd2 functions are given
by Eqs. (4) and (5). Employing Eqs. (A2)–(A4) we get∫

r1�r2�R

d r2 ψ+
n (r2)

1

r2
ψd2 (r2) = 1

R
[ln(R) + O(R0)],

(A16)

where the logarithmic term is given by the first term of the
integrand in Eq. (A4). The first term in the square brackets in
Eq. (A13) is proportional to 1/R. Accordingly, for the case
when the electron state n coincides with the electron d2 the
matrix element Iu1nd1d2 reads

Iu1nd1d2 ∼ ln(R)

R3/2
. (A17)

Consider also the asymptotics of the photon emission
matrix elements Aud given by Eq. (32). We assume that all
the electron wave functions are normalized to unity over the
sphere of radius R. If both electrons (d and u) describe the
bound electrons then the matrix element Aud does not depend
on R,

Aud ∼ R0. (A18)

If one of the electrons (d or u) corresponds to the bound
electrons and the other one to the continuum electron then

Aud ∼ 1

R1/2
. (A19)

If both electrons describe the continuum electrons, then

Aud ∼ 1

R
. (A20)
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APPENDIX B: ANGULAR INTEGRATION

Integration over the direction of the incident electrons
momentum in Eq. (29) can be performed analytically. Only
the two-electron wave function of the initial state depends on
the direction of the momentum. We consider the following
integral [see Eqs. (29) and (21)]:

I =
∫

dνp

1√
2

det
{
ψ pμp1=1/2(r1)ψ pμp1=−1/2(r2)

}
× 1√

2
det

{
ψ∗

pμp3=1/2(r3)ψ∗
pμp3=−1/2

(r4)
}

(B1)

= 1

2

∑
μp1μp3

∫
dνp (−1)−1/2+μp1 (−1)−1/2+μp3

×ψ pμp1 (r1)ψ pμp1
(r2)ψ∗

pμp3
(r3)ψ∗

pμp3
(r4). (B2)

The one-electron wave functions with certain momentum and
polarization can be expanded in series over the wave functions
with certain total angular momentum and parity. Employing
Eq. (16) we get

I = 1

2

∑
μp1μp3

∫
dνp

∫
dε1dε2dε3dε4

×
∑

j1j2j3j4l1l2l3l4m1m2m3m4

(−1)−1/2+μp1 (−1)−1/2+μp3

× a pμp1,ε1j1l1m1a pμp1,ε2j2l2m2
a∗

pμp3,ε3j3l3m3
a∗

pμp3,ε4j4l4m4

×ψε1j1l1m1 (r1)ψε2j2l2m2 (r2)ψ∗
ε3j3l3m3

(r3)ψ∗
ε4j4l4m4

(r4).

(B3)

The coefficients a pμp,εj lm can be written as Eqs. (18) and (17).
The integration over energies yields

I = 1

2

(
(2π )3

pε

)2 ∑
μp1μp3

∫
dνp

×
∑

j1j2j3j4l1l2l3l4m1m2m3m4

(−1)−1/2+μp1 (−1)−1/2+μp3

× eiϕεj1 l1 ανpμp1,j1l1m1e
iϕεj2 l2 ανpμp1,j2l2m2

e−iϕεj3 l3

×α∗
νpμp3,j3l3m3

e−iϕεj4 l4 α∗
νpμp3,j4l4m4

ψεj1l1m1 (r1)

×ψεj2l2m2 (r2)ψ∗
εj3l3m3

(r3)ψ∗
εj4l4m4

(r4). (B4)

Consider separately the following integral:

I1 =
∑

μp1μp3

∫
dνp (−1)−1/2+μp1 (−1)−1/2+μp3ανpμp1,j1l1m1

×ανpμp1,j2l2m2
α∗

νpμp3,j3l3m3
α∗

νpμp3,j4l4m4
. (B5)

Employing Eq. (17) yields

I1 =
∑

μp1μp3

∫
dνp

×
∑

ml1ml2ml3ml4μ1μ2μ3μ4

C
l1

1
2

j1m1
(ml1,μ1)C

l2
1
2

j2m2
(ml2,μ2)

×C
l3

1
2

j3m3
(ml3,μ3)C

l4
1
2

j4m4
(ml4,μ4)Y ∗

l1ml1
(νp)Y ∗

l2ml2
(νp)

×Yl3ml3 (νp)Yl4ml4 (νp)(−1)1+μp1+μp3 [η+(μ1)vμp1 (νp)]

× [η+(μ2)vμp1(νp)][η+(μ3)vμp2(νp)]∗[η+(μ4)vμp2(νp)]∗.
(B6)

After integration over the direction of the momentum and
summation over the projections [16] we get

I1 = 1

4π

∑
Kk

�(j1,j2,j3,j4,l1,l2,l3,l4)

× (−1)l1+j2+1/2(−1)l3+j4+1/2

×
(

l1 l2 K

0 0 0

)(
l3 l4 K

0 0 0

){
K j2 j1

1/2 l1 l2

}

×
{

K j4 j3

1/2 l3 l4

}
C

j1j2
Kk (m1m2)Cj3j4

Kk (m3m4). (B7)

Here, we introduced the 3j symbols, 6j symbols [16], and

�(j1,j2, . . . ,jn) =
√

2j1 + 1
√

2j2 + 1 . . .
√

2jn + 1. (B8)

Accordingly, Eq. (B4) can be written as

I = 1

2

(
(2π )3

pε

)2

×
∑

j1j2j3j4l1l2l3l4m1m2m3m4

1

4π

∑
Kk

�(j1,j2,j3,j4,l1,l2,l3,l4)

×
(

l1 l2 K

0 0 0

) (
l3 l4 K

0 0 0

)

×
{

K j2 j1

1/2 l1 l2

} {
K j4 j3

1/2 l3 l4

}

× (−1)l1+j2+1/2(−1)l3+j4+1/2C
j1j2
Kk (m1m2)Cj3j4

Kk (m3m4)

× eiϕεj1 l1 +iϕεj2 l2 −iϕεj3 l3 −iϕεj4 l4 ψεj1l1m1 (r1)

×ψεj2l2m2 (r2)ψ∗
εj3l3m3

(r3)ψ∗
εj4l4m4

(r4). (B9)

This equation can be written in the form

I =
(

(2π )3

pε

)2 ∑
Kk

∑
j1�j2,l1�l2,j3�j4,l3�l4

AKkεjl l1εj2l2εj3l3εj4l4

×N12

∑
m1m2

C
j1j2
Kk (m1m2) det

{
ψεj1l1m1 (r1)ψεj2l2m2 (r2)

}
×N34

∑
m3m4

C
j3j4
Kk (m3m4) det

{
ψ∗

εj3l3m3
(r3)ψ∗

εj4l4m4
(r4)

}
,

(B10)

where N = 1/2 for equivalent electrons and N = 1/
√

2 for
nonequivalent electrons; n = (j lm). Here, we introduced the
coefficients

AKkεjl l1εj2l2εj3l3εj4l4

= 1

4π
�(j1,j2,j3,j4,l1,l2,l3,l4)

×
(

l1 l2 K

0 0 0

)(
l3 l4 K

0 0 0

) {
K j2 j1

1/2 l1 l2

}

×
{

K j4 j3

1/2 l3 l4

}
(−1)l2+j2+1/2

× (−1)l4+j4+1/2eiϕεj1 l1 +iϕεj2 l2 −iϕεj3 l3 −iϕεj4 l4 . (B11)
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