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Ultrahigh-resolution spectroscopy with atomic or molecular dark resonances: Exact steady-state
line shapes and asymptotic profiles in the adiabatic pulsed regime
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Dipartimento di Fisica “E. Fermi,” Università di Pisa, Lgo. B. Pontecorvo 3, I-56122 Pisa, Italy

(Received 10 October 2011; published 2 December 2011)

Exact and asymptotic line shape expressions are derived from the semiclassical density matrix representation
describing a set of closed three-level � atomic or molecular states including decoherences, relaxation rates,
and light shifts. An accurate analysis of the exact steady-state dark-resonance profile describing the Autler-
Townes doublet, the electromagnetically induced transparency or coherent population trapping resonance, and
the Fano-Feshbach line shape leads to the linewidth expression of the two-photon Raman transition and frequency
shifts associated to the clock transition. From an adiabatic analysis of the dynamical optical Bloch equations
in the weak field limit, a pumping time required to efficiently trap a large number of atoms into a coherent
superposition of long-lived states is established. For a highly asymmetrical configuration with different decay
channels, a strong two-photon resonance based on a lower states population inversion is established when the
driving continuous-wave laser fields are greatly unbalanced. When time separated resonant two-photon pulses
are applied in the adiabatic pulsed regime for atomic or molecular clock engineering, where the first pulse is long
enough to reach a coherent steady-state preparation and the second pulse is very short to avoid repumping into
a new dark state, dark-resonance fringes mixing continuous-wave line shape properties and coherent Ramsey
oscillations are created. Those fringes allow interrogation schemes bypassing the power broadening effect.
Frequency shifts affecting the central clock fringe computed from asymptotic profiles and related to the Raman
decoherence process exhibit nonlinear shapes with the three-level observable used for quantum measurement.
We point out that different observables experience different shifts on the lower-state clock transition.
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I. INTRODUCTION

In the 1930s, molecular-beam magnetic resonance tech-
niques achieved very high precision allowing the observation
of atomic and molecular systems essentially in total isolation
[1]. The Rabi method revealed coupling interactions between
internal energy states and provided plenty of information not
only on atomic and molecular structure, but also on nuclear
properties. In the 1950s, Ramsey realized a scheme with much
higher resolution by increasing the interaction time between
the atom or molecule and the oscillating field [2]. Still today,
this technique provides the highest resolution in order to follow
a dynamical evolution of wave functions and probe their
phase accumulations. Control and elimination of systematic
frequency shifts dephasing a wave function oscillation at
a natural Bohr frequency are fundamental tasks to achieve
precision measurement [3].

An alternative tool to probe by the Rabi or Ramsey
sequences, for a dipole-forbidden transition, is to radiatively
mix the atomic or molecular states. As an example, without
natural state mixing from a spin-orbit interaction, a long-lived
Raman coherence between a ground state and a long-lived
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(as in alkali metals) or metastable (as in two-electron atoms)
level, to be referred as clock states, can be established by a
two-photon process via an upper excited level, thus forming
a three-level � system. The properties of such a system
are strongly determined by an optical pumping mechanism
leading to a formation of a dark resonance associated with a
trapping of the atomic population in a coherent superposition
of states [4–10]. Since such quantum superposition states are
radiatively stable, the associated Raman coherence production
leads to extremely narrow dark resonances allowing high-
resolution frequency measurements [11]. Such coherences
were explored for single trapped ions [12,13], microwave
clocks [14], microwave chips [15,16], optical lattice clocks
[17], multiphoton excitations [18,19], and nuclear clocks [20].
Similar coherent superpositions are used in solid-state physics
for quantum information [21], in superconducting circuits
[22,23], in a single impurity ion inserted into a crystal [24],
in quantum dots [25] with protection against random nuclear
spin interactions [26], and in optomechanical systems [27,28].
They are also actively considered within the future challenge
of realizing nuclear systems for quantum optics in the x-rays
region [29,30]. Dark resonances, largely exploited in quantum
optics, have been extended to the preparation of molecules in
rovibrational ground states [31] and to coherent superposition
of atomic or molecular states in order to measure atomic
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scattering lengths and lifetimes of exotic molecular states
[32–35].

Three-level narrow resonances are associated to quantum
interferences produced by amplitude scattering into different
channels and are strongly dependent on the configuration
intensities and detunings [36,37]. Such different line shapes
were associated to quantum interferences as the Autler-Townes
(AT) splitting of the resonance [38], the Fano-Feshbach (FF)
canonical form [39], and the dark-resonance (DR) line shape
[8] known as coherent population trapping (CPT) [6,40] or
electromagnetically induced transparency (EIT) [41,42].

Accurate calculation of the line shape for a quantum
superposition resonance requires numerical integration of the
Bloch’s equations. The literature reports on efforts to establish
approximate analytic equations applicable to each particular
case and, in a few cases, exact but rather complex ones
[5,10,43–48]. The application of � schemes to high accuracy
atomic clocks, in microwave or optical domains, requires us
to determine precisely the physical processes affecting the
resonance line shape and the shifts of the clock frequency. For
that purpose this work provides a careful analysis of the line
shape dependence on different parameters characterizing the
atomic or molecular system under investigation.

The standard clock interrogation of a three-level system
involves continuous excitation of the two lower states while
sweeping through the Raman resonance. For that regime,
starting from the steady-state analytical solution of three-level
optical Bloch equations, we derive the exact expression of
the resonance line shape where the role of the relaxations and
dephasing rates determining the absorption profile is expressed
with a physical meaning. Our detailed discussion of key line
shape parameters expands previous analysis [5,6,10,13,36,37].
We show that Autler-Townes, CPT, EIT and FF line shapes
are associated to a universal two-photon resonance line
shape depending on system parameters [49]. The analytical
expressions for the frequency shift associated either to the FF
extrema or to the EIT resonance point out dependencies not
obvious in a perturbation treatment.

An alternative clock operation scheme is based on a
Raman-Ramsey scheme with the application of time separated
but resonant two-photon pulses, experimentally introduced
in the microwave domain [50,51] and extended to rubidium
cold atoms [52]. This operation was inspired by the Ezekiel’s
group work at MIT on a thermal beam of sodium atoms
[53]. While in the standard Ramsey approach, a coherent
superposition of clock states in the bare atomic or molecular
basis is dynamically produced by a π/2 pulse depending on
pulse duration and laser power; the coherent superposition,
in the three-level two-photon approach, is created by an
optical pumping process long enough to reach a steady state.
This scheme overcomes the power broadening mechanism of
the continuous-wave resonance allowing us to obtain high
contrasted signals in a saturation regime. This idea was
extended in Refs. [54–56] to the realization of EIT-Raman (and
hyper-Raman) optical clocks with alkaline-earth-metal atoms.
The time-separated and individually tailored laser pulses may
be designed to create an atomic coherent superposition while
eliminating offresonant ac Stark contributions from external
levels modifying the optical clock resonance [54]. For the
regime of the first laser pulse long enough to produce an

efficient coherent superposition, we present here a detailed
analysis describing the dependence of the DR line shape on
the system parameters.

Within the quantum clock framework, the determination
of line shapes and resonance shifts in different experimental
configurations remains an important issue, to be carefully
investigated within the present work. An important result
of the present analytical and numerical analysis for the
resonance frequency shift of a three-level quantum clock is
that different line shapes versus the optical detunings are
obtained depending on the experimentally detected population
or coherence observable.

The � system and the Bloch’s equations for an homoge-
neous medium are introduced in Sec. II, where an adiabatic
analysis of the time dependent equations determines the ap-
proximated time scale required to produce an efficient atomic
or molecular coherent superposition. Section III establishes an
exact treatment of the excited state steady-state regime and
derives the key informations on the dark-resonance line shape.
In Sec. IV, we derive the steady-state profile of a two-photon
resonance between clock states. In Sec. V, we focus our
attention on the Raman coherence line shape observed between
clock states. Finally Sec. VI analyzes DR fringes produced
with resonant two-photon pulses separated in time mixing
steady-state properties and Ramsey oscillations. A detailed
analysis of the fringe properties is derived in the adiabatic
regime where the first pulse establishes a steady-state solution
and the probe pulse duration vanishes. Instead only dynamical
properties of these phase shifts were demonstrated in Refs.
[54,55,57,58]. In the Appendix A, we rewrite line shape popu-
lation solutions in terms of generalized multiphoton transition
rates enhancing one- and two-photon transition rates in the
three-level system. We finally derive in Appendix B a first order
analytical expression of the central fringe Raman frequency
shift associated to the pulsed dark-resonance line shape.

II. THREE-LEVEL OPTICAL BLOCH EQUATIONS

The Doppler-free three-level system presented in Fig. 1 is
described by the density matrix ρij (i,j = 1,2,3) obeying the
Liouville equation

d

dt
ρij = 1

ih̄

∑
k

(Hi,kρk,j − ρi,kHk,j ) + Rρij . (1)

The coupling of the three atomic or molecular states to
two coherent radiation fields, see Fig. 1, is described within
the rotating wave approximation (RWA) by the following
Hamiltonian:

H = h̄

⎛⎜⎝�1 0 �1

0 �2 �2

�1 �2 0

⎞⎟⎠, (2)

where �1 and �2 are the detunings of the two fields.
Depending on the transition the Rabi frequencies �1 and
�2 driving the system are determined by the product either
between the electric dipole and the electric field amplitude or
between the magnetic dipole and the magnetic field amplitude.
It is worth noticing that Rabi frequencies defined here are half
of the definition of Ref. [59]. The matrix Rρij taking into
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FIG. 1. (Color online) Closed three-level � configuration in the
density matrix representation including relaxation rates �31,�32, and
decoherences γ1,γ2,γc. Optical detunings are �1, �2. The parameter
δr = �1 − �2 defines the Raman resonance condition. �1 and �2

define the couplings with the applied laser fields. |1〉 and |2〉 are the
clock states while |3〉 is the excited state.

account relaxation and decoherence phenomena is written

Rρij =

⎛⎜⎝�31ρ33 −γcρ12 −γ1ρ13

−γcρ21 �32ρ33 −γ2ρ23

−γ1ρ31 −γ2ρ32 −�ρ33

⎞⎟⎠. (3)

The total spontaneous emission rate � is composed by the
�31,�32 rates (with � = �31 + �32) describing either an alka-
line (�31 ≈ �32) or an alkaline-earth (�31 �= �32) three-level
decay configuration. Optical coherences are relaxed with terms
γ1,γ2, where γ1 + γ2 = γ . In a pure radiative process [59],
optical decoherences are related to spontaneous emission rates
by the relation γ1 = γ2 = (�31 + �32)/2. The ρ12 decoherence
is described by the γc dephasing term. The optical Bloch
equations describe the temporal evolution of the density matrix
elements in the RWA as [49]

dρ11

dt
= −2�1Im{ρ13} + �31ρ33,

dρ22

dt
= −2�2Im{ρ23} + �32ρ33,

dρ33

dt
= 2�1Im{ρ13} + 2�2Im{ρ23} − �ρ33,

(4)
dρ13

dt
= −[γ1 + i�1]ρ13 + i�2ρ12 − i�1(ρ33 − ρ11),

dρ23

dt
= −[γ2 + i�2]ρ23 + i�1ρ21 − i�2(ρ33 − ρ22),

dρ12

dt
= −[γc + i(�1 − �2)]ρ12 + i�2ρ13 − i�1ρ32,

with ρji = ρ∗
ij . The population conservation of the closed

system is given by ρ11 + ρ22 + ρ33 = 1. The optical detunings
will be related to the Raman detuning δr by �1 = �0 and
�2 = �0 − δr . �0 represents the common optical detuning
for a configuration where one laser is fixed while the other is
frequency scanned. Notice that within the approach of deriving
the �1,�2 laser modes from a single source by modulation at
frequency δr , with �1 = �0 ± δr/2 and �2 = �0 ∓ δr/2, the
light-shift derivation should be modified.

Equations (4) describe the transient dynamics and the
steady state of populations and quantum coherences. A
complete state mixing is reached when all atoms or molecules

have been pumped efficiently into the dark state, a coherent
superposition of the lower states. Thus, a pumping time
is required to achieve an optimal atomic fraction trapped
into the coherent state superposition. We derive such time
scale evolution from Eq. (4) by an adiabatic elimination of
the time derivative, dρ33(t)/dt = dρ13(t)/dt = dρ23(t)/dt ≡
0 for pulse durations greater than �−1

31 ,�−1
32 , as the population

ρ33 and optical coherences ρ23 and ρ13 evolve more quickly
than the populations ρ11, ρ22 and the Raman coherence ρ12.

We investigate the dynamics of the three-level � systems
using various combinations of long and short two-photon
pulses separated in time. A straightforward temporal analysis
of the resulting adiabatic set, similar to NMR equations
[60,61], exhibits two damping times: τosc, determining the
phase memory of the Raman coherence precession (equivalent
to a transversal or spin-spin relaxation rate), and τp, which de-
termines the typical population transfer into the dark state su-
perposition (similar to a longitudinal or spin-lattice relaxation
rate) [62]. At low optical saturation �1,�2 � �,γ , we have

τosc(�0) ∼
(

γc + �2
1

γ̃2
+ �2

2

γ̃1

)−1

,

(5)

τp(�0) ∼
(

�2
1

γ̃1
+ �2

2

γ̃2

)−1[
1 + ϒ̃

�2
2/γ̃2 − �2

1/γ̃1

�2
2/γ̃2 + �2

1/γ̃1

]−1

,

where we have introduced the following generalized relaxation
rates:

γ̃i = �2
i + γ 2

i

γi

, i = 1,2. (6)

The ϒ̃ generalized branching ratio difference is

ϒ̃ =
3
�

(
�2

1

/
γ̃1 − �2

2

/
γ̃2
)+ ϒ

3
�

(
�2

1

/
γ̃1 + �2

2

/
γ̃2
)+ 1

, (7)

with the ϒ normalized branching ratio given by
ϒ = (�31 − �32)/(�31 + �32). The τosc and τp time scales
play a key role on the population transfer between atomic
or molecular states [54]. Indeed, optical coherences are
efficiently generated only when the �1 and �2 Rabi
frequencies are applied for a time τ exceeding �−1

31 ,�−1
32 . A

short pulse duration having �−1
31 ,�−1

32 < τ < τp will be Fourier
limited and will lead to a weak contrast resonance profile,
whereas a long pulse with τ 
 τp 
 �−1

31 ,�−1
32 will eliminate

all time dependencies in line shape and frequency shifts. This
regime is latter examined within the following section.

III. THE STEADY-STATE LINE SHAPE OF ρ33

A. The dark resonance

In examining the steady-state situation with all time
derivatives in Eq. (4) set to zero, we find the exact expression
for the population of the upper state ρ33,

ρ33 = S� (�1 − �2)2 + γcγeff

(�1 − �2)[�1 − �2 − �f ] + �2
eff

, (8)

where �1 − �2 = δr is the Raman detuning. The expression
of �f , the frequency shift affecting the Raman detuning, and
�eff , the half-width of the two-photon resonance, are reported
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in the following subsection. The coherence decay rate is γeff =
γc + γ ∗ with the γ ∗ saturation rate of the Raman coherence
given by

γ ∗ = �2
1

γ2
+ �2

2

γ1
. (9)

Notice that γeff coincides with τ−1
osc for the �1 = �2 = 0

resonant laser case.
S� of Eq. (8) represents the signal amplitude. It contains the

broad features of the ρ33 dependence on the optical detunings
�1,�2. The fraction on Eq. (8), whose values lie in the [0, 1]
interval, determines the ρ33 narrow variation with the Raman
detuning �1 − �2. The three-level signal amplitude S� is
given by

S� = S

1 + (3 − �
γ

)
S + �

2
2�

2
1+�

2
1�

2
2

γ1γ2

, (10)

where we introduced the normalized dimensionless Rabi
frequencies [63]

�
2
1 = �2

1
�32γ1

�2
1�32γ2 + �2

2�31γ1
,

(11)
�

2
2 = �2

2
�31γ2

�2
1�32γ2 + �2

2�31γ1
.

The saturation parameter S driving the population exchange
between energy levels is determined from Einstein’s rate
equations as

S = 2
�2

1�
2
2(

�32γ2�
2
1 + �31γ1�

2
2

) . (12)

The imaginary parts of optical coherences are related to the
excited state line shape expression by the relation:

Im{ρi3} = �3i

2�i

ρ33 (i = 1,2). (13)

Therefore their line shape is equivalent to that of ρ33.
In Appendix A, we recast all population line shapes in terms

of multiphoton transitions rates, pointing out the light-shift
contributions to the optical detuning terms. We verified that
the numerical results to be presented in the following can be
derived also from that solution.

Depending on the detuning and intensity of the lasers or
microwaves driving the three-level system, the line shapes
associated to Eqs. (8) and (13) present very different features,
known as AT spectra, the dark or EIT resonance, and the FF
profile, associated to different degrees of interference between
two-photon transition amplitudes.

The AT profile appears when one Rabi frequency is much
larger than the natural linewidth of the excited state (�i 

�, i = 1,2), and in addition �1 � �2, or viceversa. Two
split resonances, a doublet structure, appears in the frequency
spectrum, as shown in Fig. 2(a).

At Rabi frequencies smaller than the excited state width,
we reach the DR or EIT configuration where a narrow two-
photon resonance is established from the quantum destructive
interferences between the transition probability amplitudes
[40,42] as seen in Fig. 2(b). The system is placed in the
dark state uncoupled from the driving fields. Note that at

FIG. 2. (Color online) Three-level spectra vs δr Raman detun-
ing observed on the ρ33 population. For all spectra �31 = �32 =
�/2, γc = 0. (a) AT spectrum at �0 = 0, �1 = 5�, and �2 = �.
(b) Dark-EIT resonance at �0 = 0, �1 = 0.2�, and �2 = 5 × 10−2�.
(c) FF resonance for �0 = �, �1 = 0.2�, and �2 = 10−2�. Solid
lines from the analytic solution Eq. (8) and dots from the numerical
integration of Eq. (4) at τ 
 τp(0).

exact resonance, �1 = �2 = 0, ρ33 = 0 when γc = 0. These
regimes are characterized (�1 ≈ �2 � �) with �1 ≈ �2 for
the dark resonance, and �i 
 �j ; �i,�j < � for the EIT
resonance.
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The FF line shape plotted in Fig. 2(c) is originated when
one Rabi frequency is much larger than the second one,
and in presence of an optical detuning from the excited
state(�i 
 �j , �1,�2 � �). Two resonances appear in the FF
spectrum, one broad corresponding to the saturated one-photon
resonance. The second sharp feature exhibits a characteristics
asymmetric response, highly sensitive to changes in the
system parameters and centered around the δr ≈ 0 Raman
detuning. Its minimum is associated to the DR, or EIT dip,
while the maximum is the Raman peak, or bright resonance,
associated to the preparation of the coherent superposition of
|1〉 and |2〉 states coupled to the driving electromagnetic fields.
Both the EIT dip and the Raman peak are manifestations
of the interference between the one-photon and two-photon
amplitudes [36]. The asymmetry of the FF profile is reversed
by changing the relative ratio between the Rabi frequencies.

B. �eff Raman linewidth

The subnatural EIT resonance of Fig. 2(b) experiences a
linewidth which is power broadened by the optical saturation
rate γ ∗ of Eq. (9). Let’s note that such power broadening
is important even for a laser intensity where the saturation
is negligible on the optical transitions. In fact Ref. [64]
introduced a coherence saturation intensity, defined by γ ∗ =
γc, smaller than the optical saturation intensity. The exact
expression of the �eff Raman half-width is

�eff =
√√√√ (γeff + 3γcS)γeff

1 + (3 − �
γ

)
S + �

2
2�

2
1+�

2
1�

2
2

γ1γ2

√
1 + ζ , (14)

where the factor ζ is

ζ =
�

γcS

2γ1γ2

[
2�1�2 + �2

1 − �2
2

]+ γ 2
c

�
2
2�

2
1+�

2
1�

2
2

γ1γ2

(γeff + 3γcS)γeff

+
(γ1−γ2)S

2γ1γ2
(�32γ2 − �31γ1)

γeff + 3γcS
. (15)

ζ is very small (ζ � 1) in a quasiresonant laser interaction
(according to the condition γc

�
�2

1,
γc

�
�2

2 � �2) and a pure
radiative process. As long as γc,�1,�2 � �, �eff determines
the half linewidth of the subnatural resonance. In that regime
and for the pure radiative case, �eff is well approximated
by τ−1

osc .

C. � f Raman frequency shift

The frequency shift �f correcting the δr = 0 Raman
detuning condition is given by

�f = �LS + �DS, (16)

with the �LS light-shift (LS) expression including the satura-
tion effect given by

�LS =
2

γ1γ2

[
�2

2�
2
2�1 − �2

1�
2
1�2

]
1 + (3 − �

γ

)
S + �

2
2�

2
1+�

2
1�

2
2

γ1γ2

− (γ1 − γ2)

2γ1γ2γ

�S[γ2�1 + γ1�2]

1 + (3 − �
γ

)
S + �

2
2�

2
1+�

2
1�

2
2

γ1γ2

. (17)

Notice that the second term of the above expression vanishes
for the symmetric � scheme, i.e., with γ1 = γ2 (pure radiative
process). In that case, the first term of �LS could be associated
to the light-shift expression, as pointed out in [5]. The �DS

decoherence shift (DS) depends on the γc rate as

�DS = γc

S

2γ1γ2

[�(�1 + �2) − (�31�1 − �32�2)]

1 + (3 − �
γ

)
S + �

2
2�

2
1+�

2
1�

2
2

γ1γ2

. (18)

Let us emphasize that �f is always null at �1 = �2 = 0
resonance [65].

D. Approximated frequency shifts of EIT and FF resonances

Instead of the previous subsection exact expression cor-
recting the Raman detuning condition in the denominator, it is
useful to derive the effective shift of the dark-EIT resonance
minimum, which is very relevant for precision spectroscopy
or clock resonance. The calculation of the DR/EIT and FF
frequency shifts requires us to examine Eq. (8) with the
Raman detuning δr as a free parameter. A valid approximation
for the EIT and Raman-peak shifts in various excitation
configurations can be found when optical detuning �1 ∼
�2 ∼ �0 are tuned around the Raman condition �1 − �2 =
δr . A differentiation of Eq. (8) versus the δr parameter leads to
roots of a quadratic equation defining the following extrema
δω33(�0) of the EIT/FF line shapes:

δω33(�0) ≈ �2
eff − γcγeff

�f

⎛⎝1 ∓
√√√√1 + γcγeff�

2
f(

�2
eff − γcγeff

)2
⎞⎠ .

(19)

The ∓ solutions refer to the extrema of the FF line shape.
The minus (plus) sign holds for EIT dip (Raman Peak)
when γcγeff/�2

eff < 1, and the opposite when γcγeff/�2
eff > 1.

Figure 3 shows the continuous-wave frequency shift versus the
common optical detuning �0 using Eq. (19). Results for both
γc = 5.10−4� and γc = 0 are presented. The EIT decoherence
shift, proportional to γc, exhibits a linear dependence on the
optical detuning when radiative decay terms are symmetrical.
As pointed in [10], when the decoherence term vanishes
(γc = 0), there is no shift of the EIT minimum [66] except if we
take into account external small offresonant level contributions
[67]. The Raman peak shift produced by light and decoherence
varies with the inverse of the optical detuning as discussed by
[37] and observed experimentally in [12]. For a quasiresonant
interaction, we can further simplify the above expression for
the Raman Peak and the EIT dip when γcγeff/�2

eff � 1 and
�2

f /�2
eff � 1. Near the two-photon resonance, the shifts of

Eq. (19) can be accurately approximated as

δωEIT
33 (�0) ≈ −γc�f

γeff

2�2
eff

, δωRP
33 (�0) ≈ 2

�2
eff

�f

. (20)

The EIT dip frequency shift is thus roughly given by the
product of the γc decoherence rate and the �f Raman
frequency shift divided by the �eff linewidth of the subnatural
resonance. Such a dependence was pointed out by [17] and by
[46] based on a theoretical analysis of [68], and as mentioned
in [48], was earlier derived in [69].
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FIG. 3. (Color online) Frequency shifts of the dark-EIT dip and the Raman peak observed on the ρ33 excited state population vs the optical
detuning �0 from Eq. (19) (straight solid blue line and red lines, respectively) and from the numerical integration of Eq. (4) (solid dots • and
open dots ◦, respectively). Parameters are �31 = �32 = �/2, �1 = 5 × 10−2�, and �2 = 10−3�. In (a) γc = 5 × 10−4�; in (b) γc = 0 leads to
a vanishing shift for the EIT resonance.

IV. STEADY-STATE LINE SHAPES OF CLOCK-STATE
POPULATIONS ρ11,ρ22

A. The two-photon resonance

We focus now on clock-state resonances observed on the
ρ11, ρ22 populations and linked to the Raman coherence
between those states. The clock-state populations may be
expressed in an exact form similar to that of Eq. (8) as

ρ11 = S11 (�1 − �2)[�1 − �2 − �11] + γ 2
11

(�1 − �2)[�1 − �2 − �f ] + �2
eff

,

(21)

ρ22 = S22 (�1 − �2)[�1 − �2 + �22] + γ 2
22

(�1 − �2)[�1 − �2 − �f ] + �2
eff

,

where

Sii =
(

1 + γ̃i�3i

2�2
i

)
S�, (i = 1,2),

�11 = γ 11(�1 + γ1�), �22 = γ 22(�2 − γ2�), (22)

� = �2
2�31γ2�1 − �2

1�32γ1�2

γ1γ2
(
�2

2�31 + �2
1�32

) ,

and

γ 2
11 = γcγeff + γ 11(γ1γeff − γc�1�),

(23)
γ 2

22 = γcγeff + γ 22(γ2γeff + γc�2�),

with

γ 11 = �31�
2
2 + �32�

2
1

2�2
1γ1 + (�2

1 + γ 2
1

)
�31

,

(24)

γ 22 = �31�
2
2 + �32�

2
1

2�2
2γ2 + (�2

2 + γ 2
2

)
�32

.

Figure 4 reports the population resonance under various
saturation conditions, matching the AT, EIT, and FF line shapes
of Fig. 2. Notice that the EIT regime of Fig. 4(b) corresponds
to the case of Rabi frequencies smaller than the natural decay
rate of the excited state. The “Lamb-dip”-like line shape
for the resulting quasisaturated transition can conveniently
be observed in the three-level configuration. This method
of spectroscopy without Doppler broadening was proposed
and experimentally accomplished by Javan and Schlossberg
in [70,71]. In such a situation, the dip can be narrower than
the homogeneous linewidth of the population resonance as in
Fig. 4(b).

The clock-state populations depend strongly on the normal-
ized branching ratio difference ϒ and on the Rabi frequencies
driving atomic or molecular transitions. A numerical analysis
of [72] demonstrated the occurrence of a strong population
transfer for unequal �31,�32 decay rates. Figure 5 shows
the steady-state complete population transfer for �1 
 �2

and ϒ ≈ 1 using the asymmetric decay rates associated
to an alkaline-earth three-level system as strontium atoms
[17,54]. A large coherent population transfer ρ22 − ρ11 = ±1
is achieved when �1 
 �2 for ϒ ∼ +1 or �2 
 �1 for
ϒ ∼ −1.

B. Approximated frequency shift of the two-photon resonance

In an alkaline-earth frequency clock probing scheme, the
large population transfer regime of Fig. 5 may be used to
detect one lower state population, or the population difference
between clock states. Thus, it is important to derive the
two-photon shift also in this scheme. Using an analysis
equivalent to the derivation of Eq. (19) when �1 ∼ �2 ∼ �0,
we obtain the frequency shift of ρ11. For ρ22, we make a similar
derivation also using the population conservation condition.
We obtain the following expression for δω11(�0) and similarly
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FIG. 4. (Color online) Three-level spectra vs the δr Raman
detuning observed on the ρ11 population using Eq. (21), solid
blue line, and the numerical integration of Eq. (4), solid dots
(•). In (a) AT resonance, in (b) Lamb-dip line shape, and in
(c) FF resonance. System parameters as in Fig. 2. In (a) and (b),
Rabi frequencies as in Fig. 2. In (c) �1 = 0.2�, �2 = 5 × 10−3�,
and �0 = �.

FIG. 5. (Color online) Population inversion resonance between
the |1〉 and |2〉 states, monitored on ρ11 and ρ22, for unbalanced decay
rates, �32 = 10−5�, �31 = � − �32. Solid blue line is computed from
Eq. (21), solid dots (•) are the result of the numerical integration of
Eq. (4). Other parameters are �0 = 0, γc = 0, �1 = 5 × 10−2�, and
�2 = 5 × 10−4�.

for δω22(�0):

δω11(�0) ∼ δω22(�0) ≈ γ 2
11 − �2

eff

�11 − �f

×
(

1∓
√√√√1 + (�f − �11)

(
γ 2

11�f − �11�
2
eff

)(
�2

eff − γ 2
11

)2
)

.

(25)

For the specific radiative configuration of alkaline-earth
species shown in Fig. 5, only the solution with the minus
sign is needed, but ∓ solutions generally refer to the extrema
of a dispersive line shape. Our standard choice of the laser
detunings �1 = �0 and �2 = �0 − δr introduces a very small
difference in expressions of the frequency shifts affecting each
clock-state population. For a quasiresonant interaction when
γcγeff/�2

eff � 1 with �f /�eff � 1 and �11/�eff � 1, the
expression may be simplified to yield

δω11(�0) ∼ δω22(�0) ≈
�11 − γ 2

11

�2
eff

�f

2
(
1 − γ 2

11

�2
eff

) . (26)

The frequency shift versus the common mode optical detuning
�0 affecting the ρ11(equivalently ρ22) resonance is plotted in
Figs. 6(a) and 6(b) for two particular ratios of the relaxation
rates by spontaneous emission. In both cases, the shift of the
two-photon resonance measured on the ρ11 or ρ22 observables
has a dispersive line shape versus the optical detuning �0. The
slope is completely reversed owing to a nonlinear behavior
when the ratio ϒ �→ 1 as in Fig. 6(b). A comparison with the
frequency shift of the excited state ρ33 is also included in the
figure. Notice the difference in the ρ11/ρ33 shifts for the case
of a large asymmetry in the spontaneous decay rates.
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FIG. 6. (Color online) Frequency shift of the population inversion resonance observed on ρ11 (or ρ22) as derived from Eq. (25) (solid
blue line) and frequency shift of the ρ33 EIT resonance from Eq. (19) (solid red line) vs the optical detuning �0, for unbalanced decay rates.
Solid dots (•) are from the numerical integration of Eq. (4) with parameters �1 = 5 × 10−2�, γc = 510−4�, and �2 = 5 × 10−4�. In (a)
�32 = 10−5� and �31 = � − �32. Note that the δω33 shift is indistinguishable from the δω11 shift. In (b) �32 = 10−10� and �31 = � − �32.

V. STEADY-STATE LINE SHAPE OF
RAMAN COHERENCE ρ12

A. The Raman coherence resonance

We are now focusing on the steady state Raman coherence
resonance ρ12 = Re{ρ12} + iIm{ρ12} given by

Re{ρ12} = �12S
� (�1 − �2)� − γeff

(�1 − �2)[�1 − �2 − �f ] + �2
eff

,

(27)

Im{ρ12} = �12S
� (�1 − �2) + �γc

(�1 − �2)[�1 − �2 − �f ] + �2
eff

,

with

�12 = �2
2�31 + �2

1�32

2�1�2
. (28)

When the dipole transition is allowed, the Raman coherence
resonance can be detected in several manners. If we deal
with alkaline atoms, such as Cs or Rb, the hyperfine Raman
coherence might be detected as a microwave emission propor-
tional to |ρ12|2, inserting the atomic medium into a microwave
cavity [73]. Figure 7 shows |ρ12|2 versus the Raman detuning
condition δr when �31 = �32 = �/2 at different values of �0.
The dispersive behavior of Re{ρ12} leads to a second resonant
peak, appearing when �0 > 3� as seen in Figs. 7(b) and 7(c).

B. Approximated frequency shifts of the
Raman coherence resonance

We derive here an accurate expression for the frequency-
shifted resonance of |ρ12|2 when �1 ∼ �2 ∼ �0. A cubic
equation is derived from the analytical differentiation of
|ρ12|2 of Eq. (27) with respect to the Raman detuning
δr . Using Cardan’s solutions, the three roots are written

as

δω12(�0)

∼ − b

3a
+
√

−p

3
cos

[
1

3
cos−1

(
− 3q

p

√
− 3

p3

)
+ 2k

π

3

]
,

(29)

with k = 0,1,2, the p (p < 0) and q given by

p = 3ac − b2

3a2
, q = 2b3 − 9abc + 27a2d

27a3
, (30)

and

a = −1 − �
2
,

b = 3�(γeff − γc),
(31)

c = −2
(
γ 2

c �
2 + γ 2

eff

)+ �2
eff(1 + �

2
)

+�f �(γc + γeff),

d = �2
eff�(γc + γeff) + �f

(
γ 2

c �
2 + γ 2

eff

)
.

Equation (29) allows us to obtain the frequency shift as a
function of the common mode optical detuning �0 plotted in
Fig. 8. However an estimate of that shift is obtained looking
only at the real part of the coherence solution which mainly
describes the line shape emission. From the square modulus of
the real part |Re{ρ12}|2, simple cubic solutions for the Raman
coherence frequency shift can be derived as

δω12(�0) ∼ γeff

�

[
1 ∓

√
1 + ��eff

γeff

(
��eff

γeff
− �f

�eff

)]
,

(32)

or

δω12(�0) ∼ γeff

�
. (33)
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FIG. 7. (Color online) (a) Steady-state line shapes of the |ρ12|2
square modulus vs δr using Eq. (27) (solid blue line) for �31 = �32 =
�/2, �1 = 5 × 10−2�, �2 = 5 × 10−3�, and γc = 0. In (a) �0 = 0,
in (b) �0 = 5�, and in (c) �0 = 20�. Solid dots (•) are from the
numerical integration of Eq. (4).

When ��eff/γeff � 1 and �f /�eff � 1, the Raman coher-
ence frequency-shift expression corresponding to the maxi-
mum emission becomes

δω12(�0) ∼ �f

2
. (34)

For that case, we recover the usual dispersive shape related to
the light-shift �LS affecting clock states. The frequency shift
versus the common mode optical detuning �0 derived from
Eq. (29) is shown in Fig. 8(a) for the case of a symmetric radia-
tive configuration with �31 = �32 while in Fig. 8(b) for �31 

�32. The central dispersive feature, related to the Raman shift
expression �f , corresponds to the maximum of the coherent
emission. Other branches of the shift correspond to the extrema
of the second resonance appearing for �0 > 3� as from the
line shape simulation of Fig. 7(b). A direct comparison of
Fig. 8(b) with frequency shifts reported in Fig. 6 with similar
conditions yield to Raman coherence shifts larger by more
than an order of magnitude than population frequency shifts.

VI. DARK-RESONANCE FRINGES

A. Pulsed regime line shape

The clock operation may be based on a pulsed Raman-
Ramsey scheme, illustrated in Fig. 9, with beating oscillations
observed whichever variable is monitored. This detection
approach, originally introduced in [53], was refined in [50,51]
and discussed in Refs. [54–56]. It allows us to reach a higher
precision in the clock frequency measurement, as typical of the
Ramsey fringes. The present work focuses on the laser pulse
scheme where the first pulse is long enough to allow the atomic
or molecular preparation into the dark state superposition and
the second delayed short pulse probing that superposition.
Because the τp pumping time of Eq. (5) is required to reach
the steady-state atomic or molecular preparation into the
dark state, the length of the first pulse should satisfy τ 

τp(�0) 
 �−1

31 ,�−1
32 . From a mathematical point of view, the

τ �→ ∞ steady state solution of the three-level optical Bloch
equations may thus be used as initial condition for determining
the evolution at later times. At time τ the laser fields are
switched off in order to allow for a free evolution over the
time T. Finally a readout operation is performed by applying
a short pulse whose time duration τm is limited by �−1

31 ,�−1
32 <

τm � τp(�0). In this adiabatic regime where dρ33(t)/dt =
dρ13(t)/dt = dρ23(t)/dt ≡ 0, the short probe pulse operation
is well described using the τm �→ 0 limit. For a readout pulse
as long as the preparation pulse, all atoms or molecules are
repumped into a new dark state erasing interference fringes.
Interferences fringes are detectable on all observables as
a function of the T time delay, with very short readout
pulses required for optical coherences and the excited state
population fraction. Instead longer probing times are required
for monitoring fringes on lower state populations due to slow
time evolution of the clock states and the Raman coherence.

An analytical expression of the population fraction in the
excited state can be established from Eq. (4) in the asymptotic
limit of a long preparation pulse and a vanishing read out pulse,
i.e., at the end of the free evolution time. In this regime, a pulsed
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FIG. 8. (Color online) (a) Frequency shift of the Raman coherence resonances observed on the |ρ12|2 as derived from Eq. (29) (solid blue
line) vs the optical detuning �0. In (a) we have a symmetric radiative configuration with �31 = �32 = �/2, where �1 = 5 × 10−2�, �2 =
5 × 10−3�, and γc = 0. In (b) we have an asymmetric radiative configuration with �31 = � − �32 and �32 = 10−5�, where �1 = 5 × 10−2�,
�2 = 5 × 10−4�, and γc = 510−4�. Solid dots (•) are from the numerical integration of Eq. (4).

DR expression ρ33(T ) and related transmission parts of the
Im{ρ13}(T ),Im{ρ23}(T ) optical coherences can be rewritten in
the exact αij [1 + βij |ρ12|e−γcT cos(δrT − �ij )] form:

ρ33(T ) = α33[1 + β33|ρ12|e−γcT cos(δrT − �33)],

α33 = �2
2(�n + 1)/�γ̃2 − �2

1(�n − 1)/�γ̃1

1 + 3
�

(
�2

1/γ̃1 + �2
2/γ̃2

) , (35)

β33 =
√

μ2
γ 33 + μ2

�33

α33
,

Im{ρ13}(T ) = α13[1 + β13|ρ12|e−γcT cos(δrT − �13)],

α13 = �1

2γ̃1
[3α33 + (�n − 1)],

FIG. 9. (Color online) Pulsed dark-resonance detection scheme
to perform high-resolution spectroscopy of three-level � systems. T

is the Ramsey time when both laser light fields �1,�2 are switched
off. The first pulse is long enough, τ 
 τp(�0), to reach the stationary
regime. During the second pulse, the probing time can be short, τm �
τp(�0), to observe dark-resonance fringes or long, τm 
 τp(�0), to
recover a cw dark resonance as a new preparation stage for the next
pulse.

β13 =
√

μ2
γ 13 + μ2

�13

α13
, (36)

Im{ρ23}(T ) = α23[1 + β23|ρ12|e−γcT cos(δrT − �23)],

α23 = �2

2γ̃2
[3α33 − (�n + 1)], (37)

β23 =
√

μ2
γ 23 + μ2

�23

α23
.

where �n = ρ22 − ρ11 is the steady-state clock-state popu-
lation difference obtained from Eq. (21) and |ρ12| is given
by Eq. (27). The following quantities were introduced in the
above expressions:

μγ 33 = 2�1�2

�

(
(γ̃1 + γ̃2)/γ̃1γ̃2

1 + 3
�

(
�2

1/γ̃1 + �2
2/γ̃2

)),

(38)

μ�33 = 2�1�2

�

(
�1/γ̃1γ1 − �2/γ̃2γ2

1 + 3
�

(
�2

1/γ̃1 + �2
2/γ̃2

)),

μγ 13 = 3

2

�1

γ̃1
μγ 33 − �2

γ̃1
,

(39)

μ�13 = 3

2

�1

γ̃1
μ�33 − �2

�1

γ1γ̃1
,

μγ 23 = 3

2

�2

γ̃2
μγ 33 − �1

γ̃2
,

(40)

μ�23 = 3

2

�2

γ̃2
μ�33 + �1

�2

γ2γ̃2
.

In the nonasymptotic limit where τ ∼ τm ∼ τp, stationary
solutions of |ρ12| and �n have to be replaced by their transient
expressions |ρ12(τ,τm)| and �n(τ,τm). When, T �→ 0, the
line shape expression from Eq. (35) is formally equivalent
to Eq. (8). A pulsed DR line shape is plotted in Fig. 10
(a) for small values of Rabi frequencies with a magnified
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FIG. 10. (Color online) (a) Dark-resonance fringes in the weak
field limit. (b) Frequency span of the line shape. Lines from
Eq. (35) and dots (•) from Bloch’s equations [Eq. (4)]. Common
parameters: �31 = �32 = �/2, �0 = 0, γc = 0, and T = 10τp(0). In
(a) and (b) Rabi frequencies �1 = �2 = 0.005�, free evolution time
T = 10τp(0), and probe time τm ∼ 0.004τp(0). Very good agreement
between Eqs. (4) and (35) results.

span on the central fringe in Fig. 10(b). In these plots, the
agreement between Eq. (35) (solid red lines) and the Bloch’s
equations (dots •) is very accurate. We have also studied
the role of the Ramsey time T on the DR line shape and
amplitude. Figures 11(a)–11(c) show the signal amplitude
versus the Raman detuning for different values of T . The fringe
amplitude is always twice the amplitude in the cw regime
when 2T > �−1

eff and γc = 0. A careful comparison between
Fig. 10 and Figs. 11(b) and 11(c) show that for Rabi
frequencies comparable to the �31,�32 relaxation rates, i.e.,
when saturation becomes important, the limit τm �→ 0 used to
obtain Eq. (35) is no longer valid, and the effect of the readout
duration pulse length τm has to be included into the analysis
leading to a slight reduction of the fringe amplitude.

B. Stationary atomic or molecular Raman phase

The fringe signals appearing in the atomic observables
are produced by the cos(δrT − �ij ) terms appearing in

FIG. 11. (Color online) DR line shapes in strong laser fields
computed from Eq. (35) vs Raman detuning for different values
of Ramsey time T . Parameters �1 = �2 = 0.2�, �31 = �32 = �/2,
�0 = 0, and γc = 0. Solid dots (•) from Bloch’s equations [Eq. (4)]
with τ = 10τp(0). In (b) and (c) τm = 0.75τp(0).

the above expressions. Within a narrow region around the
resonance, the line shape is entirely described by a phase given
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(a) (b) (c)

(d) (e) (f )

FIG. 12. (Color online) Asymmetric fringes observed on the imaginary parts of optical coherences, (a) Im{ρ13}(T ) and (b) Im{ρ23}(T ),
and on the excited population (c) ρ33 vs Raman frequency detuning. In (d), (e), and (f), expanded views of the central resonance fringe for
each observable are shown. Parameters �31 = 0.8�, �32 = 0.2�, �0 = �, γc = 0, �1 = 5.10−2�, �2 = 2.5 × 10−2�, free evolution time
T = 10τp(0), τ > 10τp(�), and τm ∼ 5.5 × 10−3τp(�). Solid lines from the analytical forms of Eqs. (36), (37), and (35), respectively, are in
good agreement with the solid dots (•) results from Bloch’s equations [Eq. (4)].

by

�33 = Arctan

[
μγ 33Im{ρ12} − μ�33Re{ρ12}
μγ 33Re{ρ12} + μ�33Im{ρ12}

]
,

�13 = Arctan

[
μγ 13Im{ρ12} − μ�13Re{ρ12}
μγ 13Re{ρ12} + μ�13Im{ρ12}

]
, (41)

�23 = Arctan

[
μγ 23Im{ρ12} − μ�23Re{ρ12}
μγ 23Re{ρ12} + μ�23Im{ρ12}

]
.

In the adiabatic regime, for a first pulse producing a steady
state and a second pulse with a short duration, the |ρ12|
steady state solution of Eq. (27) leads to cw expressions of
�ij (i,j = 1,2,3) where all time dependencies are absent.
For clock engineering, it is important to quantify the shift
of the central fringe when the common mode optical detuning
�1 ∼ �2 ∼ �0 is scanned around the δr = 0 resonant value.
Within the limit of a long first pulse and a short second
pulse, in the weak field regime and for a sufficiently large
Ramsey time [T 
 τp(�0),τm], the central fringe frequency-
shift δωfr

ij should be connected to the �ij phase accumulation.
Time-dependent Raman frequency shifts produced by short
preparation pulses were examined in details in Refs. [57,58]
using the Bloch vector model, but only for the excited state

population. A complex wave-function formalism was also
proposed for short pulses in [54] and extended in Ref. [55] to
derive analytical time-dependent expressions of any frequency
shift affecting the central fringe related to each possible
observable.

Figures 12(a)–12(c) report the fringes appearing on the
imaginary parts Im{ρ13}(T ), Im{ρ23}(T ) and on the excited
state population ρ33(T ) for an asymmetrical radiative con-
figuration with �31 = 0.8� and �32 = 0.2�, a detuned laser
excitation (�0 = �) with no Raman decoherence (γc = 0).
Plots from Figs. 12(d)–12(f) report a magnified span on the
central fringe. The plots in Figs. 12(a) and 12(b) for the
optical coherences show asymmetrical line shapes with
the central fringe being blue or red shifted from the exact
Raman resonance, a behavior different from that observed
in the cw regime. For the excited state fraction plotted in
Fig. 12(c) under the same conditions, the central fringe is
not frequency shifted, as in the cw regime. These results
point out, for the first time, that the imaginary parts of
optical coherences, when individually probed, have a line
shape different from that observed on the excited state
response due to asymmetric decay rates by spontaneous
emission.

062502-12



ULTRAHIGH-RESOLUTION SPECTROSCOPY WITH ATOMIC . . . PHYSICAL REVIEW A 84, 062502 (2011)

FIG. 13. (Color online) Exact numerical tracking of fringe
frequency-shifts δωfr

13, δωfr
23, and δωfr

33 vs �0 derived from Eqs. (35),
(36), and (37) (solid lines). Parameters �31 = 0.8�, �32 = 0.2�,
γc = 5 × 10−4�, �1 = 5 × 10−2�, �2 = 3.7515 × 10−2�, and T =
10τp(0). Solid dots (•) from Bloch’s equations [Eq. (4)], where we use
τ > 10τp(�) and τm ∼ 5.5 × 10−3τp(�). The discrepancy between
solid lines and dots are here due to the nonvanishing τm readout time
required with a numerical integration of Bloch’s equations.

This different behavior is also confirmed by the plots of
Fig. 13 focusing on dark-resonance fringe frequency shifts
versus the common mode optical detuning �0 when assuming
a small decoherence term γc = 5 × 10−4�. Figure 13 shows
the numerical tracking of frequency shifts from the Eqs. (35),
(36), and (37) analytical form compared to the integration of
Bloch’s equations [Eq. (4)] (solid dots) for a particular ratio
between Rabi frequencies. Oscillations around the numerical
track of frequency shifts are observed for large optical
detunings due to the nonvanishing τm readout time used
with Eqs. (4). Figure 14 evidences a very weak slope near

FIG. 14. (Color online) Exact numerical tracking of the dark-
resonance fringe frequency-shift δωfr

33 vs �0 derived from Eq. (35)
(solid line). Solid dots (•) are plotted from Bloch’s equations [Eq. (4)]
with parameters as in Fig. 13.

FIG. 15. (Color online) (a) Expanded view of the fringe
frequency-shift numerical tracking δωfr

33 from Fig. 14 for various
values of the small decoherence γc term. (b) Exact numerical
frequency-shift δωfr

33(�0) with different Ramsey time T for the
particular ratio �2/�1 ∼ 0.75 where �1 = 5 × 10−2� and γc =
5 × 10−4�. Solid dots in the (a) and (b) cases are plotted from the
analytical first order expansion of the Raman shift using Eq. (B10).
Note the oscillating pattern with the small amplitude.

optical resonance; such dependence does not appear on the
imaginary parts of the optical transmission. In absence of the
γc decoherence, the excited state dependence was recently
discussed in works [74,75] dealing with the time-dependant
part of the Raman-Ramsey fringes reported earlier in [57,58].

A perturbative expansion of Eq. (35) in the Raman detuning
parameter is required to derive the correct nonlinear behavior
of the frequency shift versus the �0 detuning, as reported
in Eq. (B10). Those dependencies (solid dots) are plotted in
Fig. 15 for �2/�1 ∼ 0.75 and compared to the numerical
tracking shift of the fringe minimum from Eq. (35) (solid
lines). A nonlinear behavior with small oscillations around the
optical resonance is correctly described. Increasing the time
T , there is a small rotation of the frequency shift around the
�0 = 0 common mode detuning as shown in Fig. 15(b). This
dependence appears only for a nonvanishing γc decoherence
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rate. For a given value of T , at specific values of the optical
detuning, an exact cancellation of the frequency shift takes
place as seen in Fig. 15(b).

VII. CONCLUSION

Three-level systems interacting with two coherent laser
fields give rise to many phenomena, such as the Autler-Townes
doublet, the dark or EIT resonance, and the Fano-Feshbach
transition. In all of them the Raman coherence, playing an
essential role, is highly sensitive to the parameters of the laser
interaction and of the decoherence processes. The present work
explored how those parameters may be tuned for future optical
clock devices providing sensitive measurements of energy
levels shifts in neutral atom clocks based on either fermionic
or bosonic atomic species, for example, in dipolar traps [76]
or in trapped ion clocks [77].

The three-level phenomena are well described by the
formalism of the Bloch’s equations in a semiclassical density
matrix representation. From the exact resolution of Bloch’s
equations, we have derived general analytic expressions of the
resonance line shapes observed in the steady state of different
atomic observables. We have examined the linewidth and
power broadening of the two-photon resonance. The precise
dependence of the frequency shift associated to the Fano-
Feshbach transition or to the EIT resonance, not appearing
in a perturbation treatment, was discussed. We have examined
the resonance fluorescence and frequency shift for a pulsed
laser configuration in the adiabatic regime. The analytical but
asymptotic solution allows us to write the line shape solution
of the narrow quantum resonance leading to the formation of
dark-resonance fringes. The pulsed sequence overcomes the
power broadening mechanism of the continuous-wave exci-
tation while allowing high contrasted signals in a saturation
regime. In the weak field limit, signals in pulsed regimes are
two times the continuous-wave signals, except for the decrease
due to the Raman coherence relaxation within the atomic free
evolution. The lower limit to the resonance linewidth is 1/2T

to be compared to the �eff limit in the steady-state case. The
resonance shift is still proportional to the γc decoherence as for
the steady state regime, but it is now diluted over the Ramsey
time.

An important and original result of our analysis is that
different atomic or molecular quantum observables (excited
population, clock-state populations, and Raman coherence)
experience different nonlinear line shapes and therefore dif-
ferent shifts of the clock resonance. Depending on the atomic
parameters, the cw shifts of those observables may greatly
differ in slopes, magnitude, or line shape. The shift amplitudes
are also strongly related to the values of the decay channels,
either balanced or unbalanced. For instance, while a large
clock-population inversion is produced for unbalanced decay
channels, a dispersive line shape is associated to its frequency
shift. The detection of the Raman coherence exhibits a larger
contrast, but it suffers usually from a systematic shift larger by
an order of magnitude than that associated to the population
detection. In the case of a very small decay rate for the Raman
coherence, destructive interferences strongly reduce the cw
frequency-shift sensitivity of the excited state compared to
others observables. Thus the choice of the observable is very

important for the proper operation of a three-level atomic or
molecular clock. Additional technical constraints are associ-
ated to the requested detection tools of the chosen observable.
For instance tracking the excited state population fraction by
monitoring spontaneous emission or light transmission repre-
sents a sort of nondemolition quantum measurement avoiding
the destructive readout associated to the lower-state clock
projection.

The present solution can be extended to the case of a train
of laser pulses having different frequencies, optical detunings,
and phase steps as in Refs. [78,79], in order to design more
elaborate combinations of optical transient nutations and free
evolutions and to explore a more efficient detection scheme
for very narrow transitions. For a treatment of the atom
or molecule motion in matter wave interferometry [80], for
instance, based on a pulsed EIT/Raman interaction with a
resonant excitation scheme and using stimulated photon recoils
to create a beam splitter, the Bloch’s set of Eq. (4) requires both
the introduction of the recoil shift into the laser detunings and
the recoil spread among different atomic momentum classes
produced by spontaneous emission yielding to a full set of
quantum coupled equations [81].
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APPENDIX A: GENERALIZED MULTIPHOTON
STEADY-STATE RATE SOLUTIONS

The line shape expressions of Eqs. (8) and (21) may be
recast in a different mathematical form using the generalized
multiphoton rate solution of Ref. [43], later employed in
Ref. [44] to establish conditions for the coherent population
trapping in the steady-state regime. That analysis is based
on three coupled equations for the Pii(Z), with i = 1,2,3,
occupation probabilities of the three levels, equations written
in the Laplace space of variable Z. This approach shown in
Fig. (16) allows a reduction in the size of the linearly coupled
equation system to be solved. The three-level populations are
obtained as follows:

ρii = limt→∞Pii(t) = limZ→0ZPii(Z). (A1)

From the steady-state solutions of Refs. [43,44], we obtain

ρ33 = w12w23 + w13(w12 + w23)

3w13w12 + �32W11 + �31W22 + 3w23W33
,

ρ22 = w12w13 + �31w12 + �32(w13 + w12) + w23W33

3w13w12 + �32W11 + �31W22 + 3w23W33
,

ρ11 = w12w13 + �32w12 + �31(w23 + w12) + w23W33

3w13w12 + �32W11 + �31W22 + 3w23W33
,

(A2)
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FIG. 16. (Color online) Definition of the wij transition rates
within the three-level � configuration.

where the wij transition rates between each pair of states are
defined in Fig. 16, and where

W11 = w13 + 2w12, W22 = w23 + 2w12,
(A3)

W33 = w13 + w12.

The expressions for the two-photon (w12 ∝ �2
1�

2
2) and one-

photon (w13 ∝ �2
1,w23 ∝ �2

2) transitions rates are

w12 = 2Re

{
�2

1�
2
2

ξ31ξ21ξ32 + �2
1ξ31 + �2

2ξ32

}
,

w13 = 2Re

⎧⎪⎪⎨⎪⎪⎩
�2

1

ξ31 + �2
2

ξ21+ �2
1

ξ32

⎫⎪⎪⎬⎪⎪⎭− w12, (A4)

w23 = 2Re

⎧⎪⎪⎨⎪⎪⎩
�2

2

ξ32 + �2
1

ξ21+ �2
2

ξ31

⎫⎪⎪⎬⎪⎪⎭− w12.

The detuning parameters ξij are complex numbers depending
on the system parameters

ξ31 = i�1 + γ1, ξ32 = −i�2 + γ2,
(A5)

ξ21 = i�21 + γc = i(�1 − �2) + γc.

The above expressions of the one- and two-photon rates point
out the light-shift contributions to the eigenfrequencies of the
three-level � system.

APPENDIX B: DARK-RESONANCE FRINGE
FREQUENCY SHIFT

A. First order expression of δωfr
33

Equation (35) can be recast in the following form:

ρ33(T ) = α33 + B33 cos(U ), (B1)

where

B33 = μ|ρ12|e−γcT , μ = α33β33, U = δrT − �33. (B2)

To establish the frequency shift, a track of the extremum of
Eq. (35) produced by a differentiation versus δr leads to the
following expression:

ρ
′
33 = α

′
33 +

√
B

′2
33 + B2

33U
′2sin(U + θ33), (B3)

with

θ33 = − arctan

(
B

′
33

B33U
′

)
, if T − �

′
33 < 0, (B4)

θ33 = − arctan

(
B

′
33

B33U
′

)
+ π, if T − �

′
33 > 0. (B5)

The ρ
′
33 derivative vanishes at

U + θ33 + η33 = 0, (B6)

where

η33 = arcsin

⎛⎝ α
′
33√

B
′2
33 + B2

33U
′2

⎞⎠ . (B7)

Rewriting the cancellation condition as

δrT − �33 + θ33 + η33 = 0, (B8)

we apply a first order expansion of Eq. (B8) into the δr Raman
detuning leading to the following δωfr

33 frequency shift:

δωfr
33 ≡ δr = �33(0) − θ33(0) − η33(0)

T − �
′
33(0) + θ

′
33(0) + η

′
33(0)

. (B9)

If we neglect θ33(0) and η33(0) terms, the discrepancy is,
respectively, +6% and −13%. If we neglect the θ

′
33(0) or the

η
′
33(0) term, the error is below +0.4%. Thus at the 1% level

of accuracy and at a common mode detuning that is small
compared to spontaneous emission rates, we can rewrite the
frequency-shift expression as

δωfr
33 ≈ �33(0) − θ33(0) − η33(0)

T − �
′
33(0)

. (B10)

B. Derivative terms

This subsection reports the functions appearing in Eq. (B10)
and required to determine the frequency-shift δωfr

33 as a
function of the common mode detuning �0 and the system
parameters. The additional functions may be obtained from the
first order derivatives of the μ, �33, |ρ12|, and α33 functions
calculated at δr = 0. In order to simplify the mathematics,
those functions are here reported for the case of a pure radiative
process γ1 = γ2,γ̃1 = γ̃2, and supposing �1 = �2 = �0:

�33(0) = −Arctan

[
γc�

γeff

]
, (B11)

μ
′
(0) = μ(0)

�0
(
γ̃1� + 3�2

1 − 3�2
2

)
γ̃1γ1

(
γ̃1� + 3�2

1 + 3�2
2

) , (B12)
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α
′
33(0) = 4�0�

2
2

[
�γ̃1 + �n

(
�γ̃1 + 6�2

1

)]
�γ̃1

[
�γ̃1 + 3

(
�2

1 + �2
2

)]2 + γ̃1
(
�2

2 − �2
1

)[
γ̃1

2� + 3γ̃1
(
�2

1 + �2
2

)]
�2

eff

×
{
�11S

11 + �22S
22 − γc�γ 22S

22 + γc�0
2�

2
1

�
(γ 11S

11 + γ 22S
22) + �n

(
�f − 8�0�

2
1

(
�2

eff − γ 2
c

)
4�2

0 + (1 + 2S)�2

)

+ 4�0S�
2
1(

1 + 2S + 4�2
0

�2

)2
�2

[
γ 2

22

(
2 + γ̃1�32

�2
2

)
− γ 2

11

(
2 + γ̃1�31

�2
1

)]

− 2�0γ
2
22�32S

�

��2
2

+ 4�0γ 22S
22�32(2�0�γc + �γeff)

�32
(
4�2

0 + �2
)+ 4��2

2

}
, (B13)

�
′
33(0) = −�

2
γc

(
2γ 2

1 γ̃1 − 2�2
0γc + γ1γ̃1γc

)+ γeff
[
2γ1γ̃1

(
γ1 + �

2
1γc

)− 2�2
0γeff + γ1γ̃1γeff

]
2γ 2

1 γ̃1
(
�

2
γ 2

c + γ 2
eff

) , (B14)

|ρ12|′(0) = |ρ12|(0)

(
�f

�2
eff

− 8�0
{
4�2

0γcS + �
[
γ 2

eff + 3γcγeffS − γ 2
c (1 + 2S)

]}
�

2
1(

1 + 2S + 4�2
0/�2

)2
�3�2

eff

+ �̄
(
γc − γeff + 2�

2
1γ

2
c /�

)(
�̄2γ 2

c + γ 2
eff

) + 8�0�
2
1

�2
(
1 + 2S + 4�2

0/�2
)). (B15)

These perturbative expressions were used to determine the δωfr
33 frequency shift plotted in Fig. 15 when �0 � �.
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