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Reducing sequencing complexity in dynamical quantum error suppression by Walsh modulation
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We study dynamical error suppression from the perspective of reducing sequencing complexity, with an eye
toward facilitating the development of efficient semiautonomous quantum-coherent systems. To this end, we
focus on digital sequences where all interpulse time periods are integer multiples of a minimum clock period and
compatibility with digital classical control circuitry is intrinsic. We use so-called Walsh functions as a unifying
mathematical framework; the Walsh functions are an orthonormal set of basis functions which may be associated
directly with the control propagator for a digital modulation scheme. Using this insight, we characterize the suite
of resulting Walsh dynamical decoupling sequences—including both familiar and novel control sequences—and
identify the number of periodic square-wave (Rademacher) functions required to generate the associated Walsh
function as the key determinant of the error-suppressing features. We also show how Walsh modulation may
be employed for the protection of certain nontrivial logic gates. Based on these insights, we identify Walsh
modulation as a digital-efficient approach for physical-layer error suppression.
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I. INTRODUCTION

Dynamical quantum error correction has been proposed as
a strategy by which arbitrarily accurate evolutions may, in
principle, be implemented in a large class of open quantum
systems. This approach involves application of open-loop
control protocols at the physical level [1–16]; through time-
dependent modulation of the system’s dynamics, the effects
of an environment which fluctuates sufficiently slowly are
coherently averaged out. Dynamical decoupling (DD) is an
experimentally validated [17–33] subclass of these protocols
specifically tailored to the task of suppressing decoherence
during the implementation of the identity operator—resulting
in improved quantum storage.

DD takes physical inspiration from the spin echo in
nuclear magnetic resonance (NMR) [34–36] and relies on
deterministic (periodic [1] or aperiodic [8,10]), or even
random [37,38], modulation of the idle system via pulsed
control. A proliferation of analytical formalisms and new DD
schemes has appeared in the literature, in particular, for the
paradigmatic case of a single qubit exposed to pure (classical
and/or quantum) dephasing [1,10,20,23,39–44]. While an
understanding of the performance of these sequences may
be unified by the application of a noise filtering framework
[7,16,45–47], each sequence brings particular requirements for
the necessary pulse timings, often incorporating nonintuitive
analytical expressions or numerical search to define pulse
locations in a sequence. As a result, the generation of DD pulse
sequences at the laboratory bench is usually accomplished
using specially programed microcontrollers or a PC under user
control.

*michael.biercuk@sydney.edu.au

In this work, we address the problem of control complexity
in dynamical error correction, introducing a set of digital
DD protocols optimized for hardware compatibility and
minimization of sequencing complexity. These protocols are
based on the Walsh functions [48,49], which take binary values
and are composed of products of square waves, forming
an orthonormal basis similar to the sines and cosines. The
Walsh functions benefit from compact notation and a uniform
mathematical basis for sequence construction. We describe
the error-suppressing properties of Walsh modulation and
Walsh DD (WDD) and introduce a quantitative metric for the
sequencing complexity, r , the number of Rademacher square-
wave functions which must be multiplied (or added mod2) in
hardware to generate the control propagator for that sequence.
The Rademacher functions in turn can be trivially generated
via elementary digital circuits synchronous with a distributed
clock signal. Thus, by construction, Walsh modulation is
highly compatible with simple digital sequencing circuitry and
digital clocking, as may be needed in large or semiautonomous
systems. This approach therefore provides efficient error
suppression, important for real-world implementations beyond
simple demonstration experiments.

The remainder of the manuscript is organized as follows.
After the introduction of the relevant system and control
setting in Sec. II, Sec. III is devoted to describing the
mathematical formulation and key features of the Walsh
functions and their natural use in defining WDD schemes.
In this section, our main results are established, including
an exact relationship between the sequencing complexity r

and the order of decoherence suppression in the perturbative
limit. Here, we also describe the entire taxonomy of WDD
sequences, discussing relationships between WDD and well-
known sequences, as well as characterizing new DD sequences
with digital timing. In Sec. IV, we discuss extensions of
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the WDD formalism beyond the simplest setting of a single
qubit exposed to classical dephasing noise. In particular, we
show how two-axis generalizations of WDD naturally recover
and expand existing concatenated DD schemes and discuss
how Walsh modulation allows enhancement of the fidelity
of nontrivial gate operations, examining a recent trapped-ion
experiment as an example [50]. We follow this with an
analysis of the explicit benefits of WDD over other optimized
DD approaches in Sec. V, then close with a brief summary
and outlook. A proof of WDD error suppression properties
from Rademacher functions is included in the Appendix for
completeness.

II. PHYSICAL SETTING

DD is applicable to a variety of non-Markovian error
models (including arbitrary many-qubit systems interacting
with quantum environments [2,51]) and can address nonideal
pulses or continuous control scenarios (as in Eulerian DD [5]).
Our starting point here, however, is the simplest, yet practically
important, case of a single qubit subject to classical phase noise
and controlled with ideal π pulses. In this setting, the qubit is
affected by an undesired noise Hamiltonian,

Hnoise = β(t)σz, (1)

where β(t) is a stochastic process and σi denote the Pauli
matrices for i = x,y,z. We assume that the system can be
controlled by application of idealized sequences of qubit
rotations, each corresponding to a π rotation around the x axis,
i.e., to the unitary operator σx . Each sequence is characterized
by the pulse timings {tj }sj=1, where t0 = 0 and ts+1 = τ denote
the initial (preparation) and final (readout) times, respectively.
We use δj = tj /τ to denote the “normalized pulse locations”
and the “pulse pattern” p = {δj }sj=1, to distinguish among
various sequences with the same running time [52].

During the evolution, the π pulses implement the control
propagator

Uc(t) = σ [y(t)+1]/2
x ,

where y(t) takes values ±1 and switches instantaneously
between these values at times corresponding to application of
the π pulses. For brevity, we refer to y(t) as the “sequence
propagator” in what follows. The “filter function” Fp(ωτ )
associated with the pulse pattern p = {δj } and sequence
duration τ is defined in terms of ỹ(ωτ ), the Fourier transform
of the sequence propagator [40,46]:

Fp(ωτ ) = ω2|ỹ(ωτ )|2 (2)

=
∣∣∣∣∣

s∑
j=0

(−1)j (eiδj ωτ − eiδj+1ωτ )

∣∣∣∣∣
2

. (3)

Here ω is the angular frequency, with units of radians per
second. The case of free evolution (also referred to as free
induction decay in NMR terminology) is formally included by
letting s = 0.

The presence of the noise Hamiltonian (1) implies a
coherence loss at the readout due to phase randomization,
resulting from the ensemble average with respect to noise
realizations. The action of DD is to break the system’s

evolution into a sequence of interactions with the environment
with alternating signs, resulting in significantly reduced phase
accumulation at the end of the sequence [1,2]. This may be
effectively represented as the expected value of the convolution
of the stochastic noise term with the sequence propagator
[10,16,35,40,46]. In particular, the filter function provides
a compact exact expression for the coherence decay under
Gaussian noise; if the system is prepared in a superposition
of eigenstates of σz, its coherence W ≡ |〈σ+〉(τ )| decays as
e−χp(τ ), where

χp(τ ) = 1

π

∫ ∞

0

Sβ(ω)

ω2
Fp(ωτ )dω, (4)

and Sβ(ω) is the power spectrum of the noise β(t). While
nominally the integration range in Eq. (4) is infinite, in practice
Sβ(ω), and thus the “spectral measure” λ(ω) ≡ Sβ(ω)/πω2

[44] is significant only for frequencies lower than an ultraviolet
cutoff frequency ωc. The filter function can also be employed
for a qubit coupled to a purely dephasing quantum bosonic
environment with a similar expression for decoherence under
DD sequences [1,10]. The effect of continuous control can
also be approximated within the filter function formalism as
long as terms that are of second order and higher in Hnoise are
ignored [7,11] (see also Sec. IV).

The filter function enters the integrand in Eq. (4) as a
multiplicative factor of λ(ω), therefore, as long as Fp(ωτ ) is
small for ω < ωc, the coherence loss will also remain small,
as desired. Determining the actual value of χp(τ ) requires
a detailed knowledge of Sβ(ω), yet we may compare the
coherence associated with various DD sequences (including
free evolution) by directly comparing their corresponding filter
functions over the interval [0,ωcτ ]. For all sequences the
filter function vanishes at 0, however, we may differentiate
the low-frequency behaviors (rates of growth) among various
timing patterns. Let the low-frequency behavior of the filter
function be given by

Fp(ωτ ) ∝ (ωτ )2(α+1), (5)

corresponding to

ỹ(ωτ ) ∝ (ωτ )α.

In the language of filter design [16], Eq. (5), defines a
“high-pass filter” with a “roll-off” of 6(α + 1) dB/octave.
As long as the cutoff frequency ωc is sufficiently low, the
low-frequency τ dependence of the filter function translates
to τ 2(α+1). For example, the filter function for free evolution
F{0,1}(ωτ ) = 2 sin2(ωτ/2) corresponds to α = 0, while high-
order DD sequences have larger positive α’s. The frequency
range over which the filter function suppresses noise is given by
the “bandwidth” �p, roughly defined as the highest frequency
below which Fp(ωτ ) � 1, a value approximately commensu-
rate with the value ωF1 introduced in previous analyses of the
filter function [16]. Large values of the bandwidth �p improve
the high-frequency robustness of a particular DD sequence and
allow it to be used with comparatively lower pulse rates.

062323-2



REDUCING SEQUENCING COMPLEXITY IN DYNAMICAL . . . PHYSICAL REVIEW A 84, 062323 (2011)

III. DYNAMICAL DECOUPLING
BY DIGITAL MODULATION

Many previously developed schemes for DD rely on access
to sequences defined in continuous time, which is a good ap-
proximation for most benchtop experiments conducted today.
In the long term, however, where large systems with error
rates far below the fault-tolerance threshold are required, these
approximations will cease to provide an accurate estimate of
residual error rates. Previous work has shown that the benefits
of optimized sequences such as Uhrig DD (UDD) become
diminished in such cases where we expect the use of digital
control and discretized time [16]. We are thus motivated to find
digital modulation schemes that are intrinsically compatible
both with discrete time and with the digital control hardware
that will inevitably be employed in sequencing.

We define two relevant time scales for such a modulation
scheme: the total running time τ and a minimum interval
(minimum switching time [44]) given by

τmin = τ/2m,

where 2m is the largest possible number of free-evolution
periods in an applied sequence, with m an integer. In practice,
τmin is bounded from below by technological constraints such
as modulation rates or hardware clock speeds. In the case of
digital modulation, all interpulse periods must be defined as
integer multiples of τmin. This in turn places constraints on
the allowed values of δj in a sequence. Irrational values of
fractional pulse locations have intrinsic conflict with digital
modulation, thus mandating alternate approaches.

In order to overcome this challenge, we have identified the
Walsh functions as a mathematical basis that is compatible
with digital sequencing hardware. In this section we discuss
the Walsh functions and the WDD sequences derived from
them.

A. Walsh functions and WDD

The Walsh functions are a family of binary valued (±1)
piecewise-constant functions on the [0,1] interval [53]. They
found a place in engineering in the 1960s, when they started
being applied to problems ranging from communications and
signal analysis to image processing and noise filtering [48,49].
The Walsh functions come in a variety of labeling conventions,
including the Hadamard, “sequency,” and Paley (or dyadic).
In particular, the sequency ordering counts the number of
“switchings” of the Walsh functions. In this paper, however,
we focus on the Paley ordering, given in terms of the so-called
Rademacher functions [54], which are defined as

Rj (x) = sgn[sin(2jπx)], j � 0,

and correspond to periodic digital switchings between ±1 over
[0,1] with the “rate” 2j . The Walsh function of Paley order n,
Wn(x), is then defined as [55]

Wn(x) =
m∏

j=1

Rj (x)bj , x ∈ [0,1], (6)

where we denote (bmbm−1 . . . b1)2 the binary representation of
n, that is, n = bm2m−1 + bm−12m−2 + · · · + b120 (here bm = 1
by definition). The actual number, r , of Rademacher functions
used in constructing a Walsh function is the Hamming weight
(number of non-zero binary digits) of n. For illustration, the
Walsh functions {Wn(x)}32

n=1 in the Paley ordering are shown
in Fig. 1(a). The Walsh functions form an orthonormal basis
over [0,1], that is,

∫ 1

0
Wn(x)Wm(x)dx = δmn, (7)

 Time Bin  Normalized Pulse Location

 W
al

sh
 In

de
x,

 n

FIG. 1. (Color online) Walsh functions listed by Paley ordering. (a) The first 32 Walsh functions. (b) The normalized pulse locations δj

corresponding to the digital transition points of Walsh functions. Sequences WDD2r−1 are highlighted in both panels (thick lines, left; open
symbols, right).
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where δmn is the Kronecker δ. Any integrable function f (x)
defined over [0,1] has a convergent Walsh-Fourier expansion
similar to the usual Fourier series:

f (x) =
∞∑

n=0

anWn(x), an =
∫ 1

0
f (x)Wn(x)dx. (8)

This allows us to expand any sequence propagator in the
Walsh basis. We note in passing that the Walsh basis is
technically overcomplete, while the Rademacher functions
form an orthonormal system [54].

We define the Walsh DD (WDD) sequences directly based
on the Walsh functions: that is, for a given running time τ , the
sequence WDDn is determined by the control propagator

y(t) = Wn(t/τ ), t ∈ [0,τ ]. (9)

Equivalently, we may specify the normalized pulse locations
for WDDn as the switching locations of Wn(x), whereas
the constant pieces of the Walsh functions correspond to
interpulse delays. By construction, the number of pulses used
in WDDn is given by the sequency s associated with Wn.
More explicitly, if, in binary notation, n = (bmbm−1 · · · b1)2

and s = (gmgm−1 · · · g1)2, then gi = bi + bi+1 mod 2, known
as a Gray code.

Both the total running time τ and the minimum switching
time τmin = τ/2m impose constraints on the accessible WDD
sequences. First, we must have m = O(log2 n), the number
of digits in the binary representation of n for a given WDD
sequence. Once these parameters are fixed, there is a maximum
value n ≈ O(τ/τmin) for which WDDn is viable. Reversing
this argument, by focusing on a finite set of WDDn and a
fixed running time, we automatically accommodate a finite
minimum switching time.

Figure 1(b) depicts the pulse locations plotted as δj for
a normalized sequence duration τ = 1 extracted from the
W32(t/τ ). Some familiar DD sequences are immediately
identified: WDD1 is the spin-echo sequence and WDD3

is the two-pulse Carr-Purcell-Meiboom-Gill (CPMG) pulse
sequence. We return to these correspondences in Sec. III C.

B. Error suppression properties

A primary aim in the construction of DD sequences
is to increase the order of error suppression, resulting in
better cancellation of noise at sufficiently low frequencies
[10,40,46,56,57]. In order to characterize the error suppression
capabilities of WDD sequences, we begin by noting that the
Walsh functions, constructed as products of r Rademacher
functions [Eq. (6)], satisfy the following important equality
(see Appendix for an explicit proof):

∫ 1

0

[
Rj1 (x) · · · Rjr

(x)
]
xkdx ≡ 0, k = 0, . . . ,r − 1, (10)

where the {jk} indices label the locations of the r nonzero
digits in the binary representation of n. Equivalently, the
monomials xk have no Walsh-Fourier component an as long
as n has a Hamming weight of at least k. Let us focus on the
Fourier transform of the propagator function for WDDn. Using

Eqs. (2) and (9), we have

ỹ(ωτ ) = τ

∫ 1

0
Wn(x)eiωτxdx,

= τ

∫ 1

0
Rj1 (x) · · · Rjr

(x)
∞∑

k=r

(iωτx)k

k!
dx,

where the powers of x below r have been eliminated by using
Eq. (10). Together with Eq. (2), the above equation implies
that

FWDDn
(ωτ ) ∝ (ωτ )2(r+1). (11)

Thus, WDDn suppresses errors up to order r . Expressed
differently, all WDDn derived from Walsh functions composed
of r Rademacher functions exhibit the same order of error
suppression. The relationship between r , the Hamming weight
of the Walsh order n, and the order of error suppression is one
of the main results of this work.

The error-suppressing properties of WDDn can also be
directly established upon obtaining a compact expression for
the corresponding filter function (in analogy to Ref. [40]),
which is possible by using Eq. (3) in combination with a
change of variable eiωτ/2m 	→ z. For n = (bm · · · b1)2, the filter
function for WDDn is given by

FWDDn
(ωτ ) =

∣∣∣∣∣∣(1 − z)
m∏

j=1

(1 + (−1)bj z2m−j

)

∣∣∣∣∣∣
2

= 4m+1 sin2(ωτmin/2)
∏

{j |bj =1}
sin2(2m−j−1ωτmin)

×
∏

{j |bj =0}
cos2(2m−j−1ωτmin), (12)

where the product chooses sin or cos factors based on the j th
binary digit bj of n. Interestingly, the trigonometric factors
appearing in Eq. (12) have complementary implications for
the filter function and, ultimately, for error suppression. The
smallest common period among these terms is at ωτmin =
2π . Each sine term is linear in ωτ at ω = 0 and each
factor of sin2(2m−j−1ωτmin) subsequently contributes a factor
proportional to (ωτ )2 to the filter function. These combine to
give FWDDn

(ωτ ) ∝ (ωτ )2(r+1), consistent with Eq. (11). Also,
all sine terms have zeros at ωτmin = kπ for integer k, which
correspond to zeros at ω = 2mkπ/τ . In contrast, they all carry
large maxima occurring at ω = O(τ−1

min). The cosine terms, on
the other hand, have no effect on the filter function around
ω = 0 but drop to 0 at somewhat higher frequencies (at which
the sine terms might be significantly large). This suggests that
they can reduce the spikes of the sine terms and contribute to
increasing the bandwidth �p.

With the insights above, we find that sequences
WDD2r−1have the lowest value of sequency (pulse number)
for a given order of error suppression (among the Walsh
family). This is because the binary representation of a digital
integer n = 2r − 1 requires all bi = 1. Figure 2 depicts the
filter functions (in a log-log scale) associated with WDD2r−1

for r = 1, . . . ,5 (as identified in Fig. 1), where we illustrate
how the low-frequency roll-off is increased by increasing r .
We compare the filter functions for these sequences to those
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Time, τ  (1 / ωC) Angular Frequency, ω  ( 1 / τ )

 Angular Frequency, ω  ( 1 / τ )

FIG. 2. (Color online) Error suppression properties of WDD sequences. (a) Filter functions calculated for sequences derived from W2r−1(t/τ )
and corresponding to CDDr (WDD1 at top to WDD31 at bottom), with fixed total sequence duration τ . The horizontal axis corresponds to
angular frequency in units of 1/τ . For increasing values of r (top to bottom), the number of fundamental Rademacher functions that are needed
to produce the sequence increases, and the order of error suppression, demonstrated graphically by the low-frequency roll-off of the filter
function, increases by 6 dB/octave. Dashed lines correspond to the UDD sequence providing the same order of error suppression. (b) Filter
functions for all WDD sequences with n < 32 and r = 4. UDD4 is represented by a dashed line, and WDD15 by a solid line. Dashed lines
correspond, left to right, to WDD23, WDD27, WDD29, and WDD30. (c) Decoupling error as a function of time in units of the inverse cutoff
frequency, 1/ωc in Sβ (ω) ∝ αω−2 exp [−(ω/ωc)2]. Here, α = 5 × 1016, and frequency ranges are set as in Ref. [58]. Sequences are the same
as in (a) and increase in n from left to right.

of UDD, known to provide s-order error suppression given s

pulses [10,40].
In Fig. 2(b) we plot the filter functions for all WDD

sequences with n < 32 and r = 4. We see that all have the
same low-frequency roll-off, validating the assertion that the
order of error suppression in a WDD sequence is determined
by r .

The actual coherence error, 1 − W , associated with a given
DD sequence can be calculated by using the relevant power
spectrum Sβ(ω) for the noise in Eq. (4). The presence of spikes
in the filter function at ω = O(τ−1

min) (not shown) implies that
we can only expect error suppression as long as ωcτmin < 1.
We can guarantee this by shrinking τmin through use of
more frequent decoupling pulses, as far as the technological
limitations on pulse rates permit this (see Ref. [44] for a
discussion of the lower bounds on error suppression in DD
at constrained minimum switching time).

Figure 2(c) depicts the performance of WDD2r−1 sequences
for a specific illustrative case where a 1/ω2 noise power
spectral density S(ω) persists up to a Gaussian high-frequency
cutoff ωc (given in units of inverse time interval 1/τ ). We have
scaled the noise to have a value comparable to that derived
from the low-frequency behavior of nuclear spin diffusion in
singlet-triplet qubits [58]. We observe, as expected, that not
only does the calculated 1/e coherence time increase with
n, but also the slope of the error accumulation at short times
increases with n. This is a manifestation of the increasing order

of error suppression with r described above and shows the
utility of high-order WDD sequences for quantum computing
applications where minimizing the error probability is of
utmost importance [59].

C. The Walsh sequence suite

It is clear from the previous discussion that a number
of familiar integer-based DD sequences can be identified as
special instances of WDD sequences. These sequences are
described next for reference and are summarized in Table
I. For example, periodic DD involves repetitive application
of uniformly spaced π pulses [1]. A Walsh function with
n = 2k composed of a single Rademacher function Rk+1(x),

TABLE I. Familiar sequences among WDDn. �x� denotes the
ceiling function, that is, the smallest integer not less than x. The
exact expression for the number of pulses in CDD was obtained with
the aid of Ref. [61]. In this table, k is an integer, and r again represents
the Hamming weight of n.

No. of pulses Roll-off
n WDDn (sequency) (dB/octave)

2k PDD 2k+1 − 1 6 × (1 + 1)
2k−1 + 2k CPMG 2k 6 × (2 + 1)
2r − 1 CDD � 2r+1−2

3 � 6 × (r + 1)
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(r = 1), corresponds to a PDD with 2k+1 − 1 pulses. CPMG
sequences are modifications of PDD in which the first and last
free-evolution periods are half the duration of the interpulse
period. We refer to a CPMG sequence with n pulses as CPMGn.
A Walsh function of the form Rk(x)Rk−1(x), with k � 2,
corresponds to r = 2 and CPMG2k .

We also observe that the sequences defined by WDD2r−1,
identified in the previous section, are in fact concatenated DD
(CDD) sequences. The latter are known to allow arbitrary
orders of error suppression in DD for arbitrary noise models
by recursive embedding of a sequence in a “larger” one [8,60].
As long as a first-order DD sequence can be implemented in
a system, concatenating it with itself results in higher orders
of cancellation, at the expenses of increased sequence length.
For a purely dephasing environment as examined here, the
natural first-order DD sequence (the “base” for concatenation)
is the well-known spin-echo sequence, characterized by two
equal intervals separated by a π pulse; each higher level of
concatenation then corresponds to embedding the spin echo
in a larger spin echo [43,46]. Using induction, we can show
that each concatenation level corresponds to multiplying the
sequence propagator by a Rademacher function. This results in
a product of all Rademacher functions up to order r , thus b1 =
· · · = br = 1, which corresponds to WDD2r−1. In summary,

CDDr ↔ R1(x) · · · Rr (x) ↔ WDD2r−1. (13)

Again, the WDD sequences that correspond to CDD have a
propagator corresponding to a product of Rademachers of all
orders from 1 to r , giving r-order error suppression with the
lowest value of sequency, s.

The WDD family significantly enlarges the sampling set of
DD sequences relative to the much more constrained CDD. If
the minimum switching time is constrained to τmin = τ/2m,
then all the 2m WDDn sequences with n = 0, . . . ,2m − 1
are viable. In contrast, the subset of viable CDD sequences
for the same fixed total time contains only m sequences, an
exponentially smaller number. (However, it remains an even
smaller subset of all possible digital DD sequences, which
contains 22m

sequences. This potential advantage is discussed
in Sec. V.)

WDD thus forms a unifying mathematical framework for
the generation of digital DD sequences, including many famil-
iar sequences and a large variety of novel sequences. Using in-
sights derived above, we may fully characterize the structure of
arbitrary Walsh functions and, therefore, arbitrary WDD mod-
ulations. By the structure of the Walsh functions themselves,
all WDD sequences can be produced recursively from free evo-
lution by combining the following two intuitive operations:

(a) Repetition, where the sequence propagator y(t) is
repeated identically to produce a longer sequence:

y(t) 	→
{
y(t/2), t < τ/2,

y((t − τ )/2), τ/2 < t < τ.

(b) Concatenation, where the sequence propagator y(t)
is repeated with the sign reversed, still yielding a longer
sequence:

y(t) 	→
{
y(t/2), t < τ/2,

−y((t − τ )/2), τ/2 < t < τ.

The actual implementation of repetition and concatenation
may involve inserting a π pulse in the middle of the
formed sequence to account for the required sign change
at t = τ/2. In general, WDD2n is constructed by repeating
WDDn, whereas WDD2n+1 is constructed by concatenating
WDDn. For instance, WDD30 = (WDD15)(WDD15) (repe-
tition) and WDD31 = (WDD15)π (WDD15) (concatenation),
but note the reversal of the role of the middle pulse
in WDD14 = (WDD7)π (WDD7) (repetition) or WDD15 =
(WDD7)(WDD7) (concatenation).

Each concatenation increases the roll-off slope by one order
(by contributing an additional sine factor in FWDDn

), whereas
each repetition does not improve the roll-off (a cosine factor)
and may instead increase the bandwidth of the filter, �p. This
produces a diversity of design features that can be used to
improve coherence times (e.g., the 1/e decay time denoted T2)
in addition to coherence values (or, equivalently, error rates)
by choosing the appropriate Walsh basis function.

IV. BEYOND CLASSICAL PHASE NOISE AND
QUANTUM MEMORY

In this section, we consider different extensions of the idea
of Walsh modulation to control settings more general than
examined thus far.

A. Quantum phase noise

Decoherence in a quantum system is most generically
described by the interactions with a quantum environment. We
focus first, as before, on a single qubit (see below for multiqubit
extensions). In the absence of control and an internal system
Hamiltonian, evolution under the noise Hamiltonian of Eq. (1)
is then replaced by evolution under an open-system dephasing
Hamiltonian of the form

H = HSB + HB, HSB = σz ⊗ Bz,

where physically HSB represents the interaction term, and
Bz and HB are generic operators acting on the environment,
respectively. Typically, HSB causes entanglement between the
system and the environment, which eventually results in loss
of phase coherence and mixed qubit states.

The WDD sequences can be applied to the above general
quantum dephasing scenario. Under a sequence of π pulses,
the evolution is identically generated by a piecewise-constant
Hamiltonian ±σz ⊗ Bz + HB . Here, the filter function for-
malism is not exactly applicable in general. An important
exception, as noted, is provided by the case of a bosonic
bath [1,10,43], and results accurate up to the second order
in HSB have been established in Ref. [62] for an arbitrary
quantum dephasing environment under periodic DD (see also
[63] for exact results on more general classical noise models).
Nonetheless, a description based on an effective Hamiltonian
and the Magnus expansion can be used to approximate the
evolution of the system provided that ‖Bz‖ (operator norm
of Bz) is sufficiently small. Making note of the concatenated
and repetitive structure of WDD and following Ref. [60], we
can show that the norm of the effective Hamiltonian for the
evolution under WDDn is given by

‖HWDDn
‖ = O[‖Bz‖τ r max(‖Bz‖,‖HB‖)r ], (14)
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where the strength of the bare interaction ‖Bz‖ is scaled
by a factor proportional to τ r , with r denoting, as before,
the Hamming weight of n. This implies that the expansion
of the propagator for the evolution in τ starts with the
power τ r+1. The fidelity loss can be defined as a distance
between the ideal state (original state in DD) and the actual
propagated state of the system at the end of the evolution
(after tracing out the environmental degrees of freedom) [64].
In the limit of small actions τHWDDn

, the fidelity loss scales
with ‖τHWDDn

‖2, or equivalently, the qubit fidelity loss scales
at worst with τ 2(r+1). While this result mirrors the error
cancellation properties of WDD in the filter function formalism
[Eq. (11)], we emphasize that asymptotic relationships such
as Eq. (14) must be understood as scaling laws that may hide
(possibly large) r-dependent prefactors. This fact highlights
the importance of Eq. (4) as an exact expression for Gaussian
phase noise for which a counterpart does not exist in a general
quantum-dephasing setting.

B. Generic decoherence

As already mentioned, DD can be applied to a large class
of open quantum systems: a control propagator that regularly
traverses the elements of the so-called DD group, in principle,
allows suppression of arbitrary non-Markovian decoherence,
including multiqubit noise in many-qubit systems [2]. When
the noise operators are decomposed into algebraically indepen-
dent components, one may reconstruct the generic decoupling
procedure through concatenation as well [60]. While the
group-theoretic DD design is applicable only to first-order
error suppression, concatenation allows us to combine DD
sequences for different noise axes to produce a high order and
generic decoupling procedure. This idea is the basis of a variety
of recent DD schemes, such as quadratic DD (QDD) [65] and
its multiqubit variants [51,66].

The WDD sequences can be similarly concatenated along
different axes to allow suppression of general noise. For
example, consider a generalized classical noise Hamiltonian
acting on a qubit:

Hnoise = βx(t)σx + βy(t)σy + βz(t)σz,

where βi(t) are stochastic processes. Applying a WDD
sequence with σx pulses effectively removes the βy(t)σy +
βz(t)σz noise component while it leaves βx(t)σx intact.
Embedding this sequence itself in a WDD sequence with σy

(or σz) pulses removes the remaining βx(t)σx component as
well. We can generalize this idea to define generic Walsh DD
(GWDD) for a qubit. The control propagator Uc(t) for the
sequence GWDDn is given by

Uc(t) = σ [x(t)+1]/2
x σ [y(t)+1]/2

y ,

where

x(t) = Rj1 (t)Rj3 (t) · · · ,Rj2r−1 (t),

y(t) = Rj2 (t)Rj4 (t) · · · Rj2r
(t),

and as in the single-axis case, the {jk} indices label the
locations of nonzero digits in the binary representation of n.
In practice, the final sequence corresponds to applying σx or
σy pulses at rates given by the the corresponding Rademacher

functions, taking into account the algebraic simplifications
such as σxσx = I or σxσy = σz and ignoring all the resulting
± signs. We note that for n = 22r − 1, GWDDn reproduces
the generic CDD sequence of level r described in Ref. [8],
while repetitions of GWDDn include truncated periodic
CDD protocols (so-called PCDD) such as investigated in
Refs. [67,68]. Again, the Walsh functions form a unifying
mathematical basis for sequence construction, reproducing
familiar decoupling protocols.

For a multiqubit system where qubits interact with the
environment linearly [2,12], GWDD is also applicable, except
that each unitary pulse operation has to be replaced with a
collective version that affects all qubits simultaneously and
equally. We remark in passing that the idea of Rademacher
products (concatenation, in particular) can in principle be ex-
tended to generic finite-dimensional control systems provided
that the role of σx and σy is replaced with the generators of the
corresponding DD group [69].

C. Nonidentity operations

Our focus so far has been on error suppression while
preserving arbitrary quantum states, hence effectively im-
plementing the identity operator with higher fidelity than
free evolution for a given duration. The periodic properties
of the filter functions associated with WDD sequences also
allow us to achieve suppression of frequency noise while
effecting nontrivial (nonidentity) quantum gates, close in spirit
to dynamically corrected gates (DCGs) [12–14].

The starting point in DCG constructions is the separation of
the action of a gate on a noisy system into ideal and error parts,
both represented as unitary operators. Concretely, let Q and
UQ denote the ideal unitary gate that is to be implemented and
the actual unitary propagator corresponding to the evolution
during the control that aims to implement Q, respectively. We
can write

UQ = Q exp(−iEQ),

where EQ is the error per gate (or error action) associated
with Q and the goal is to minimize EQ for any desired Q. The
basic intuition is to use the separation of the ideal gate action
and the error to mix and match error parts so that altogether
the errors cancel out in a perturbative manner.

DCGs have algebraic connections to DD sequences but
they remove the need for instantaneous ideal pulses and are
used to implement nonidentity unitary actions on the system.
The general theory for constructing DCGs to higher orders for
arbitrary systems appears in Ref. [14], but for our purpose we
focus on an example that applies to a recent experiment on
correcting errors due to laser frequency jitter in a multiqubit
entangling gate mediated by laser light [50].

Consider first the spin-echo sequence Xf Xf , where X

denotes an ideal σx gate and f a free evolution interval. The
latter can be interpreted as a primitive implementation of the
identity gate I . Thus, we may write the spin echo as

I (1) = XI (0)XI (0), (15)

where I (0) refers to a zeroth-order approximation for the
identity action through free evolution, and I (1) refers instead
to an improved approximation of the identity action with a
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higher order of error suppression. By recursively applying
Eq. (15), or by repeating an improved identity gate, we obtain
the WDD sequences corresponding to progressively better and
longer approximations of the identity gate. Consider next a
specialized scenario in which the X gates are still ideal but,
instead of free evolution, we apply a target gate Q with an
associated error EQ. We also assume the following commu-
tation relations: [Q,X] = 0 and [Q,EQ] = 0. We begin with
the sequence XQXQ, whose actual propagator is given by

XQ exp(−iEQ)XQ exp(−iEQ)

= Q2X exp(−iEQ)X exp(−iEQ), (16)

where X exp(−iEQ)X exp(−iEQ) can be interpreted as
a spin-echo sequence for free evolution with an effective
Hamiltonian EQ. Thus, if EQ consists of terms that
anticommute with X (i.e. XEQX = −EQ), we expect that
the sequence XQXQ suppresses error in a manner similar
to XIXI , except that the resulting action will now be the
nontrivial gate Q2. Furthermore, we may concatenate or
repeat this sequence to obtain higher-order suppression of
errors at the expense of a longer gate sequence.

The model which we just described for a simple high-order
DCG applies to the experimental setup in Ref. [50], in which a
spin-motional entangling gate is applied to trapped ion qubits.
The fundamental concept of this gate is that by state selectively
exciting the harmonic-oscillator motional modes of ions in a
shared trapping potential, it is possible to entangle the internal
spins of the qubits. The actual unitary propagator associated
with a single gate is given by

UQ(t) = eSN (α(t)a†−α∗(t)a)Q, (17)

where Q is a geometric phase gate, described above, that
entangles the qubits. This gate relies on disentangling the spin
and motion at the end of the gate by detuning the driving
force from a motional resonance by δ and setting the gate time
t = j2π/δ, where j is a positive integer. In this case the drive
and motion desynchronize at t , and one precisely implements
Q. Residual spin-motional entanglement corresponds to an
error and we thus define the error per gate as

−iEQ = SN [α(t)a† − α∗(t)a].

The coefficient α(t) is the time dependent displacement due
to the laser detuning δ, that is, α(t) = (�/2)

∫ t

0 ds exp(−iδs).
Such error may be due, in practice, to the fact that δ typically
carries an additive frequency error � for which we have

α(t) = �

2

∫ t

0
ds exp[−i(δ + �)s].

In this case we find that the harmonic oscillator does not
produce a “closed loop” in phase space, thus yielding an error
due to residual spin-motion entanglement.

Our goal is to achieve an improved approximation of the
entangling gate in Eq. (17) by cancellation of α(t) to a high
order at the end of the evolution. Besides varying the detuning
δ, the evolution of α(t) can also be controlled by flipping
the phase of the laser-mediated optical dipole force used to
drive the ion motion (a nearly instantaneous action), which
effectively corresponds to switching the sign of the interaction.
Consider the evolution of the system punctuated by such phase

flips occurring at the times p = {tj }nj=1, with t0 = 0 and tn+1 =
τ to denote the total gate/evolution duration. The expression
for α(τ ) is then given by

α(τ ) = �

2

n∑
j=0

(−1)j
∫ tj+1

tj

ds exp[−i(δ + �)s],

and we note that∫ tj+1

tj

ds exp[−i(δ + �)s] = −i
e−i(δ+�)tj − e−i(δ+�)tj+1

δ + �
.

In reality, the mismatch � may follow a probability distribution
P (�) and we can write the expected value of |α(τ )|2 as

|α(τ )|2 = �2

4

∫ ∞

−∞

Fp((δ + �)τ )
(δ + �)2

P (�)d�, (18)

where we have used the expression for the filter function in
Eqs. (2) and (3). This expression resembles the equation for the
decoherence error associated with a DD sequence applied at
the same times, except that the argument of the filter function
in the integrand is shifted by a value δ, and instead of the
power spectrum Sβ(ω), the error probability density P (�) is
used. To cancel the effects of � we require the filter function
to have a zero of high multiplicity at ω = δ.

Such a zero may be realized in the filter function of the
WDD sequence; from Sec. III B, we recall that the filter
function F (ωτ ) has a natural period (translational invariance;
see Fig. 3) at τmin/2π , corresponding to τ/(2m+1π ). This
produces the requisite zeros in the filter function at fixed values
of δ, a feature intrinsic to the formulation of WDD.

In order to gain a quantitative understanding, let us calculate
the Fourier transform of the sequence propagator,

ỹ(ωτ ) =
∫ τ

0
dtWn(t/τ )ei(δ+�)t/τ . (19)

We extract the filter function’s dependence on � near δ by use
of an equality that is similar to Eq. (10),

∫ 1

0
dx

∏
{k}

Rk(x)ei2r+1πx

r∑
i=0

aix
i = 0, (20)

where the set {k} has r elements in it, k � 1, and max(k) � r .
A sketch of the proof of Eq. (20) appears in the Appendix. If
the frequency δ/2π = 2k/τ , then Eq. (19) can be written as

ỹ(ωτ ) = τ

∫ 1

0
dt ′

∏
{k}

R(k,t ′)ei2r+1πt ′
∞∑

m=r+1

(i�′t ′)m

m!
, (21)

where we have defined t ′ = t/τ and �′ = �τ . This expression
indicates that ỹ(ωτ ) scales like �r+1 in the vicinity of δ. Thus,
the slope of the roll-off as a function of detuning is set by r ,
giving increasing robustness to fluctuations in detuning from
δ. For fixed r , the bandwidth of the “notch” increases with
sequency, as does the equivalent �p. These properties are
expressed in Fig. 3.

While the filter function is translationally symmetric, we
see that the form of filter performance around δ is not the
same as it is around ω = 0, due to the factor of ω−2 appearing
in Eq. (2). An expansion as a function of � therefore yields
improved performance relative to the zero-frequency roll-off
when accounting for this factor.
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FIG. 3. (Color online) Noise suppression at fixed frequency.
(a) Filter function as a function of frequency ω/2π in units of 1/τ on
a semilog scale for various WDD sequences, resulting in a notch at
frequency δ where noise is suppressed. The notch bandwidth increases
with sequency and the order of error suppression about δ increases
with r . Inset: The same filter functions plotted on a linear scale.
(b) Filter function normalized by ω2 for WDD15 and WDD31. The
solid thick line (bottom trace) shows WDD15 at δ/2π = 25, where
the horizontal axis represents detuning from δ. Here the order of error
suppression as a function of detuning has increased by one order and
is comparable to that for WDD31 near zero frequency. See text for
details.

It thus follows that, for the specific case treated here, by
flipping the laser phase at times corresponding to the WDDn,
the error in the detuning δ can be suppressed up to order
r + 1, where, as before, r is the Hamming weight of n. This
general approach was studied experimentally in Ref. [50].
Interestingly, this sequence can be interpreted as a high-order
DCG where the primitive gates Q are defined as τmin-long
periods of evolution at detuning δ = 2π/τmin and the X gates
are implemented by phase flips. We can interpret all the
resulting DCGs generated by WDD sequences as repetitions
and concatenations of the basic sequence XQXQ, resulting in
a corrected gate Q2m

, which is the desired entangling operation
but has an error that scales with �2(r+1).

V. BENEFITS OF WDD OVER OTHER
OPTIMIZED APPROACHES

Interest in the DD community has recently focused on
optimized pulse sequences producing high-order suppression
of noise through either analytical approaches (e.g., UDD [10]),
numerical optimization (e.g., locally optimized DD (LODD)
[20], optimized noise filtration DD (OFDD) [42], bandwidth
adapted DD (BADD) [44]), or combinations of optimization

and concatenation strategies (e.g., concatenated UDD (CUDD)
[70], QDD [65], nested UDD (NUDD) [51]). These sequences
bring many benefits in terms of resource-efficient DD, as they
generally optimize error suppression against pulse number.

Studies have shown, however, that the extraordinary bene-
fits provided by optimized sequences are largely suppressed in
the presence of realistic constraints such as imperfect control
pulses [21,71,72], digital clocking [16], and timing limitations
[43]. Moreover, noise suppression benefits have been shown to
be minimal for Sβ(ω) dominated by low-frequency noise and
exhibiting slowly decaying high-frequency tails [40,42,73].

The WDD sequences possess benefits over existing ap-
proaches along two primary metrics:

(i) efficient hardware sequencing and
(ii) restricted search space for sequencing.

We explore each of these benefits separately next.

A. Efficient hardware sequencing

Current experiments in DD employ a user-programmed
microprocessor and a complex hardware chain (e.g., a sig-
nal generator controlled by a programmable logic device
responsible for pulse timing and under PC control). This is
appropriate for demonstration experiments but fails to provide
a scalable solution due to both sequencing challenges and the
difficulty of input-output (I/O) in complex quantum systems.
We are therefore interested in finding solutions permitting all
sequence generation to be performed at the local level.

Once we accept this consideration, our metrics of effi-
ciency change relative to the majority of published literature.
When considering optimized DD, sequencing is complex and
will likely require either a local microprocessor to decode
instructions and apply a DD sequence or multiple high-
bandwidth communication pathways to external controllers.
Both situations pose challenges in terms of significant local
power dissipation in control hardware and energy inflows
associated with I/O pathways. The energy expended in the
number of pulses applied may contribute only a small amount
of the total local power dissipation given these considerations.
Given a presumed need for local DD sequence generation,
we thus arrive at digital sequencing complexity as a relevant
metric for efficiency.

WDD meets this challenge, its primary benefit being that
the Walsh functions are easily produced using simple digital
circuits [48]. We identify Rademacher function generators
(square-wave generators) as basic hardware resources for the
physical-layer implementation of dynamical error suppres-
sion, realizing the control propagator in real time. Rademacher
functions may be generated in hardware with relative ease
from a distributed clock signal and may be added/multiplied
together via hardware logic to generate Walsh toggling frames
(for instance, Harmuth’s array generator [48]). The number
of Rademacher functions required to achieve a given error
suppression may therefore be deemed a relevant quantitative
means of establishing the sequencing complexity.

As we have shown, a WDD sequence derived from
r Rademacher functions cancels the first r − 1 orders of
dephasing noise, and the sequences derived from W2r−1(x) ≡
CDDr do so for the smallest value of sequency (for fixed r).
WDD therefore provides the highest possible order of error
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suppression with respect to the number of Rademacher func-
tions required to implement a given DD protocol, providing
efficiency in the sequencing complexity. For the same sequenc-
ing complexity r , using sequences with different n permits
modification of �p, giving flexible control over noise filtering
capabilities. By contrast, other optimized sequences discussed
above require substantially greater sequencing resources, as
the Walsh transformation of a sequence such as UDD indicates
the need for a large r in order to generate the requisite {δj }.

Furthermore, the structure of WDD and Walsh function
generation is compatible with a nested or concatenated
structure of decoupling about multiple axes, which enables the
generation of GWDD sequences for generic decoherence. In
the special case of a large separation of time scales for different
decoherence processes, GWDD also allows for efficient bit
stacking of Walsh functions derived from similar hardware but
executed with different time bases. Finally, we note that certain
sequences constructed by recursively repeating the same
base sequence many times may find value in circumstances
where long-time storage and low-latency memory interrupts
are desired in addition to improved low-frequency error
suppression. This topic will be addressed in a separate article.

Once a given Walsh function (or set of Walsh functions) is
generated, conversion to WDD in real time may be achieved
via hardware differentiation or edge triggering of separate
circuitry producing preprogrammed control pulses. Overall,
complexity is reduced by separating control sequencing from
pulse generation.

Using Walsh functions for generation of the control
propagator and hardware techniques for the triggering of
applied pulses therefore provides a means of efficiently
realizing dynamical error suppression at the local level.
Through this approach, the need for access to a user-controlled
microprocessor in order to send pulse-sequence commands
to hardware, or for a local processor to interpret externally
generated commands, may be obviated: all control and timing
may be performed using relatively simple digital logic realized
in an application specific integrated circuit. A system protected
by WDD sequences may run semiautonomously, implement-
ing preselected WDD sequences or it may be programmed
externally, where the only communicated information required
could be the value of n in binary (or as Gray code), a repetition
number, and a trigger signal starting the sequence.

A significant challenge in such schemes is suppression
of spurious rising/falling edge signals arising from, say,
propagation delays in digital circuitry. However, latching
WDD sequences to the clock signal should aid suppression
of these signals. Accounting for nonzero-duration control
pulses with τπ an integer multiple of the clock period, may
also be achieved through use of latching logic to introduce
hardware delays while the control operations are applied.
However, the effect of such delays on WDD performance
would need to be characterized in detail. The creation of
an optimized hardware-based generator of WDD sequences
remains a problem for future study.

B. Restricted search space

While there exists a plethora of DD procedures within the
bang-bang limit, in practice, not all these procedures will be

suitable for the operating range of physical systems or the
demands of quantum information processing protocols. This
is true despite the fact that the objective in all such procedures
is identical: maximize the fidelity of preserving an arbitrary
quantum state for a desired time. For sufficiently simple
experimental systems, an empirical optimization procedure
(such as LODD) can sample over the space of all permissible
DD pulse sequences and search for an optimal one. This idea
has also been explored numerically in the above-mentioned
OFDD and BADD protocols, as well as in optimized DD for
power-law spectra [73]. These approaches grow significantly
in complexity as the pulse number increases, for instance, in
a large-scale system requiring long-term storage. The central
idea in WDD—that sequences using digital timing are made
by attaching or repeating smaller sequences recursively—can
be instrumental in significantly reducing the search space for
finding optimal DD sequences empirically or numerically. We
briefly outline potential implications of this idea here.

The canonical model of single-qubit dephasing with a
given noise power spectral density used through most of
this paper retains considerable structure in choosing when to
apply the X pulses. This persists even when enforcing digital
timing conditions as below. Given N = 2m time bins, each of
duration τmin, one may elect either to apply or not to apply a
pulse, thus generating a space of 2N = 22m = 22τ/τmin possible
sequences. Performing a complete search over this space
becomes extremely challenging as the total duration τ of the
DD procedure grows, as observed in numerical approaches to
generating randomized DD protocols [38,74] and to optimized
sequences [20,42].

WDD provides a natural means to reduce the search space
for the generation of dynamical error suppression sequences,
as there are only N = 2m = 2τ/τmin WDD sequences within
the operational constraints of the problem. It also provides an
intuitive analytical framework allowing preselection of certain
sequences within WDD, further reducing the search space.
For instance, a search might exclude all WDD sequences with
r < rmin, as they will be known to provide insufficient low-
frequency noise suppression. With such constraints, and the
relative simplicity of implementing WDD in hardware, these
sequences become especially attractive for an empirical search
in which the performance of each sequence is tested in an actual
experimental setting.

Perhaps even more interesting are the options offered when
Walsh DD is extended to generic decoherence of a larger
set of qubits in a quantum memory. Recently, an efficient
perturbative DD procedure for this task has been explored
(NUDD) that utilizes (D2

S)r pulses for rth-order decoupling of
a generic DS = 2nq -dimensional system of nq qubits [51]. This
procedure assumes the most general form of errors, including
many-body errors. However, in reality, error models are
generally sparse. A fundamental problem of DD of many qubit
systems (closely related to quantum simulation algorithms
[69,75,76]) is to optimize the decoupling when the error
model for the interaction of the qubits is locally sparse. Using
the procedure described in Sec. IV B, we can progressively
produce a search space for such an optimization procedure
starting from elements of a basic DD sequence and recursively
building longer sequences by the WDD construction procedure
(repetition/concatenation).
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VI. CONCLUSION

In this article we have studied the problem of reducing se-
quencing complexity in a dynamical error suppression frame-
work, through consideration of digital modulation schemes.
Toward this end, we have introduced the Walsh functions as
a mathematical basis for the generation of dynamical error
suppression sequences. We have revealed how Walsh dynami-
cal decoupling naturally incorporates familiar sequences (e.g.,
PDD, CPMG, CDD) and examined the properties of all the
possible recursively structured sequences corresponding to
Walsh functions.

Our analysis has demonstrated that the order of error
suppression achieved by a given WDD sequence is set by
the number of elementary Rademacher functions required
to generate that sequence. This is manifested as a scal-
ing of the low-frequency roll-off in the filter function as
6(r + 1) dB/octave, with r the number of Rademacher
functions appearing in the sequence. Meanwhile, the high-
frequency performance of a WDD sequence, and hence its
noise-suppression bandwidth, is tunable via selection of n

for a given r , providing significant flexibility in sequence
construction. Further, we have introduced a simple means to
construct WDD sequences using concatenation and repetition
and a technique to suppress general errors via GWDD.

We have shown that the Walsh functions provide efficient
performance against control complexity, quantified by the
value of r , and the supporting sequencing hardware. We
believe that sequencing complexity will serve as a useful new
metric with significant weight in system-level analyses, going
far beyond standard optimization over pulse number in a DD
sequence.

These considerations are likely to make the Walsh functions
an attractive framework for the development of a quantum
memory incorporating hardware-efficient physical-layer error-
suppression strategies. Interestingly, the problem of searching
for (digital) DD sequences with high-order error suppression
properties is also related to finding Littewood complex
polynomials with high-order zeros [77,78], which may point
to further connections with both signal processing theory
and polynomial analysis and approximation. From a practical
standpoint, the variety of WDD sequences realizable through
simple hardware sequencing provides a flexible solution for
many future experimental systems.
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APPENDIX: ORDER OF ERROR SUPPRESSION

In this section we prove that for a given Paley ordering r ,
as long as i � r ,

∫ 1

0
R1(x) · · · Rjr+1 (x)xidx = 0, (A1)

where jk are nonzero positive integers in increasing order.
This identity can be used to show the error suppression of
the WDD sequences directly in the time domain and can be
mathematically interpreted as the vanishing of the moments of
the Walsh functions on the unit interval.

We proceed by induction on r starting with the base case,
r = 0: ∫ 1

0
Rj1 (x)dx = 0. (A2)

Since j1 > 0, the corresponding Rademacher function Rj1 will
be periodic and balanced on [0,1], which validates the base
case in Eq. (A2).

For the inductive step, let us assume that∫ 1

0
Rj1 (x) · · · Rjr+1 (x)xidx = 0, (A3)

where i � r . We need to prove that∫ 1

0
Rj1 (x) · · · Rjr+1 (x)Rjr+2 (x)xidx = 0, (A4)

where i � r + 1.
The sign of Rademacher function Rj (x) is determined

by the j th binary digit of x, which we refer to as bj (x).
When i = 0, Eq. (A4) reduces to the average (zeroth moment)
of the product of Rademacher functions over the interval
[0,1]. We give a probabilistic argument for the cancellation
of this average, which can also be proven using induction. The
average of the product of the Rademacher functions can be
written as ∫ 1

0
(−1)bj1 (x) · · · (−1)bjr+2 (x)dx. (A5)

We can interpret the above integral as an expectation value
(denoted below by E) of a function of a real random variable
x distributed uniformly over the interval [0,1]. The corre-
sponding (Lebesgue) probability measure dx is equivalent to
products of independent and uniform (discrete) measures for
each binary digit of x [79]. We can thus rewrite Eq. (A5) in
the form

E[(−1)bj1 · · · (−1)bjr+2 ] = E[(−1)bj1 ] · · · E[(−1)bjr+2 ] = 0.

We can then use the i = 0 case as the base for another
induction proof over i, where we assume that Eq. (A4) holds for
all i ′ � r . We refer to this as the “inner induction” assumption
and proceed to prove Eq. (A4) for i = r + 1, which we rewrite
as

I =
∫ 1

0
Wn(x)Rj1 (x)xr+1dx. (A6)

Note that we have singled out the lowest order Rademacher
function in the product and written the product of the rest as
a Walsh function with Paley ordering n. We can rewrite the
integral as

I =
( ∫ 2−j1

0
−

∫ 2×2−j1

2−j1

+
∫ 3×2−j1

2×2−j1

− · · ·
)

Wn(x)xr+1dx,
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where the integrals match the positive and negative values of
the Rademacher function Rj1 .

Making the substitution x ′ = x − 2−j1 for the negative-
signed terms, we can write

I =
( ∫ 2−j1

0
+

∫ 3×2−j1

2×2−j1

+ · · ·
)

[xr+1Wn(x)

− (x + 2−j1 )r+1Wn(x + 2−j1 )]dx. (A7)

The Walsh function Wn is constructed entirely of Rademacher
functions with indices larger than j1 having periods commen-
surate with 2−j1 , which results in Wn(x + 2−j1 ) = Wn(x). This
allows us to write

I =
( ∫ 2−j1

0
+

∫ 3×2−j1

2×2−j1

+ · · ·
)

Wn(x)[xr+1

− (x + 2−j1 )r+1]dx. (A8)

We can rewrite the above as an integral over [0,1] using the
kernel (Rj1 (x) + 1)/2:

I =
∫ 1

0
Wn(x)

Rj1 (x) + 1

2
[xr+1 − (x + 2−j1+1)r+1]dx,

where the leading xr+1 powers cancel when we expand (x +
2−j1+1)r+1, leaving us with an integrand in which every power
of x appears with an exponent i ′ less than or equal to r . This
matches the assumptions of our inner induction, leading to the
cancellation of the integral for i = r + 1 and thus establishing
the main result in Eq. (A1).

We also note the following result, related to the
WDD filter function at higher frequencies and used in
Sec. IV C: ∫ 1

0
R1(x) · · · Rjr

(x)ei2r+1πxxidx = 0, (A9)

where i � r and we have used the highest Rademacher
function in the product with a trigonometric function of the
same period. This result can also be proven by induction in a
similar manner.

It is interesting to note that the only properties of the
Rademacher functions that are used in our proof are their
“frequencies” and symmetry. Thus, any family of func-
tions that mimics the periods and the sign changes of the
Rademacher function family could in principle be used in our
proof.
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