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Repulsive and attractive Casimir interactions in liquids
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The Casimir interactions in solid-liquid-solid systems as a function of separation distance have been studied
by the Lifshitz theory. The dielectric permittivity functions for a wide range of materials are described by Drude,
Drude-Lorentz, and oscillator models. We find that the Casimir forces between gold and silica or MgO materials
are both repulsive and attractive. We also find the stable forms for the systems. Our studies would provide good
guidance for future experimental studies on dispersion interactions.
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I. INTRODUCTION

The dispersion interactions, the Casimir force, between
neutral objects have drawn interest for many years. There are
a lot of factors affecting the value of the force, such as the
geometry and material properties. Each of them gives rise to
hot subjects of ongoing investigation. Some experiments have
examined the influence of the dielectric properties of objects on
the Casimir force [1–4]. A number of settings used to study the
interaction in terms of theory are ideal metals, real metals and
semiconductors [3–5], metamaterials, and two objects placed
in liquids [1,2,6]. These studies have significantly advanced
our understanding of the subtle effect of geometry and material
properties on the Casimir-Lifshitz interactions, especially in
the design of nanodevices and nanotechnologies.

In the Lifshitz theory, the dispersion interactions primarily
depend on the dielectric permittivity functions of materials.
Changing the dielectric function alters the Casimir interac-
tions. There are some ways to modify dielectric functions,
including illuminating a light on the silicon [7,8], which makes
drifting carriers on semiconductor materials. In principle,
there are some models to describe the dielectric response
functions of real materials, for example, plasma and Drude
models for metals [4,9,10], Drude-Lorentz and oscillator
models for liquids [2,10], oxides, and others [10–12]. Based on
these models, the Casimir forces were obtained by numerical
integrations and series-expansion methods [13].

It has been theoretically shown that the attractive Casimir
interaction always occurs between two (nonmagnetic) di-
electric bodies related by reflection. Therefore, the repulsive
force is a striking feature, creating inspiration for scientists
to make accurate measurements of nanoelectromechanical
machines where the repulsive force plays an important
role and might resolve the stiction problems. The repulsive
Casimir forces can be observed in systems in the presence of
liquids [2], metamaterials and metallic geometries [14], and
magnetoelectric materials [15,16]. The Casimir pressure in
the Si-ethanol-Au system is both attractive and repulsive [17].
Recent experiments have pointed out that a repulsive force
exists between a gold sphere and a silica plate, separated by
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bromobenzene [2]. As a matter of fact, the repulsive Casimir
forces between solids arise when the dielectric of material
surfaces 1 and 2 and an intervening liquid obey the relation
ε1(iξ ) > εliquid(iξ ) > ε2(iξ ) over a wide imaginary frequency
range ξ .

A previous theoretical [18] study noticed that it is difficult
to establish an equilibrium configuration of systems in a
vacuum medium. In Ref. [19], the authors showed that they
were able to form some stable configurations of teflon-Si and
silica-Si immersed in ethanol. The equilibrium is explicitly
explained by dispersion properties. In the present work, our
theoretical studies have shown that the equilibria can be
obtained by placing Au-MgO, Silica-MgO, and Au-Silica
systems in bromobenzene.

In this paper, the Casimir-Lifshitz forces between material
plate systems made in oxides and metals immersed in
bromobenzene are calculated. The combination between these
results and the proximity force approximation (PFA) method
allows us to compute the Casimir interactions in different
configurations. We find that the magnitude of the Casimir force
between two dielectric bodies depends on the configuration
and distance between two bodies. The shape usually used in
experiments is a combination of a sphere and a plate because
one can avoid the problem of alignment and easily control the
distance between them. The energy interactions in a plate-plate
system per unit area can be obtained by using the relationship
between the Casimir energy of two planar objects and the
dispersion force of a sphere-plate system.

The rest of the paper is organized as follows: In Sec. II,
the theoretical formulations of the Casimir-Lifshitz force
interaction are introduced. In Sec. III, the numerical results for
the Casimir force between two bodies are presented. Important
conclusions and discussions are finally given in Sec. IV.

II. LIFSHITZ THEORY FOR FORCE CALCULATIONS

For the force calculations, we used Lifshitz theory without
considering the effect of temperature. The separations used
here were less than 1 μm; therefore, thermal corrections
at T = 300 K are not significant. As previously noted in
Refs. [2,3,20,21], the Lifshitz formula at zero temperature for
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the Casimir force acting between two parallel flat bodies per
unit area, separated by a distance d, is given by

F (d) = − h̄

2π2

∫ ∞

0
qk⊥dk⊥

∫ ∞

0
dξ

×
(

r
(1)
TMr

(2)
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e2qd − r
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(2)
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+ r
(1)
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(2)
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e2qd − r
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TEr
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)
. (1)

Here the reflection coefficients r
(1)
TM,TE and r

(2)
TM,TE for two inde-

pendent polarizations of the electromagnetic field (transverse
magnetic and transverse electric fields) are

r
(p)
TM = r
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in which ε(p)(iξ ) and μ(p)(iξ ) are the dielectric permittivity
and the magnetic permeability of the first body (p = 1) and
the second body (p = 3), respectively; ε(2)(ω) and μ(2)(iξ ) are
the dielectric function and the permeability of a liquid filled
between the two bodies. Here, the medium 2 that was selected
is a bromobenzene, so μ(2)(iξ ) = 1. Moreover, in this paper,
the nonmagnetic materials used such as germanium, gold, and
oxides have also μ(p)(iξ ) = 1. The magnitude of the wave
vector component perpendicular to the plate, k⊥, is frequency
variable along the imaginary axis (ω = iξ ).

We recall that the Lifshitz formula, routinely used to inter-
pret current experiments, expresses the Casimir force between
two parallel plates as an integral over imaginary frequencies iξ

of a quantity involving the dielectric permittivities of the plates,
ω = iξ . It is important to note that, in principle, recourse to
imaginary frequencies is not mandatory because it is possible
to rewrite the Lifshitz formula in a mathematically equivalent
form, involving an integral over the real frequency axis. In
this case, however, the integrand becomes a rapidly oscillating
function of the frequency, which hampers any possibility of
numerical evaluation. Another remarkable point is that the
occurrence of imaginary frequencies in the expression of the
Casimir force is a general feature of all recent formalisms,
hence extending Lifshitz theory to nonplanar geometries
[22,23]. The problem is that the electric permittivity ε(iξ )
at imaginary frequencies cannot be measured directly by any
experiment. The only way to determine it is by means of
dispersion relations, which allow the expression of ε(iξ ) in
terms of the observable real-frequency electric permittivity
ε(iξ ). In the standard works on the Casimir effect, ε(iξ ) is
expressed with the Kramers-Kronig relation in terms of an
integral of a quantity involving the imaginary part of the
electric permittivity [24]:

ε(iξ ) = 1 + 2

π

∫ ∞

0
dω

ωImε(ω)

ω2 + ξ 2
, (6)

where Imε(ω) is calculated using the tabulated optical data for
the complex index of refraction.

The well-known dielectric function described for gold is
the Drude model [24],

ε(iξ ) = 1 + ω2
p

ξ (ξ + γ )
, (7)

where ωp = 9.0 eV and γ = 0.035 eV are the plasma
frequency and the relaxation parameter of Au, respectively.

The imaginary part of the resulting dielectric function at 6
and 295 K of pure MgO is shown in Ref. [12]. The optical
features have been fitted to a classical oscillator model using
the complex dielectric function

ε(ω) = ε∞ +
∑

j

ω2
p,j

ω2
TO,j − ω2 − i2ωγi

, (8)

where ε∞ is a high-frequency contribution, and ωTO,j , 2γi ,
and ωp,j are the frequency, full width, and effective plasma
frequency of the j th vibration. The values of these parameters
can be found in Ref. [12]. Of course with such a simple model
for the permittivity of MgO, there is no need to use dispersion
relations to obtain the expression of ε(iξ ), for this can be
simply done by the substitution ω → iξ in the right-hand side
of Eq. (8) [25]:

ε(iξ ) = ε∞ +
∑

j

ω2
p,j

ω2
TO,j + ξ 2 + 2ξγj

. (9)

In the case of bromobenzene and silica, it was recently used
for measurement of repulsive forces between gold and silica
surfaces. Extremely weak repulsion was measured, indicating
that the dielectric functions of bromobenzene and silica are
very similar in magnitude. In fact, oscillator models are
constructed to represent the dielectric function at imaginary
frequencies. The form of the oscillator model is given by

ε(iξ ) = 1 +
∑

i

Ci

1 + ξ 2/ω2
i

, (10)

where the coefficients Ci are the oscillator’s strengths corre-
sponding to (resonance) frequencies ωi [1,2,26]. The dielectric
data were fitted in a wide frequency range [2]. They are
more accurate in comparison with data from other simple
oscillator models. Moreover, many older references used
limited dielectric data, so the oscillator models with second
or third order may lead to the difference in Casimir force
calculations. The parameters we use in the present paper for
bromobenzene and also silica come from Ref. [2].

III. NUMERICAL RESULTS AND DISCUSSIONS

The Casimir attractive force usually occurs in experiments
and theoretical calculations. When bromobenzene is used to fill
in the gap between two bodies, the Casimir force is attractive
if the dielectric functions do not satisfy one condition,
ε1(iξ ) > εliquid(iξ ) > ε2(iξ ) for all frequencies ξ . Therefore,
by describing Fig. 1 as the dielectric response function as
a function of the frequency gives us some predictions of
repulsive and attractive forces.
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FIG. 1. (Color online) The dielectric function of various materials
plotted at imaginary frequencies ξ .

This graph shows that εAu(iξ ) > εMgO(iξ ) > εliquid(iξ ) and
εMgO(iξ ) > εAu(iξ ) > εliquid(iξ ) at ξ < 6.5 eV; thus, the inter-
actions between Au and MgO bodies immersed in bromoben-
zene liquid and in vacuum are attractive in this range. In the
range ξ > 6.5 eV, εMgO(iξ ) > εliquid(iξ ) > εAu(iξ ), it causes
the repulsive interaction. Similarly, in the gold-bromobenzene-
silica system, at extremely small frequencies, the forces are
attractive. In the larger-frequency region, the Casimir forces
are repulsive. In addition, similar explanations are applied
to understand the interaction in the MgO-bromobenzene-Au
system. The numerical calculations of the normalized Casimir
force are provided in Fig. 2.

In the MgO-bromobenzene-silica system, it can be clearly
seen that there are two positions in each curve where the
Casimir force is equal to zero. The first points, d (1)

us ≈ 13 nm,
correspond to unstable equilibria because the interaction force
changes from the attractive force to the repulsive force; the
second point, d (1)

s ≈ 110 nm, is a stable position. There is
only one position in the Au-bromobenzene-silica system and
the Au-bromobenzene-MgO sytem. The interaction forces
disappear at d (2)

s ≈ 275 nm and d (3)
s ≈ 5.5 nm, the stable

positions of each system, respectively.

FIG. 2. (Color online) Relative Casimir force between two
semi-infinite plates normalized by the perfect metal force Fo(d) =
−π 2h̄c/240d4. The liquid used in this calculation is bromobenzene.

FIG. 3. (Color online) Schematic picture of the setting considered
in our calculations. A sphere is located in bromobenzene at a distance
d away from a material plate.

In order to consider the Casimir interactions between a
spherical body and a plate at a distance of close approach, d,
at a temperature T = 300 K, it is very useful to use the PFA
method to calculate. Experimental results for the Casimir force
in the plane-sphere geometry are usually compared with PFA-
based theoretical models. The spherical surface is assumed to
be nearly flat over the scale of d. Although the Casimir force
is not additive, PFA is often expected to provide an accurate
description when R � d. Here, the radius of the Au sphere that
is used in configurations is R = 40 μm in order to calculate
Casimir interaction by the PFA method because the ratio of d

to R is small enough that PFA results become very accurate. It
can be described by Fig. 3. In this approach, the surfaces of the
bodies are treated as a superposition of infinitesimal parallel
plates [27]:

F PFA
sp (d) =

∫ R

0
Fpp(d + R −

√
R2 − r2)2πr dr, (11)

where Fpp is the Casimir force for two parallel plates of unit
area.

When using the PFA method, one important point is that
the interactions between a gold sphere or a magnesium oxide
sphere and a silica plate are equal to the interactions between a
magnesium oxide plate, which has the same radius, and a gold
plate or a silica plate. There is no difference in calculations
or results either, because the PFA method does not consider a
structure of bodies when their shape is modified or is spher-
ical or cylindrical. The equivalent situations occur in other
materials. The resulting Casimir forces are shown in Fig. 4.

In Ref. [2], the authors experimentally measured and
theoretically calculated the Casimir interaction between a
gold sphere and a silica plate immersed in bromobenzene in
the range from 20 to 60 nm. Our results in this range are
the same for this range. But when we extend the considered
range of distance, the attractive-repulsive transition occurs at
approximately 190 nm. This position makes this system stable.
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FIG. 4. (Color online) The Casimir forces of various sphere-bromobenzene-plate systems are estimated as a function of separation, described
in the text with the spherical radius R = 40 μm.

Another consequence of Fig. 4 is that the stable position of the
Au-bromobenzene-MgO sytem moves to 3.5 nm to balance
between the attractive and repulsive forces. It can be explained
that increasing the separation distance of infinitesimal parallel
plates causes the fast reduction of the dispersion interaction.
At the same minimal separation distance d, the attractive force
acting on a sphere is less than that of a plate in the same
effective area. Finally, in the system of a MgO sphere and
a silica plate embedded in bromobenzene, there is only one
instance of a noninteraction position at nearly 10 nm. It is an
unstable position.

In addition, the PFA formula and Eq. (11) allow us
to estimate the Casimir energy per unit area between two
plate bodies, illustrated in Fig. 5. The Casimir energy is
approximated by [27]

F PFA
sp (d) = 2πRE(d), (12)

where E(d) is the Casimir energy per unit area for planar
bodies.

We have also applied the PFA method to calculate the
Casimir force in sphere-sphere systems; we continue to
calculate by the PFA method. The formula for this calculation
is given as

F PFA
ss (d) = 2π

∫ R2

0
rdrFpp

(
d + R1 −

√
R2

1 − r2

+R2 −
√

R2
2 − r2

)
, (13)

where the radii of two spherical objects are R1 and R2,
respectively. It is assumed that R2 < R1. In this study, we
consider R1 = 40 μm and the cases of R2 = R1, R1 = 2R2,
and R1 = 2R2.

Here, we have calculated F PFA
ss (d) in a sphere-sphere system

using Eq. (13) and F PFA
sp (d) in a sphere-plate system using

Eq. (11). The results obtained show that, when increasing d,
the ratio F PFA

ss (d)/F PFA
sp (d) does not depend on the distance

d. It is a constant with its magnitude a function of the radius

FIG. 5. (Color online) The Casimir energy is calculated as a
function of separation for different materials.
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of two spheres, F PFA
ss (d)/F PFA

sp (d) = 1/2 when R1 = R2 and
F PFA

ss (d)/F PFA
sp (d) = 1/3 when R1 = 2R2. Generalizing this

ratio, if R1 = nR2, we have F PFA
ss (d)/F PFA

sp (d) = 1/(n + 1).
This character is likely to be explained by the results in
Ref. [27]. When the second sphere is extremely small in
comparison with the first one, the interaction force goes to
zero. In this case, the Lifshitz formula used to calculate the
Casimir force should be transformed to the Casimir-Polder
formula describing the interaction between an atom and a
microscopic object. Moreover, the PFA method is not accurate
because this approach is useful if the size of the objects is much
larger than the separation between them. On the other hand,
we have

F PFA
ss (d) = 1

n + 1
F PFA

sp , (14)

where R1 = nR2. If F PFA
sp = 0, F PFA

ss must be zero. Therefore,
the unstable and stable positions are constant and unchanged
when a radius of a second sphere varies.

One study demonstrated that the Casimir force between
two objects embedded in liquids can be derived from the
well-known Lifshitz formula at least if the object is not
made of nonabsorbing materials [6]. That explains why the
Lifshitz expression is used to calculate the Casimir force
and compare with experimental data. Nothing changes in the
dielectric functions of bodies immersed in liquids. On the
other hand, several experiments verified that when metals are
placed in liquids there is a variation of Drude parameters in the
metal [28]. The discrepancy of the interaction between “dry”
and “wet” can reach up to 15% in this case. But they measured
the Casimir force between two metal plates and got the error.

In addition, it may be that the dielectric functions of liquids
and low-index materials play a much more important role in
the Casimir force. In Ref. [2], the change of Drude parameters
is not taken into account but the theoretical calculations are
close to the experimental data curves when we have liquids
and low-index materials.

IV. CONCLUSIONS

In this work, we have extended the Lifshitz theory to
calculate the Casimir force. Liquid, silica, and magnesium
oxide are represented by oscillator models. Although further
studies are required to determine the repulsive Casimir force
accurately, our results show that MgO-silica system is a good
candidate for the demonstration of quantum levitation. The
contribution of bromobenzene is important because it is an
important factor in making the purely repulsive force or the
repulsive-attractive transition. After calculating the Casimir
force between two bodies per unit area and associating the
proximity force approximation method, it is easy to compute
the interaction of different material plates with a material
sphere. Based on the formula of the Casimir force between a
sphere and a plate, it is convenient to estimate the free-energy
interaction of bodies. The result is a prediction for further
experimental studies.
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