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I. INTRODUCTION

Schrödinger stated, as everyone knows, that “entanglement
is the characteristic trait of quantum mechanics” [1–3]. Many
years afterwards, entanglement, although still rather a puzzling
issue, is a subject of immense attention, mostly because interest
in its characterization has more than foundational significance,
it being a powerful resource for quantum information process-
ing that offers a host of possible technological applications [4].
A suggestive assertion [5,6] seemingly deserves repetition:
“The fundamental question in quantum entanglement theory
is which states are entangled and which are not.”

A. Abstract mathematical notions and entanglement

The geometric properties of entanglement are of paramount
importance (see [5]). In order to characterize it, many
mathematical strategies have been followed that range from
the application of algebraic tools to group theory, differential
geometry, convex geometry, numerical simulations, etc. (see
[5–7]). Without any doubt, the discovery of new mathe-
matical structures underlying the theoretical description of
entanglement has provided insightful answers to the problems
of its characterization, manipulation, and quantification, as
remarked in [7]. Underlying many of these approaches one
encounters once and again geometrical properties of the
quantum set of states and, in particular, those of the set of
separable states [8]. For examples of geometrical applications
to the study of entanglement see, for instance, [9–18], and
also [19] for an excellent overview.

Since characterizing the geometry of entanglement is
indeed a fundamental task for physicists, we propose here
to appeal to a very powerful abstract concept for guiding
entanglement-research, namely, the convex set of quantum
states (CSQS), which exhibits fascinating geometrical proper-
ties [19]. The CSQS not only deserves mathematical interest,
but also sheds light on the abstract and counterintuitive
properties of entanglement, the difference between entangled
and separable states being a conspicuous example [8]. In a
different vein, information needed to reformulate quantum
mechanics is fully contained in the geometrical properties of
the quantum set of states [20–22]. Summing up, geometrical
knowledge about these properties underlies most of the current

research lines on entanglement and opens the door to the
possibility of exploring nonlinear generalizations of quantum
mechanics. See also [23–29] for more examples of geometrical
applications. It seems odd to regard any piece of mathematics
as too abstract for entanglement physicists.

B. Our goal

This work pretends to exhibit unexplored geometrical
properties of separable states and also present a separa-
bility criterium (SC) closely linked to the Schlienz-Mahler
(SM) entanglement measure [30]. Our SC is formulated in
geometrical-convexity terms and is easily exportable to more
general environments via the so-called convex operational
approach to physics.

Now, the SM measure alluded to above constitutes a
significant development, being used as a basis not only for
developing new ideas but also to establish separability criteria
(see, for example, [31–35]). Their authors (SM) focus attention
on the difference between a given density matrix and the
product of its reduced states ρA ⊗ ρB . We will use a suitable
generalization of this difference in order to establish a link
between the convex sets of the compound system and its
subsystems, thereby developing a new entanglement criterium
based on the convex structure of the set of quantum states.
A similar derivation can be made by recourse to a quantum
logical approach [36]. Our admittedly abstract criterium can
still shed some light on the geometrical properties of separable
states.

In working with the convex structure of the quantum set of
states we will regard convex subsets of it as probability spaces
and take advantage of the fact that some of these subsets can be
fully recovered from the information contained on the available
states of the associated subsystems. Such is our leitmotif.
Further, we will advance the notion of informational invariance
and deal with convex invariant subsets. Our proposal is based
on the property that for every separable state there exists
a convex subset which contains it and is an informational
invariant. From such basic idea, our entanglement edifice will
be built up. It is endowed with the strength of possibly allowing
one to study and classify entanglement in higher dimensions,
and even to multipartite systems just because of its abstract
nature.
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Matters are organized as follows. After some preliminaries
(which, though not essential for the rest of the paper, may serve
as a conceptual and mathematical guide) in Sec. II, we review
in Sec. III some ideas of [30] together with their consequences.
In Sec. IV we show how to construct special functions that
allow us to develop a different separability criterium. In Sec. V
we discuss implications of this criterium and indicate how the
functions so developed can be used to generalize product states
to convex sets. In Sec. VI we condense some of our results in a
more conceptual fashion and, finally, draw some conclusions.

II. PRELIMINARIES

The mathematically savvy reader should skip this section.
Given a composite system formed of subsystems A and B, a
fundamental characteristic of a product state, i.e., a state of the
form

ρProd = ρA ⊗ ρB, (1)

is that information of the whole state may be reconstructed
from the simple sum of the information on the states of the sub-
systems. The “simple sum” is mathematically represented by
taking tensor products on the reduced states of the subsystems.
Thus the above statement may be expressed in mathematical
terms: taking partial traces and making tensor products leave
the state unchanged. But not every separable state has this
property; in general, a separable state will be of a nonproduct
kind, and the above informational relationship is no longer true.
No entangled state has this property. Thus only product states
are invariant in this sense. Product states are fully recovered
from the information contained in the states of the subsystems
(to be abbreviated as the “reobtained” property). We may call
this property the informational invariance.

We may also ask, and this is an unconventional viewpoint,
for the subsets of the convex set of states that exhibit the
recoverable property. An important example is the whole set
of separable states itself. It has—by definition—the property
of being fully recoverable by making tensor products of
the complete set of states of the subsystems and closing
them by mixing operation [8]. In this sense we recover the
informational invariance property referred to above. Given the
set of available states of two systems, a physical operation
is that of taking tensor products and then mix the pertinent
states. States obtained using these operations (together with
local unitary evolutions and classical communication) are
classically reproducible [8]. In this work we give a precise
mathematical formulation for set notions of the kind exem-
plified above, as well as a geometrical characterization of
them. The ensuing mathematical notions will reveal interesting
geometrical structures which, in turn, make room for a better
characterization of quantum states.

We will denote sets of states with the informational invari-
ance property as convex separable subsets (CSSs) and will
show that for every separable state there exists a convex subset
which contains it and is an informational invariant (strictly
included in the convex set of separable states). Such indeed is
the basis of our abstract separability criterium, to be advanced
below. Another important feature of our abstract construction
is the attainment of a purely geometrical description based
on the convex structure of the quantum set of states. The

associated geometric reformulation of entanglement may be
useful for generalizing it to more general scenarios, based on
convex sets [37–39].

A. Basic math definitions

We remind the reader that every subset A of a vector
space is contained within a smallest convex set called the
convex hull of A, namely the intersection of all convex
sets containing A. Thus it is possible to define a convex-
hull map Conv( ) which has three characteristic properties:
(i) extensivity A ⊆ Conv(A), (ii) nondecreasing nature A ⊆
B implies that Conv(A) ⊆ Conv(B), and (iii) idempotency
Conv[Conv(A)] = Conv(A). Also, an extremal point of a
convex set S in a real vector space is a point in S which
does not lie in any open line segment joining two points of S

(an extremal point would be a “corner” of S). An important
example for quantum mechanics is that of pure states: they are
the extreme points of the CSQS (more on this below).

A convex polytope may be defined as the convex hull of a
finite set of points (which are always bounded), or as a bounded
intersection of a finite set of half spaces. One often asserts that
the term “polytope” is (i) the general vocable of the sequence
“point, line segment, polygon, polyhedron,. . .,” or (ii) to be
regarded as a finite region of an n-dimensional space enclosed
by a finite number of hyperplanes. A d-dimensional polytope
may be specified as the set of solutions to a system of linear
inequalities

Mx � b, (2)

where M is a real s × d matrix, and b is a real s vector.
For quantum systems,P(H) will denote the set of all closed

subspaces of the pertinent Hilbert space H, which are in a one-
to-one correspondence with the projection operators. Because
of this one-to-one link, one usually employs the notions
of “closed subspace” and “projector” in an interchangeable
fashion. An important construct is A, the set of bounded
Hermitian operators on H, while the bounded operators on
H will be denoted by B(H). Pure quantum states may be
put in correspondence with the projective space CP(H) of
a complex Hilbert space H, which is the set of equivalence
classes of vectors v in H, with v �= 0, for the relation given
by v ∼ w when v = λw with λ a nonzero scalar. Here the
equivalence classes for ∼ are also called projective rays. A
trace class operator is a compact one for which a finite trace
may be defined (independently of the choice of basis).

We will appeal below to the set C containing all positive,
Hermitian, and trace-class (normalized to unity) operators in
B(H). A larger and important structure used below is the one
denoted by LC , the set of all convex subsets of C. This structure
is endowed with a lattice structure. Finally, the reader may
wish to recall in the Appendix some elementary set-theory
concepts used in the text. It is important to remark that we will
restrict to the finite dimensional case in the rest of this work.

III. SCHLIENZ-MAHLER ENTANGLEMENT MEASURE

For two quantum systems S1 and S2, if {|ϕ(1)
i 〉} − {|ϕ(2)

i 〉} are
the corresponding orthonormal basis of H1 −H2, respectively,
then the set {|ϕ(1)

i 〉 ⊗ |ϕ(2)
j 〉} constitutes an orthonormal basis
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FIG. 1. Geometric representation of the convex set of states.

for H1 ⊗ H2. A general (pure) state of the composite S1 − S2

system can be written as

ρ = |ψ〉〈ψ | (3)

with |ψ〉 any vector inH1 ⊗ H2. In the finite-dimensional case
mixtures are represented by positive, Hermitian, and trace-
1 operators (also called “density matrices”). The set of all
density matrixes forms a convex set (of states), which was
called C above, while the physical observables are represented
by elements of A, the vector space of Hermitian operators
acting on H. Formally we deal with the sets as follows:

Definition III.1. A := {A ∈ B(H) | A = A†}.
Definition III.2. C := {ρ ∈ A | tr(ρ) = 1, ρ � 0}, where

B(H) stands for the algebra of bounded operators in H. C is
a convex set inside the hyperplane {ρ ∈ A | tr(ρ) = 1} formed
by the intersection of this hyperplane with the cone of positive
matrices (see Fig. 1). Separable states are defined [8,19] as
those states of C which can be written as a convex combination
of product states:

ρSep =
∑
i,j

λijρ
(1)
i ⊗ ρ

(2)
j , (4)

where ρ
(1)
i ∈ C1, and ρ

(2)
j ∈ C2,

∑
i,j λij = 1, and λij � 0. We

denote the set of separable states by S(H).
In set parlance, the collective of entangled states becomes

precisely defined by

E(H) := C \ S(H), (5)

where “\” stands for set-theoretical difference.
As the dimension of the Hilbert space grows, most of the

states in C are nonseparable [40]. The estimation of the volume
of S(H) is of great interest (see—among others— [27], [40],
and [41]). The entanglement measure advanced in [30] is based
on the Fano decomposition [42] (see also [19], p. 349). For
ρ ∈ C, if the dimension of the Hilbert space is d, one expresses
it in terms of {σi}, the d2 − 1 generators of SU(d) (the
group of special unitary matrices acting on H). For composite

bipartite systems, if d = NK , then we have the following
decomposition [in terms of the basis SU(N ) ⊗ SU(K)]:

ρ = 1

NK

⎛
⎝1NK +

N2−1∑
i=1

τA
i σi ⊗ 1K +

K2−1∑
j=1

τB
j 1N ⊗ σj

+
N2−1∑
i=1

K2−1∑
j=1

βijσi ⊗ σj

⎞
⎠ , (6)

where τA
i and τB

j are Bloch vectors such that

ρA = 1

N

⎛
⎝1N +

N2−1∑
i=1

τA
i σi

⎞
⎠ , (7)

with an analogous form for ρB . ρA and ρB are the reduced den-
sity matrices of subsystems A and B, respectively. Schlienz-
Mahler (SM) note that the term

∑N2−1
i=1

∑K2−1
j=1 βijσi ⊗ σj is

related to correlations and proceed to construct an entangle-
ment measure using it. SM define then the tensor

Mij = βij − τA
i τB

j , (8)

that will play a leading role in their considerations. They use
tr(MM†) as a measure of entanglement (up to normalization),
and this measure conveys essentially the same information as

‖ρ − ρA ⊗ ρB‖2
HS , (9)

where ‖ · · · ‖HS is the Hilbert-Schmidt norm,

‖A‖2
HS = tr(AA†), (10)

for any A ∈ B(H). Measure (9) does the following:
(i) vanishes for any product state, (ii) is positive elsewhere,
(iii) is maximal for any pure state with vanishing Bloch vectors
τA
i and τB

j [Eq. (7)], and (iv) is invariant under local unitary
transformations.

Such properties allow for the development of other entan-
glement measures and entanglement criteria (see, for example,
[35]). The distance induced by the trace norm between two
states represents how well two states can be distinguished via
measurement [43]. It can be shown [34] that

3∑
i,j=1

C2(σ̂ A
i ,σ̂ B

j

) = 4tr[(ρ − ρA ⊗ ρB )2], (11)

with

C
(
σA

i ,σB
j

) = 〈
σA

i ⊗ σB
j

〉 − 〈
σA

i ⊗ 1B
〉〈1A ⊗ σB

j 〉, (12)

making Eq. (9) easy to implement because it can be mea-
sured via single rates and coincidence rates. More generally,
functions of the form

W (ρ) = ‖F (ρ − ρA ⊗ ρB)‖, (13)

have been studied in some detail (see, for example, [32–35]).
‖ · · · ‖ denotes a norm on the space of density matrices and
F : C −→ C is a useful function for the study of entanglement.
Thus entanglement measures (9) become special cases of
Eq. (13). The conditions imposed on F and ‖ · · · ‖ are such that
W satisfies a similar set of conditions than the ones imposed
on the SM measure listed above.
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In the following section we show that entanglement
measures of the form (13) are closely linked to a particular
separability criterium that generalizes the map which assigns
ρA ⊗ ρB to any composite density matrix ρ.

IV. A DIFFERENT SEPARABILITY CRITERIUM

A. Preliminary matters

A glance at the Appendix might be useful at this stage.
In the previous section we saw how to construct a family of
entanglement measures via the following mapping:

Definition IV.1.

	 : C −→ C,

ρ �→ ρA ⊗ ρB.

Product states ρ = ρA ⊗ ρB satisfy

	(ρA ⊗ ρB) = ρA ⊗ ρB, (14)

and they are the only states which satisfy Eq. (14). Our leading
idea now is that of generalizing the above considerations to
convex subsets of C.

1. First notion generalization

In order to do so let us first study maps onto the set of states
of the subsystems C1 and C2. We start by defining special
“mappings” using partial traces

tri : C −→ Cj
(15)

ρ �→ tri(ρ),

from which we can construct the induced maps τi on LC , the
set of all convex subsets of C (a similar definition for LCi

,
i = 1,2), via the image of any subset C ⊆ C under tri ,

τi : LC −→ LCi

C �→ trj (C), (16)

where for i = 1 we take the partial trace with j = 2 and vice
versa. Thus we can define the product map

τ : LC −→ LC1 × LC2 ,
(17)

C �→ (τ1(C),τ2(C)),

which generalizes partial traces to convex subsets of C.
In order to complete the desired generalization, let us now

define for convex subsets a new set operation C1⊗̃C2 that
might be regarded as the analogous of the tensor product
(see Fig. 2). We are thus, loosely speaking, dealing with

LC

LC1 LC2LC1  X LC2

τ τ2τ1 Λ

FIG. 2. The different maps between LC1 , LC2 , LC1 × LC2 , and LC .

“quasitensor set compositions” and accordingly introduce the
set of the definition that follows:

Definition IV.2. Given convex subsets C1 ⊆ C1 and C2 ⊆ C2

we consider the set constructed according to

C1⊗̃C2 := {ρ1 ⊗ ρ2 | ρ1 ∈ C1,ρ2 ∈ C2}. (18)

The symbol “⊗̃” has a tilde in order to avoid confusing it
with the usual product of convex sets. Using this, we define
the map:

Definition IV.3.


 : LC1 × LC2 −→ LC,

(C1,C2) �→ Conv(C1 ⊗ C2),

where Conv(· · · ) stands for convex hull of a given set.
Applying 
 to the particular case of the quantum sets of states
of the subsystems (C1 and C2), one sees that Definitions IV.2
and IV.3 entail


(C1,C2) = Conv(C1⊗̃C2) (19)

and so, this is nothing but


(C1,C2) = S(H) (20)

because S(H) is by definition (for finite dimension) the convex
hull of the set of all product states (which equals C1⊗̃C2). Thus
the map 
 gives a precise mathematical expression for the
operation of making tensor products and mixing mentioned in
Sec. II. Additionally, if ρ = ρ1 ⊗ ρ2, with ρ1 ∈ C1 and ρ2 ∈
C2, then {ρ} = 
({ρ1},{ρ2}), with {ρ1} ∈ LC1 , {ρ2} ∈ LC2 , and
{ρ} ∈ LC . We can demonstrate the following as well:

Proposition IV.4. Let ρ ∈ S(H). Then, there exist C ∈ LC ,
C1 ∈ LC1 , and C2 ∈ LC2 such that ρ ∈ C = 
(C1,C2).

Proof. If ρ ∈ S(H), then ρ = ∑
ij λijρ

1
i ⊗ ρ2

j , with∑
ij λij = 1 and λij � 0. Consider now the convex sets

C1 = Conv
({

ρ1
1 ,ρ1

2 , . . . ,ρ1
k

})
,

(21)
C2 = Conv

({
ρ2

1 ,ρ2
2 , . . . ,ρ2

l

})
.

We define

C := 
(C1,C2) = Conv(C1 ⊗ C2). (22)

Clearly, the set {ρ1
i ⊗ ρ2

j } ⊆ C1 ⊗ C2, and then ρ ∈ C. �

2. Second notion generalization

The next notion to be tackled needs perhaps a perusal of
Sec. II A. We pass now to the generalization to convex subsets
of the map 	 in Definition IV.1. This is the function 
 ◦ τ (the
composition of τ with 
). For the special case of a convex set
formed by only one “matrix” (point) {ρ} we have


 ◦ τ ({ρ}) = {ρA ⊗ ρB}, (23)

which is completely equivalent to 	 and thus satisfies Eq. (14).
In what follows we will need a proposition taken from [44]. It
reads as follows:

Proposition IV.5. Let S be a subset of a linear space L. Then
x ∈ Conv(S) if x is contained in a finite-dimensional polytope
� whose extremal points belong to S.

This is all we need to formulate now our proposal in the
next subsection.
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B. Our separability proposal

We will here “traduce” the idea of nonseparability as a
special kind of set-theory relationship.

Proposition IV.6. If ρ is a separable state, then there exists a
convex set (indeed, a polytope), Sρ ⊆ S(H) such that ρ ∈ Sρ

and 
 ◦ τ (Sρ) = Sρ . More generally, for a convex set C ⊆
S(H), there exists a convex set SC ⊆ S(H) such that 
 ◦
τ (SC) = SC . For a product state, we can choose Sρ = {ρ}. For
any convex set C ⊆ C which has at least one nonseparable
state it is true that there is no convex set S such that C ⊆ S

and 
 ◦ τ (S) = S.
Proof. We have already seen above that if ρ is a product

state, then 
 ◦ τ ({ρ}) = {ρ} and thus Sρ = {ρ}. If ρ is a
general separable state, then there exists ρ1

k ∈ C1, ρ2
k ∈ C2, and

αk � 0,
∑N

k=1 αk = 1 such that ρ = ∑N
k=1 αkρ

1
k ⊗ ρ2

k . Now
consider the convex set (a polytope)

M =
⎧⎨
⎩σ ∈ C | σ =

N∑
i,j=1

λijρ
1
i ⊗ ρ2

j ,

λij � 0,

N∑
i,j=1

λij = 1

⎫⎬
⎭ (24)

M contains all convex combinations of products of the
elements which appear in the decomposition of ρ. It should be
clear that ρ ∈ M . Let us compute 
 ◦ τ (M), with τ (M) =
(τ1(M); τ2(M)). An element of τ1(M) is of the form (for
σ ∈ M)

tr1(σ ) =
N∑

i=1

⎛
⎝ N∑

j=1

λij

⎞
⎠ ρ1

i =
N∑

i=1

μiρ
1
i , (25)

with μi = ∑N
j=1 λij . In analogous fashion we show that

an element of τ2(M) is of the form
∑N

j=1 νjρ
2
j with νi =∑N

i=1 λi,j . Note that
∑N

j=1 μj = ∑N
j=1 νj = 1. In order to

compute 
(τ1(M); τ2(M)) we must build the convex hull of
the set

τ1(M)⊗̃τ2(M) = {σ1 ⊗ σ2|σ1 ∈ τ1(M),σ2 ∈ τ2(M)}

=
⎧⎨
⎩

N∑
i,j=1

μiνjρ
1
i ⊗ ρ2

j

⎫⎬
⎭ . (26)

and we conclude that


 ◦ τ (M) = Conv

⎛
⎝

⎧⎨
⎩

N∑
i,j=1

μiνjρ
1
i ⊗ ρ2

j

⎫⎬
⎭

⎞
⎠ . (27)

Let us prove that 
 ◦ τ (M) = M . If σ ∈ 
 ◦ τ (M), by looking
at Eq. (27) it is apparent that σ belongs to M . On the other hand,
if σ ∈ M , then σ = ∑N

i,j=1 λi,jρ
1
i ⊗ ρ2

j (convex combination).
Note that 
 ◦ τ (M) is a convex set because trace operators
preserve convexity and 
 is a convex hull. On the other
hand, 
 ◦ τ ({ρ1

i ⊗ ρ2
j }) = {ρ1

i ⊗ ρ2
j }, and, via the definition

of τ1(M)⊗̃τ2(M), we have that {ρ1
i ⊗ ρ2

j } ∈ 
 ◦ τ (M) for all
i,j . Thus, by the convexity of 
 ◦ τ (M), σ ∈ 
 ◦ τ (M), which
concludes the proof that 
 ◦ τ (M) = M (and that M is a
polytope). Consequently, M is the desired Sρ ⊆ S(H).

If a given subset C ⊆ S(H) then all ρ ∈ C are separable.
S(H) is, by definition, a convex set. Let us see that it is invariant
under 
 ◦ τ . First of all, we know that S(H) is formed by all
possible convex combinations of products of the form ρ1 ⊗ ρ2,
with ρ1 ∈ C1 and ρ2 ∈ C2. But for each one of these tensor
products, 
 ◦ τ ({ρ1 ⊗ ρ2}) = {ρ1 ⊗ ρ2}, and it is easy to see
that they belong to 
 ◦ τ (S(H)). Since this is a convex set, all
its convex combinations belong to it. Thus we conclude that


 ◦ τ (S(H)) = S(H). (28)

This shows that for every C ⊆ S(H) we can find an invariant
convex subset which is S(H) itself.

Note here that there are cases in which the set C ⊆ S(H)
may be a proper subset (this is the case, for example, of
product states) or a polytope when we consider separable but
nonproduct states. We remember at this point the structural
concept described by a definition of Sec. II A. Consider C ∈ LC
such that there exists a given ρ ∈ C with ρ nonseparable. Now,

 ◦ τ (S) ⊆ S(H) for all S ∈ LC . Then, it could never happen
that there exists S ∈ LC such that C ⊆ S and 
 ◦ τ (S) = S. �

From the last proposition we derive our separability cri-
terium in terms of properties of convex sets that are polytopes:

Proposition IV.7. ρ ∈ S(H) if and only if there exists a
polytope Sρ such that ρ ∈ Sρ and 
 ◦ τ (Sρ) = Sρ .

In Fig. 3 we display a geometric representation of the
polytope Sρ for a separable state. We see that the function 
 ◦ τ

is sensible to entanglement if applied to convex subsets of C.
Looking at Eq. (23), it is also clear that 
 ◦ τ is a generalization
of 	 to convex subsets of C. With this extension, Proposition
IV.7 asserts the following:

A state is separable if and only if it belongs to an invariant
polytope of 
 ◦ τ . Separability entails membership in a special
kind of convex set.

Clearly, starting from Proposition IV.7 we can derive the
family of functions of the form (13). Why? Because if we
restrict the function 
 ◦ τ to convex sets formed by only one
density matrix we obtain Eq. (23) entailing that, if one knows
that 
 ◦ τ is sensible to entanglement via Proposition IV.7,
it is natural to regard the norm of the difference between ρ

Cone of positive 
Hermitian matrices

Entangled states

Separable states

C  

S(H)
ρ

Sρ
Invariant 
polytope

FIG. 3. Geometric representation of the invariant polytope which
satisfies 
 ◦ τ (Sρ) = Sρ and ρ ∈ Sρ . ρ is separable if and only if
there exists such a polytope.
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and ρA ⊗ ρB as an entanglement measure’s candidate. Our
set-theory approach becomes then an a posteriori argument
that in a sense “explains” the SM measure.

Let it be understood that we are restricting 
 ◦ τ to one-
element sets {ρ}. With some abuse of notation (which consists
of avoiding the use of the keys {· · · }) we write


 ◦ τ (ρ) := ρA ⊗ ρB = 	(ρ). (29)

V. GENERALIZED PRODUCT STATES

We delve here into an interesting analogy. Denote the set of
product states by S0(H). Restricting Eq. (29) to product states
we have

ρ ∈ S0(H) ⇔ 
 ◦ τ (ρ) = ρ [⇔ 	(ρ) = ρ]. (30)

From the discussion of the last section it is clear that our
criterium is analogous to Eq. (30), being a generalization of it
to convex subsets of C because we have

ρ ∈ S(H) ⇔ 
 ◦ τ (Sρ) = Sρ, (31)

with ρ ∈ Sρ . Accordingly, we are in some sense generalizing
a property of product states to any arbitrary separable state.
As 
 ◦ τ generally transforms any convex set into a different
convex subset of S(H), Eq. (31) constitutes a geometrical
property, characteristic of separable states. Thus we advance
here a “convex set” generalization of the notion of product
state.

Definition V.1. A convex subset C ⊆ C such that 
 ◦
τ (C) = C is called a convex separable subset (CSS) of C.

Due to the arguments given above, product states are limit
cases of convex separable subsets (they constitute the special
case when the CSS has only one point). An interesting open
problem would then be that of looking for convex separable
subsets of the function 
 ◦ τ . Looking at Eq. (28), we find that
S(H) is a CSS (and indeed, the largest one). In this sense, CSS
may be considered as small “copies” of S(H).

In general, convex subsets of C may be considered as
probability spaces by themselves, because they are closed
under convex combination of states. Thus CSS are probability
spaces inside S(H), which are left invariant under the action
of 
 ◦ τ (and so, they have the same invariance property).
The fact that S(H) is a CSS also tells us that the convex
separable subsets can be more general sets and not necessarily
just polytopes [because S(H) is not a polytope]. Indeed, we
may ask for ways to characterize the set of all convex separable
subsets [which we denote by �(C)] by looking at the following
property of 	. If ρ is an arbitrary density matrix, then

	2(ρ) = 	(	(ρ)) = 	(ρA ⊗ ρB)

= ρA ⊗ ρB = 	(ρ)

(32)

or, in other words,

	2 = 	. (33)

For 
 ◦ τ and an arbitrary convex subset C one has


 ◦ τ (C) = 
(τ1(C),τ2(C))
(34)

= Conv(τ1(C)⊗̃τ2(C)).

If we apply 
 ◦ τ again, we will find (with arguments
expounded in the preceding section, see Proposition IV.6) that
Conv(τ1(C)⊗̃τ2(C)) is a CSS. This, in turn, entails that

(
 ◦ τ )2 = 
 ◦ τ. (35)

Consequently, our generalization of 	 satisfies an equality
equivalent to Eq. (33). This fact can be gainfully used to
characterize �(C) as

�(C) = {
 ◦ τ (C) | C ⊆ C}, (36)

because, if C is a CSS, it is equal to 
 ◦ τ (C), and thus we
face one inclusion. The other inclusion comes from the fact
that, for an arbitrary C ⊆ C, Eq. (35) implies that 
 ◦ τ (C)
belongs to �(C). Equation (36) simply asserts that �(C) equals
the image of LC under 
 ◦ τ .

Now we see that while in Eq. (13), the “core” was the
function ρ − 
 ◦ τ (ρ), now we have a new core,


 ◦ τ (C) \ C, (37)

where “\” stands for set-theoretical difference, and we can try
to measure the difference between C and its variation under

 ◦ τ in different ways. We will have a CSS if C and 
 ◦ τ (C)
coincide.

A possibility for measuring how different are C and 
 ◦
τ (C) would entail looking for a generalization of, for example,
the relative entropy, which for a density matrix reads

S(ρ‖σ ) = −tr[ρ ln(σ )] − S(ρ), (38)

where S(ρ) := −tr[ρ ln(ρ)]. Remark that the relative entropy
concept has been used as a unifying approach for quantum and
classical correlations [45]. When applied to convex subsets C

and C ′ of C, we are now conjecturing that

S(C‖C ′) := inf
ρ∈C,σ∈C ′

S(ρ‖σ ), (39)

and use this conjecture to define

F̃ (C) := S(
 ◦ τ (C)‖C). (40)

F̃ (C) clearly vanishes when 
 ◦ τ (C) = C, and in general,
when 
 ◦ τ (C) ∩ C �= ∅. This last condition implies (in
particular) that there are separable states which belong to C.
We are free to use any divergence (or distance) instead of the
relative entropy for the purpose of measuring the difference
between C and 
 ◦ τ (C) by making a similar construction.

Let us now study the segment joining ρ and 
 ◦ τ (ρ). This
segment is given by

Lρ = {xρ + (1 − x)
 ◦ τ (ρ) | x ∈ [0,1]}. (41)

If ρ is separable, using (i) the polytope Sρ ⊆ S(H) of
Proposition IV.6, (ii) that ρ and 
 ◦ τ (ρ) belong to Sρ , and
(iii) that Sρ is convex, we have the following:

Proposition V.2. Lρ ⊆ Sρ ⊆ S(H).
Coming back again to the demonstration of Proposition

IV.6, and considering that the decomposition of a separable
state as a convex combination of product states is not unique,
we conclude that the invariant polytope is not unique. However,
from the above proposition it is obvious that

Lρ ⊆ ∩{C | 
 ◦ τ (C) = C and ρ ∈ C}. (42)
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If there exists at least one nonseparable state in the segment
joining ρ and 
 ◦ τ (ρ), then ρ cannot be a separable state.
This is a consequence of the convexity of S(H), but also
follows from Eq. (42). Is this fact an advantage for deciding
on the separability of a given state? Indeed it is, if we use it in
the following way. Given ρ, we parametrize the line segment
between ρ and ρA ⊗ ρB as in Proposition V.2. Afterwards,
we apply this to all the points in the segment. If one finds
a nonseparable state in the segment we conclude that ρ is
nonseparable.

We consider now the action of the group of unitary local
transformations of the form U = U 1 ⊗ U 2 on the invariant
polytope, where U 1,2 ∈ UK1,2

. If ρ = ∑
i piρ

A
i ⊗ ρB

i is a
separable state, then this action will be given by

UρU † =
∑

i

piU
1ρA

i U 1† ⊗ U 2ρB
i U 2†. (43)

We can prove the following:
Proposition V.3. If ρ ∈ S(H) and Pρ is an invariant polytope

(as the one in the demonstration of Proposition IV.6), then
UPρU

† is an invariant polytope for UρU †.
Proof. If ρ = ∑

i piρ
A
i ⊗ ρB

i , then an invariant polytope is
given by

Pρ =
⎧⎨
⎩

∑
i,j

λijρ
A
i ⊗ ρB

j |
∑
i,j

λij = 1 , λij � 0

⎫⎬
⎭ . (44)

Because of the linearity of U , it is easy to see that Pρ is
transformed into

UPρU
† =

⎧⎨
⎩

∑
i,j

λijU
1ρA

i U 2† ⊗ U 2ρB
j U 2† |

∑
i,j

λij

= 1 , λij � 0

⎫⎬
⎭ , (45)

and as ρ is transformed as Eq. (43), then UPρU
† is an invariant

polytope. �
The last proposition shows how invariant polytopes are

transformed under unitary local transformations. As S(H)
is invariant under these transformations, we see that they
transform invariant polytopes into other invariant polytopes.
Notice that Proposition V.3 implies (for invariant polytopes)
that under an arbitrary local transformation U


 ◦ τ (UPρU
†) = UPρU

† = U [
 ◦ τ (Pρ)]U †, (46)

which reveals an interesting symmetry property of 
 ◦ τ .

VI. DISCUSSION

A. A conceptual analogy

For clarity’s sake we condense here in a more conceptual
fashion some of the technical implications of the foregoing
sections via appeal to a comparison with the separability notion
for pure states. Its characterization in the bipartite is simple.
ρ = |ψ〉〈ψ | will be separable if and only if it is a product of
pure reduced states, i.e., if and only if there exist |φ2〉 ∈ H1

and |φ2〉 ∈ H2 such that |ψ〉 = |φ1〉 ⊗ |φ2〉. In mathematical
terms [take care not to be confused by Eq. (30)],

|ψ〉〈ψ | ∈ S(H) ⇔ 
 ◦ τ (|ψ〉〈ψ |) = |ψ〉〈ψ |,
(47)

[ ⇔ 	(|ψ〉〈ψ |) = |ψ〉〈ψ |].
It is well known that the case of mixed states is much more
complicated than that of pure ones. But we may still ask if
it is possible to develop a similar line of reasoning for mixed
states. The existence of such a construction would allow for
a more transparent view of the entanglement of mixed states
[and thus for all states, generalizing Eq. (47)]. The results
and constructions presented in previous sections of this paper
indicate that a structure similar to that of Eq. (47) can indeed
be constructed.

This fact makes for a remarkable analogy, unknown in
the literature, whose explanation is as follows. We showed
in Sec. V that the function 
 ◦ τ (introduced in Sec. IV)
is a suitable extension to convex subsets of the function 	

(look at Definition IV.1). We also introduced the physical-
informational notion of the CSS, an informational invariant
convex subset, i.e., a set whose information can be recovered
using the sets of its corresponding reduced states. In this sense,
they are informational invariants. As shown in Sec. V, they
are a suitable generalization of the notion of the product state
to all convex subsets of C.

Thus, as happens in the pure state case, we have developed a
generalization which asserts that an arbitrary state is separable
if and only if it is an element of an informational invariant
that we have called the CSS. Our math constructions and
entanglement criteria (linked to the SM measure) highlight
the nontrivial result that the structure found for the pure states
case can be properly generalized to arbitrary states, a clear
physical simplification.

But the analogy and generalization do not stop here. We can
develop still a new analogy and generalization, not contained in
the preceding sections. It is well known that another equivalent
condition for separability of pure states may be given using
von Neuman’s entropy, which reads ρ = |ψ〉〈ψ | is separable
if and only if the von Neuman’s entropy of its reduced states
attains its minimum possible value (zero). In mathematical
terms,

|ψ〉〈ψ | ∈ S(H) ⇔ SvN (ρA) = 0
(48)

and SvN (ρB) = 0,

where ρA and ρB are the reduced states of |ψ〉〈ψ | and SvN (·)
is the well-known von Neuman’s entropy functional, defined
by

SvN = −tr[ρln(ρ)]. (49)

Can we concoct something similar for mixed states?
Caratheodory’s theorem (for finite dimensions) grants that any
separable state admits a finite convex decomposition in terms
of pure product states. In mathematical terms, this means that
there exist pure states |ϕi〉〈ϕi | ∈ C1, |φi〉〈φi | ∈ C2 and a finite
collection of convex coefficients λi such that

ρ ∈ S(H) ⇔
∑

i

λi(|ϕi〉〈ϕi |) ⊗ (|φi〉〈φi |). (50)
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It is easy to show that this decomposition combined with our
separability criteria in Proposition IV.7 (look at the demon-
stration of it) implies that there exists a polytope, call it Ppure,
whose vertices are just products of pure states. This implies that
if we now compute the infimum of the von Neuman entropy
evaluated on the elements of Ppure we will obtain its minimum
value, because as it is well known, von Neuman entropy attains
its minimum value for such states. In other words,

inf{SvN (ρ) | ρ ∈ Ppure} = min{SvN (ρ) | ρ ∈ Ppure} = 0.

(51)

Thus the analogy advanced in this section is more than a
simple coincidence or mathematical artifice, because in accord
with Eq. (48), we now have that for any state (pure or mixed),

ρ ∈ S(H) ⇔ ∃Ppure, such that
(52)

min{SvN (ρ) | ρ ∈ Ppure} = 0,

where Ppure represents a polytope whose vertices are products
of pure states. Thus we can sum up some of the results of this
paper by just using the following words:

Proposition VI.1. ρ is a separable state ⇔ it belongs to a
CSS (i.e., a convex subset which generalizes product states and
is invariant under the generalization of the function defined by
the equation in Definition IV.1) ⇔ it belongs to a CSS on
which the von Neuman’s entropy reaches its minimum value.

The analogy with the pure case is not only clear and
suggestive. It may also provide some geometric flavor to
the separability problem. It is indeed a generalization which
includes the pure case as a special one. Interestingly enough,
as shown in Sec. IV, it is strongly linked to the SM measure.

B. Final conclusions

We have advanced here an abstract criterium of separability
and showed that it is closely connected to the extant entangle-
ment measures. We ascertained also that the function 
 ◦ τ is
a generalization of the map ρ �→ ρA ⊗ ρB to convex subsets
of C. Indeed, we showed that 
 ◦ τ generalizes to convex sets
properties of invariant product states of the map ρA ⊗ ρB .

Denoting by “CSS” the invariant subsets of C, a procedure
was delineated that generalizes product states to more general
convex sets. This could be useful for the study of new

separability criteria based on more general convex subsets
of C and disposes of the obligation of concentrating attention
just on points (density matrices). By itself, the criterium of
Proposition IV.7 also sheds some light onto aspects of the
geometric properties of separable states.
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APPENDIX: NOTATIONS FOR BASIC MATH CONCEPTS
USED IN THE TEXT

(1) A function is surjective (onto) if every possible
image is mapped to by at least one argument. In other
words, every element in the codomain has a nonempty
preimage. Equivalently, a function is surjective if its im-
age is equal to its codomain. A surjective function is a
surjection.

(2) Let S be a vector space over the real numbers, or, more
generally, some ordered field. A set C in S is said to be convex
if, for all x and y in C and all t in the interval [0,1], the
point (1 − t)x + ty is in C. That is, every point on the line
segment connecting x and y belongs to C. This entails that
any convex set in a real or complex topological vector space
is path connected.

(3) Every subset Q of a vector space is contained within a
smallest convex set (called the convex hull of Q), namely the
intersection of all convex sets containing Q,

(4) Suppose that K is a field (for example, the real numbers)
and V is a vector space over K . If v1, . . . ,vn are vectors
and a1, . . . ,an are scalars, then the linear combination of
those vectors with those scalars as coefficients is, of course,∑n

i=1 ai vi . By restricting the coefficients used in linear
combinations, one can define the related concepts of affine
combination, conical combination, and convex combination,
together with the associated notions of sets closed under these
operations. If

∑n
i=1 ai = 1, we have an affine combination,

its span being an affine subspace while the model space is an
hyperplane. If ai � 0, we have instead a conical combination,
a convex cone, and a quadrant, respectively. Finally, if ai � 0
plus

∑n
i=1 ai = 1 we have now a convex combination, a convex

set, and a simplex, respectively.
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