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Entanglement creation in low-energy scattering
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We study the entanglement creation in the low-energy scattering of two particles in three dimensions, for a
general class of interaction potentials that are not required to be spherically symmetric. The incoming asymptotic
state, before the collision, is a product of two normalized Gaussian states. After the scattering, the particles are
entangled. We take as a measure of the entanglement the purity of one of them. We provide a rigorous explicit
computation, with error bound, of the leading order of the purity at low energy. The entanglement depends
strongly on the difference of the masses. It takes its minimum when the masses are equal, and it increases rapidly
with the difference of the masses. It is quite remarkable that the anisotropy of the potential gives no contribution
to the leading order of the purity, in spite of the fact that entanglement is a second-order effect.
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I. INTRODUCTION

In this paper, we study how entanglement is created in
a scattering process. This topic has intrinsic interest. As is
well known, scattering is a basic dynamical process that
is essential across all areas of physics. Entanglement is a
central notion of modern quantum theory, in particular, it is
the fundamental resource for quantum information theory and
quantum computation. It is a measure for quantum correlations
between subsystems. In the case of bipartite systems in pure
states, entanglement is a measure of how far away from being
a product state a pure state of the bipartite system is. Product
states are called disentangled. It is now well understood that
entanglement in a pure bipartite quantum state is equivalent to
the degree of mixedness of each subsystem. See, for example,
Refs. [1–3]. The study of entanglement creation in scattering
is interesting for many other reasons, for example, for the
implementation of quantum information processes in physical
systems where scattering is central to the dynamics, such
as ultracold atoms and solid state devices. Moreover, the
study of entanglement in the scattering of particles requires
quantum information theory with continuous variables and
mixed continuous-discrete variables. See Ref. [3] for a review
of this topic. As scattering interactions are fundamental at all
scales, and as there is a large variety of scattering systems, it
is possible that scattering will provide a new perspective to
quantum information theory. Finally, entanglement creation is
important to the theory of scattering itself, because it poses
new problems that can shed new light and new points of view
on the study of scattering processes.

Actually, from the conceptual point of view, scattering is
perhaps the simplest way to entangle two particles. Before
the scattering, in the incoming state, the two particles are
in a pure product state where they are uncorrelated. As
they approach each other, they become entangled by sharing
quantum information between them. After the scattering, when
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they are far apart from each other, they remain entangled in the
outgoing asymptotic state, that is not a product state anymore.
We take as a measure of entanglement of a pure state the purity
of one of the particles, that is to say, the trace of the square
of the reduced density matrix of one of the particles that is
obtained by taking the trace of the other particle of the density
matrix of the pure state. The purity of a product state is one.

We consider two spinless particles in three dimensions with
the interaction given by a general potential that is not required
to be spherically symmetric. Initially the particles are in an
incoming asymptotic state that is a product of two Gaussian
states. After the scattering, the particles are in an outgoing
asymptotic state that, as mentioned above, is not a product
state, and our problem is to determine the loss of purity of one
of the particles, due to the entanglement with the other that is
produced by the scattering process.

The Hilbert space of states for the two particles in the
configuration representation isH := L2(R6). The Schrödinger
equation is

ih̄
∂

∂t
ϕ(x1,x2) = Hϕ(x1.x2), (1.1)

where the Hamiltonian is given by

H = H0 + V (x1 − x2), (1.2)

with H0 the free Hamiltonian

H0 := − h̄2

2m1
�1 − h̄2

2m2
�2, (1.3)

where h̄ is Planck’s constant, mj,j = 1,2 are, respectively,
the mass of particle one and two, and �j is the Laplacian
in the coordinates xj ,j = 1,2. The potential of interaction
is multiplication by a real-valued function V (x), defined for
x ∈ R3. As usual, we assume that the interaction depends on
the difference of the coordinates x1 − x2, but no spherical
symmetry is supposed. We assume that V satisfies mild
assumptions on its regularity and its decay at infinity. See
Assumption 2.1 in Sec. II. For example, V (x) satisfies
Assumption 2.1 if there are constants R,C > 0 such that∫

|x|�R

|V (x)|2dx < ∞, (1.4)
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and

|V (x)| � C(1 + |x|)−β ′
, for |x| � R, (1.5)

for some β ′ > β, with β as in Assumption 2.1. Note that β

controls the decay rate of the potential at infinity. Remark
that Eq. (1.4) allows for Coulomb local singularities. We also
suppose that at zero energy there is neither an eigenvalue nor
a resonance (half-bound state), which generically is true. See
Sec. II.

We work in the center-of-mass frame, and we consider an
incoming asymptotic state that is a product of two normalized
Gaussian states, given in the momentum representation by

ϕin,p0 (p1,p2) := ϕp0 (p1) ϕ−p0 (p2), (1.6)

with

ϕp0 (p1) := 1

(σ 2π )3/4
e−(p1−p0)2/2σ 2

, (1.7)

where pi , i = 1,2 are, respectively, the momentum of particles
one and two. In the state (1.6), particle one has mean
momentum p0 and particle two has mean momentum −p0.
The variance of the momentum distribution of both particles is
σ . We assume that the scattering takes place at the origin at time
zero, and for this reason the average position of both particles is
zero in the incoming asymptotic state (1.6). After the scattering
process is over, the two particles are in the outgoing asymptotic
state ϕout,p0 , given by

ϕout,p0 (p1,p2) := [S(p2/2m)ϕin,p0 ](p1,p2), (1.8)

where p := m2
m1+m2

p1 − m1
m1+m2

p2 is the relative momentum,
m := m1 m2/(m1 + m2) is the reduced mass, and S(p2/2m) is
the scattering matrix for the relative motion.

The purity of ϕout,p0 is given by

P(ϕout,p0 ) =
∫
R12

dp1 dp′
1 dp2 dp′

2 ϕout,p0 (p1,p2)

×ϕout,p0 (p′
1,p2) ϕout,p0 (p′

1,p
′
2) ϕout,p0 (p1,p′

2).

(1.9)

Since the relative momentum p depends on p1 and on p2, ϕout,p0

is no longer a product state and it has purity smaller than one,
which means that entanglement between the two particles has
been created by the scattering process. Observe that in the state
(1.6), the mean relative momentum of the particles is equal
to p0.

Note that to be in the low-energy regime we need the mean
relative momentum p0 to be small, but also the variance σ to be
small, because if σ is large, the incoming asymptotic state ϕin,p0

will have a big probability of having large momentum, even
if the mean relative momentum p0 is small. We denote by ϕin

the incoming asymptotic state with mean relative momentum
p0 = 0, and we designate ϕout := S(p2/2m)ϕin. We denote by

μi := mi

m1 + m2
, i = 1,2

the fraction of the mass of the i particle to the total mass.

In Theorems 3.2 and 3.4 in Sec. III, we give a rigorous proof
of the following results on the leading order of the purity at
low energy.

P(ϕout,p0 ) = P(ϕout) + O(|p0/h̄|), as |p0/h̄| → 0, (1.10)

where O(|p0|/h̄) is uniform on σ , for σ in bounded sets.
Furthermore, with β as in Assumption 2.1 (recall that β

controls the decay rate of the potential at infinity),

P(ϕout) = 1 − (c0σ/h̄)2E(μ1) +
{

o(|σ/h̄|2), if β > 5

O(|σ/h̄|3), if β > 7
,

(1.11)

with c0 the scattering length that is defined in Eq. (2.24) and
where the entanglement coefficient E(μ1) is given by

E(μ1) := 16

π [1 + (2μ1 − 1)2]

+ 4

(2μ1 − 1)2

[1 + (2μ1 − 1)2]3/2 − 1√
1 + (2μ1 − 1)2

− 8J (μ1,1 − μ1) − 8J (1 − μ1,μ1) (1.12)

with

J (μ1,μ2) := 1

π9/2

∫
dq2

{ ∫
dq1|μ2q1 − μ1q2|

× exp

[
−1

2

(
μ2

1 + μ2
2

)
(q1 + q2)2

−(μ2q1 − μ1q2)2 − q2
1/2

]

× sinh[(μ1 − μ2) |q1 + q2| |μ2q1 − μ1q2|]
(μ1 − μ2) |q1 + q2| |μ2q1 − μ1q2|

}2

.

(1.13)

In the Appendix, we explicitly evaluate J (1/2,1/2) and
J (1,0),

J (1/2,1/2) = 3

2
+ 1

π

[√
27

4
− 3 arctan

(
1

2 − √
3

)]
= 0.663497, (1.14)

J (1,0) = 2

(
1 + 1√

3
−

√
2

)
= 0.32627. (1.15)

For μ1 ∈ [0,1] \ {1/2,1}, we compute J (μ1,1 − μ1) numeri-
cally using Gaussian quadratures.

Observe that E(μ1) = E(1 − μ1), as it should be, because
P(ϕout) is invariant under the exchange of particles one and
two. Note that there is no term of order σ/h̄ in Eq. (1.11).
Actually, the terms of order σ/h̄ cancel each other because of
the unitarity of the scattering matrix. This shows that for low
energy the entanglement is a second-order effect.

The scattering length c0 is a measure of the strength of the
interaction. As is well known, and can be seen in Theorem
2.2 in Sec. II, at first order for low energy the scattering is
isotropic and the total crosssection, that is given by 4πc2

0,
is determined by the scattering length c0. However, the effects
of the anisotropy of the potential appear at second order. It is
quite remarkable that these effects give no contribution to the
evaluation of the leading order of the purity. It follows from
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TABLE I. The entanglement coefficient E(μ1).

μ1 := m1/(m1 + m2) E(μ1)

0.5 0.4770
0.525 0.4813
0.55 0.4937
0.575 0.5144
0.6 0.5434
0.625 0.5816
0.65 0.6296
0.675 0.6880
0.7 0.7550
0.725 0.8320
0.75 0.9179
0.775 1.0120
0.8 1.1130
0.825 1.2208
0.85 1.3228
0.875 1.4488
0.9 1.5659
0.925 1.6832
0.95 1.8010
0.975 1.9168
1 2.0287

this that the leading order of the entanglement for low energy,
Eq. (1.11), is determined by the scattering length c0, and that
the anisotropy of the potential plays no role in spite of the fact
that entanglement is a second-order effect, which is surprising.

We see from Table I and Fig. 1 that the entanglement
coefficient depends strongly on the difference of the masses.
It takes its minimum for μ1 = 0.5, when the masses are equal,
and it increases rapidly with the difference of the masses, as μ1

tends to one. This shows that, if the scattering length is fixed,
the entanglement takes its minimum when the masses are equal
and that it strongly increases with the differences of the masses.
This is indeed a remarkable result. Suppose that we consider
different pairs of particles that interact in the same way at
low energy, in the sense that, to leading order, they have the
same total scattering crosssection, i.e., such that the scattering
length c0 is the same for all the pairs. Moreover, suppose that

0.5 0.6 0.7 0.8 0.9 1.0
x0.0

0.5

1.0

1.5

2.0

y

FIG. 1. (Color online) The entanglement coefficient y = E(μ1),
as a function of x = μ1 := m1/(m1 + m2), for 0.5 � μ1 � 1.

the total mass M of the pairs is kept fixed, but that the individual
masses m1,m2 of the particles are different in each pair. Our
results show that, under these conditions, over four times more
entanglement is produced by increasing the difference of the
masses of the particles in the pairs. In practical terms, this
means that to produce entanglement by scattering processes
in experimental devices, it is advantageous to use particles
with a large mass difference. This fact can be understood in
a physically intuitive way as follows: In the scattering of a
light particle with a very heavy one, the trajectory of the light
particle will be strongly changed, with a large exchange of
quantum information between the particles, leading to a large
entanglement creation.

Note that in the scattering of a particle with a large mass and
a particle with a small mass we can assume that the trajectory
of the large particle is not affected by the interaction, i.e.,
that to a good approximation, it follows a free trajectory, and
that the small particle feels an (external) interaction potential
centered in the position of the large particle. However, the
trajectory of the small particle will be strongly affected by
the interaction, which will produce exchange of information
between the particles, leading to the creation of entanglement
between them. To evaluate this entanglement it is, however,
necessary to take into account the degrees of freedom of both
particles, as we do to compute the purity.

In Ref. [4], a similar problem is considered in the case of
equal masses and spherically symmetric potentials. They give
an approximate expression for the leading order of the purity
in the case of a Gaussian incoming wave packet that is very
narrow in momentum space. The generation of entanglement
in scattering processes has been previously considered in
one dimension, mainly for potentials with explicit solution.
See Refs. [5,6], and the references quoted within. Moreover,
Refs. [7–9], and the references quoted within, consider a
system of heavy and light particles. They study the asymptotic
dynamics and the decoherence produced on the heavy particles
by the scattering with light particles in the limit of small
mass ratio, which is different from our problem. The loss
of quantum coherence induced on heavy particles by the
interaction with light ones has attracted much interest. See,
for example, Refs. [10,11].

The paper is organized as follows. In Sec. II, we define the
wave and scattering operators and the scattering matrix, and
we consider its low-energy behavior. In Sec. III, we prove our
results in the creation of entanglement. In Sec. IV, we give
our conclusions. In the Appendix, we compute integrals that
we need in Sec. III. Throughout the paper, we denote by C

a generic positive constant that does not necessarily have the
same value in different appearances.

II. LOW-ENERGY SCATTERING

We consider the scattering of two spinless particles in
three dimensions. We find it convenient to use the time-
dependent formalism of scattering theory. See, for example,
Refs. [13–17]. The Hilbert space of states in the configuration
representation is H := L2(R6). The Schrödinger equation is

ih̄
∂

∂t
ϕ(x1,x2) = Hϕ(x1.x2), (2.1)
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where the Hamiltonian is given by

H = H0 + V (x1 − x2). (2.2)

The operator H0 is the free Hamiltonian

H0 := − h̄2

2m1
�1 − h̄2

2m2
�2, (2.3)

with h̄ Planck’s constant, mj,j = 1,2 the mass of particle one
and two, respectively, and �j the Laplacian in the coordinates
xj ,j = 1,2. The potential of interaction is multiplication by a
real-valued function V (x), defined for x ∈ R3. As usual, we
assume that the interaction depends on the difference of the
coordinates x1 − x2, but no spherical symmetry is supposed.
V satisfies the following condition.

Assumption 2.1. For some β > 0, (1 + |x|)βV (x) is a
compact operator from the Sobolev space H 1 into the Sobolev
space H−1.

Below we will assume that β > 5 or that β > 7. For the
definition of Sobolev’s spaces, see Ref. [12]. Conditions for
Assumption 2.1 to hold are well know [18,19]. For example,
if Eqs. (1.4) and (1.5) are satisfied. Under this condition, H

is defined as the quadratic form sum of H0 and V , and it is a
self-adjoint operator.

The wave operators are defined as

W± := s-lim±∞ ei t
h̄
H e−i t

h̄
H0 .

As is well known, under our condition the wave operators exist
and are asymptotically complete, i.e., their ranges coincide
with the absolutely continuous subspace of H . Moreover, the
scattering operator

S = W ∗
+ W− (2.4)

is unitary.
Before the scattering, when the particles are far apart from

each other and the interaction is weak, the dynamics of the
system is well approximated by an incoming solution to the
free Schrödinger equation with the potential set to zero,

e−i t
h̄
H0 ϕ−,

where the incoming asymptotic state ϕ− is the Cauchy data
at time zero of the incoming solution to the free Schrödinger
equation. When the particles are close to each other, and the
potential is strong, the dynamics of the system is given by the
solution to the Schrödinger equation

e−i t
h̄
H W−ϕ−, (2.5)

that is asymptotic to the incoming solution to the free
Schrödinger equation as t → −∞,

lim
t→−∞ ‖e−i t

h̄
H0 ϕ− − e−i t

h̄
H W−ϕ−‖ = 0.

After the scattering, for large positive times, the particles again
are far away from each other, and the dynamics of the system
is well approximated by the outgoing solution to the free
Schrödinger equation

e−i t
h̄
H0 W ∗

+ W−ϕ−,

that is asymptotic to the solution to the Schrödinger equa-
tion (2.5) as t → ∞,

lim
t→∞ ‖e−i t

h̄
H W−ϕ− − e−i t

h̄
H0 W ∗

+ W−ϕ−‖ = 0.

The outgoing asymptotic state is the Cauchy data at time zero
of the outgoing solution to the free Schrödinger equation ϕ+ :=
W ∗

+ W−ϕ−. It is given by the scattering operator ϕ+ = Sϕ−.
As usual, we consider the center-of-mass and relative

distance coordinates

xcm := m1x1 + m2x2

m1 + m2
, (2.6)

x := x1 − x2. (2.7)

The state space H factorizes under this change of coordinates
as

H = Hcm ⊗ Hrel, (2.8)

where Hcm = L2(R3),Hrel := L2(R3) are, respectively, the
state spaces for the center-of-mass motion and the relative
motion. Since the interaction depends only on x, the Hamilto-
nian and the wave and scattering operators decompose under
the tensor product structure, and, in particular, we have that

S = Icm ⊗ Srel, (2.9)

where Icm is the identity operator on Hcm and Srel is the
scattering operator for the relative motion, that is defined as
follows. The Hamiltonian for the relative motion is given by

Hrel := − h̄2

2m
�x + V (x), (2.10)

where m is the reduced mass

m := m1 m2

m1 + m2
, (2.11)

and �x is the Laplacian in the x coordinate. The free relative
Hamiltonian is

H0,rel := − h̄2

2m
�x. (2.12)

The relative wave operators are defined as

W±,rel := s-lim±∞ ei t
h̄
Hrel e−i t

h̄
H0,rel. (2.13)

The relative scattering operator

Srel = W ∗
+,rel W−,rel (2.14)

is a unitary operator on Hrel.
We denote by Ĥ := L2(R6) the state space in the momen-

tum representation. The momentum of the particles one and
two are, respectively, p1,p2. We define the Fourier transform
as a unitary operator from H onto Ĥ,

Fϕ(p1,p2) := 1

(2πh̄)3

∫
R6

e− i
h̄

(p1·x1+p2·x2) ϕ(x1,x2). (2.15)

It is also convenient to take as coordinates in the momentum
representation the momentum of the center of mass and the
relative momentum,

pcm := p1 + p2, (2.16)

p := m2p1 − m1p2

m1 + m2
. (2.17)
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The state space in the momentum representation also factorizes
as a tensor product

Ĥ = Ĥcm ⊗ Ĥrel, (2.18)

where Ĥcm = L2(R3),Ĥrel := L2(R3) are, respectively, the
state spaces in the momentum representation for the center-of-
mass motion and the relative motion.

The scattering operator in the momentum representation,

Ŝ := F S F−1, (2.19)

decomposes as

Ŝ = Icm ⊗ Ŝrel, (2.20)

where Ŝrel is the scattering operator for the relative motion in
the momentum representation

Ŝrel := Frel Srel F−1
rel , (2.21)

where Frel is the Fourier transform in the relative coordinate

Frelϕ(p) := 1

(2πh̄)3/2

∫
R3

e− i
h̄

p·x ϕ(x). (2.22)

We denote by S2 the unit sphere in R3. As Srel commutes with
H0,rel (energy conservation) we have

(Ŝrelϕ)(p) = [S(p2/2m)ϕ](p), (2.23)

where the scattering matrix, S(E), is a unitary operator in
L2(S2) for each E ∈ (0,∞). Note that the scattering matrix
defined in the time-dependent framework coincides with the
scattering matrix defined in the stationary theory by means of
the solutions to the Lippmann-Schwinger equations.

The following theorem has been proven by Kato and Jensen
[19]. Note that they consider the case h̄ = 1,m = 1/2, but the
general case is easily obtained by an elementary argument.
A zero energy resonance (half-bound state) is a solution to
Hrelϕ = 0 that decays at infinity but that is not in L2(R3). See
Ref. [19] for a precise definition. For generic potentials V ,
there is neither a resonance nor an eigenvalue at zero for Hrel.
That is to say, if we consider the potential λV with a coupling
constant λ, zero can be a resonance and/or eigenvalue for
at most a finite or denumerable set of λ’s without any finite
accumulation point.

The scattering length is defined as

c0 := 1

4π

(
2m

h̄2 V

(
1 + G0

2m

h̄2 V

)−1

1,1
)

, (2.24)

where (.,.) is the L2 scalar product in R3, 1 designates the
function identically equal to one, and G0 is the operator with
integral kernel the Green’s function at zero energy,

G0(x,y) := 1

4π |x − y| , x,y ∈ R3. (2.25)

The operator (1 + G0
2m

h̄2 V ) is invertible because zero is neither
an eigenvalue nor a resonance for Hrel. We define the scattering
length c0 with the opposite sign from the one used in Ref. [19],

so that it coincides with the definition used in the physics
literature [16,17]. Furthermore,

Y0(ν) := 1√
4π

, ν ∈ S2, (2.26)

Y1(ν) := 1

4π3/2

(
2m

h̄2 V

(
1 + G0

2m

h̄2 V

)−1

1,x · ν

)
, ν ∈ S2.

(2.27)

We denote by B(L2(S2)) the Banach space of all bounded
linear operators on L2(S2).

Theorem 2.2. (Kato and Jensen [19])
Suppose that Assumption 2.1 is satisfied and that at zero Hrel

has neither a resonance (half-bound state) nor an eigenvalue.
Then, if β > 5, in the norm of B(L2(S2)) we have for |p/h̄| →
0 the expansion

S(p2/2m) = I + i|p/h̄| 
0
1 − |p/h̄|2 
0

2 + o(|p/h̄|2), (2.28)

where I is the identity operator on L2(S2),


0
1 := −2c0(·,Y0) Y0, (2.29)

and


0
2 := 2c2

0(·,Y0) Y0 + (·,Y1)Y0 − (·,Y0)Y1. (2.30)

Furthermore, if β > 7,o(|p/h̄|2) can be replaced by O(|p/h̄|3).
Note that Y1 = 0 if V is spherically symmetric. We see

that, as is well known, the leading order at low energy of
S(p2/2m) − I is given by the scattering length, i.e., in leading
order the scattering is isotropic. The anisotropic effects appear
at second order.

III. ENTANGLEMENT CREATION

Consider a pure state of the two-particle system given in
the momentum representation by the wave function ϕ(p1,p2).
Let us denote by ρ(ϕ) the one-particle reduced density matrix
with integral kernel

ρ(ϕ)(p1,p′
1) :=

∫
ϕ(p1,p2) ϕ(p′

1,p2) dp2,

and by P(ϕ) the purity

P(ϕ) := Tr(ρ2) =
∫
R12

dp1 dp′
1 dp2 dp′

2 ϕ(p1,p2)

×ϕ(p′
1,p2) ϕ(p′

1,p
′
2) ϕ(p1,p′

2). (3.1)

The purity is an entanglement measure that is closely related
to the Rényi entropy of order 2, − ln Tr(ρ2) [3,20,21]. It is
trivially related to the linear entropy SL as SL = 1 − P . It
satisfies 0 � P � 1 if ϕ is normalized to one. Furthermore,
it is equal to one for a product state, ϕ = ϕ1(p1) ϕ2(p2). The
purity is an entanglement measure that is convenient for the
study of entanglement creation in scattering processes, because
it can be directly computed in terms of the scattering matrix.

We work in the center-of-mass frame, and we consider an
incoming asymptotic state that is a product of two normalized
Gaussian wave functions,

ϕin,p0 (p1,p2) := ϕp0 (p1) ϕ−p0 (p2), (3.2)
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where

ϕp0 (p1) := 1

(σ 2π )3/4
e−(p1−p0)2/2σ 2

. (3.3)

In the incoming asymptotic state (3.2), particle one has mean
momentum p0 and particle two has mean momentum −p0.
The variance of the momentum distribution of both particles
is σ . We assume that the scattering takes place at the origin
at time zero, and for this reason the average position of both
particles is zero in the incoming asymptotic state (3.2). Note
that by Eq. (2.17), the mean value of the relative momentum
in the state (3.2) is equal to p0.

Since ϕin,p0 is a product state, its purity is one,

P(ϕin,p0 ) = 1. (3.4)

After the scattering process is over, the two particles are in the
outgoing asymptotic state ϕout,p0 , given by

ϕout,p0 (p1,p2) := (S(p2/2m)ϕin,p0 )(p1,p2). (3.5)

Since the relative momentum p depends on p1 and on p2, ϕout,p0

is no longer a product state and it has purity smaller than one,
which means that entanglement between the two particles has
been created by the scattering process.

We will rigorously compute the leading order of the purity
of ϕout,p0 , in a quantitative way, in the low-energy limit for
the relative motion. Note that to be in the low-energy regime,
we need the mean relative momentum p0 to be small, but also
the variance σ to be small, because if σ is large the incoming
asymptotic state ϕin,p0 will have a big probability of having
large momentum, even if the mean relative momentum p0 is
small.

We first introduce some notations that we need. We denote
by ϕin the incoming asymptotic state with mean value of the
relative momentum zero,

ϕin(p1,p2) := ϕ(p1) ϕ(p2), (3.6)

where

ϕ(p) := 1

(σ 2π )3/4
e−p2/2σ 2

, p ∈ R3, (3.7)

and by ϕout the outgoing asymptotic state with incoming
asymptotic state ϕin,

ϕout(p1,p2) := (S(p2/2m)ϕin)(p1,p2). (3.8)

We define

ψq0 (q) := 1

(π )3/4
e−(q−q0)2/2, q ∈ R3, (3.9)

ψ(q) := 1

(π )3/4
e−q2/2, q ∈ R3, (3.10)

ψin,q0 (q1,q2) := ψq0 (q1) ψ−q0 (q2), (3.11)

ψin(q1,q2) := ψ(q1) ψ(q2). (3.12)

We prepare the following proposition that we will need later.
Proposition 3.1.

‖ϕin,p0 − ϕin‖ � C min{|p0|/σ,1}, (3.13)

‖p(ϕin,p0 − ϕin)‖ � C |p0|. (3.14)

Proof: We denote q0 := p0/σ. Then

‖ϕin,p0 − ϕin‖ = ‖ψin,q0 − ψin‖. (3.15)

Assume first that |q0| � 1. We have that

ψin,q0 − ψin = 1

π3/2
e−(q2

1+q2
2)/2[e−q2

0+(q1−q2)·q0 − 1]. (3.16)

Moreover,

|e−q2
0+(q1−q2)·q0 − 1|

=
∣∣∣∣
∫ −q2

0+(q1−q2)·q0

0
es ds

∣∣∣∣ (3.17)

� e|q0|2+|q0|(|q1|+|q2|)[|q0|2 + |q0|(|q1| + |q2|)]. (3.18)

It follows from Eqs. (3.15), (3.16), and (3.18) that Eq. (3.13)
holds for |q0| � 1. In the case |q0| � 1, the estimate is
immediate because

‖ϕin,p0 − ϕin‖ � 2.

Note that by Eq. (2.17),

|p| � |p1| + |p2|.
Then, if |q0| � 1 as in the proof of Eq. (3.13), we prove that

‖p(ϕin,p0 − ϕin)‖ � C |p0|. (3.19)

If |q0| � 1, we estimate as follows:

‖p(ϕin,p0 − ϕin)‖ � ‖|p1|(ϕin,p0 − ϕin)‖
+‖|p2|(ϕin,p0 − ϕin)‖. (3.20)

Furthermore,

‖|p1| (ϕin,p0 − ϕin)‖
� ‖|p1 − p0| ϕin,p0‖ + ‖|p0| ϕin,p0‖ + ‖|p1| ϕin‖
� σ‖|q1 − q0| ψin,q0‖ + |p0| + σ‖|q1| ψin‖
� C|p0|.

(3.21)

In the last inequality, we used σ � |p0|. In the same way,
we prove that

‖|p2|(ϕin,p0 − ϕin)‖ � C|p0|. (3.22)

By Eqs. (3.20), (3.21), and (3.22), we have that

‖p(ϕin,p0 − ϕin)‖ � C|p0|. (3.23)

Equation (3.14) follows from Eqs. (3.19) and (3.23). �
Let us denote

T (p2/2m) := S(p2/m) − I, (3.24)

where I designates the identity operator on L2(S2). It follows
from Eq. (2.28) and ‖S(p2/2m)‖B(L2(S2)) = 1 that

‖T (p2/2m)‖B(L2(S2)) � C
|p/h̄|

1 + |p/h̄| . (3.25)

Hence,

‖T (p2/2m)ϕin‖ � C
σ

h̄
‖q ψin‖. (3.26)
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We designate

L(φ1,φ2,φ3,φ4) : =
∫
R12

dp1 dp′
1 dp2 dp′

2 φ1(p1,p2)

×φ2(p′
1,p2) φ3(p′

1,p
′
2) φ4(p1,p′

2). (3.27)

Note that

P(φ) = L(φ,φ,φ,φ).

It follows from the Schwarz inequality that

|L(φ1,φ2,φ3,φ4)| � �4
j=1‖φj‖. (3.28)

The following theorem is our first low-energy estimate of the
purity.

Theorem 3.2. Suppose that Assumption 2.1 is satisfied and
that at zero Hrel has neither a resonance (half-bound state) nor
an eigenvalue. Then

P(ϕout,p0 ) = P(ϕout) + O(|p0/h̄|), as |p0/h̄| → 0, (3.29)

where O(|p0|/h̄) is uniform on σ , for σ in bounded sets.
Proof: Writing ϕout,p0 as

ϕout,p0 := S(p2/2m)ϕin,p0 = ϕin,p0 + T (p2/2m)ϕin,p0 ,

and using Eq. (3.4), we see that we can write P(ϕout,p0 ) as
follows:

P(ϕout,p0 ) = 1 + R(p0), (3.30)

where R(p0) is given by

R(p0) :=
A∑

i=1

Li(p0,ψ1,ψ2,ψ3,ψ4) (3.31)

for some integer A, and where each of theLi(p0,ψ1,ψ2,ψ3,ψ4)
is equal to

Li(p0,ψ1,ψ2,ψ3,ψ4) = L(ψ1,ψ2,ψ3,ψ4), (3.32)

where for some 1 � k � 4, k of the ψj are equal to
T (p2/2m)ϕin,p0 and the remaining 4 − k are equal to ϕin,p0 .
Similarly,

P(ϕout) = 1 + R(0), (3.33)

with

R(0) :=
A∑

i=1

Li(0,ψ1,ψ2,ψ3,ψ4). (3.34)

Below, we prove that

R(p0) = R(0) + O(|p0/h̄|), as |p0/h̄| → 0, (3.35)

which proves the theorem in view of Eqs. (3.30) and (3.33).
We proceed to prove Eq. (3.35). Without losing generality,

we can assume that

L1(p0,ψ1,ψ2,ψ3,ψ4)

= L(T (p2/2m)ϕin,p0 ,ϕin,p0 ,ϕin,p0 ,ϕin,p0 ). (3.36)

We have that

L1(p0,ψ1,ψ2,ψ3,ψ4)

= L(T (p2/2m)ϕin,ϕin,p0 ,ϕin,p0 ,ϕin,p0 )

+L(T (p2/2m)(ϕin,p0 − ϕin),ϕin,p0 ,ϕin,p0 ,ϕin,p0 ). (3.37)

By Eqs. (3.14), (3.25), (3.28), and (3.37),

L1(p0,ψ1,ψ2,ψ3,ψ4) = L(T (p2/2m)ϕin,ϕin,p0 ,ϕin,p0 ,ϕin,p0 )

+O(|p0/h̄|), as |p0/h̄| → 0.

(3.38)

In the same way, using Eqs. (3.13), (3.26), and (3.38), we prove
that

L1(p0,ψ1,ψ2,ψ3,ψ4) = L(T (p2/2m)ϕin,ϕin,ϕin,p0 ,ϕin,p0 )

+O(|p0/h̄|), as |p0/h̄| → 0.

(3.39)

Repeating this argument two more times, we obtain that

L1(p0,ψ1,ψ2,ψ3,ψ4)

= L(T (p2/2m)ϕin,ϕin,ϕin,ϕin) + O(|p0/h̄|)
= L1(0,ψ1,ψ2,ψ3,ψ4) + O(|p0/h̄|), as |p0/h̄| → 0.

(3.40)

We prove in the same way that

Lj (p0,ψ1,ψ2,ψ3,ψ4) = Lj (0,ψ1,ψ2,ψ3,ψ4) + O(|p0/h̄|),
2 � j � A, as |p0/h̄| → 0. (3.41)

Equation (3.35) follows from Eqs. (3.30), (3.31), (3.33), (3.34),
(3.40), and (3.41). �

We now compute the leading order of the purity of ϕout. We
denote

T1(p2/2m) := S(p2/2m) − I − i|p/h̄| 
0
1 + |p/h̄|2 
0

2 .

(3.42)

It follows from Theorem 2.2 that

‖T1(p2/m)‖B(L2(S2)) �
{|p/h̄|2o(1), if β > 5

|p/h̄|2O(|p/h̄|), if β > 7
, (3.43)

where o(1) and O(|p/h̄|) are bounded functions of |p/h̄|,
lim|p/h̄|→0 o(1) = 0, and O(|p/h̄|) � C|p/h̄| for |p/h̄| � 1.

Theorem 3.3. Suppose that Assumption 2.1 is satisfied and
that at zero Hrel has neither a resonance (half-bound state) nor
an eigenvalue. Then, as σ/h̄ goes to zero,

P(ϕout) = P
([

I + i|p/h̄| 
0
1 − |p/h̄|2 
0

2

]
ϕin

)
+

{
o(|σ/h̄|2), if β > 5

O(|σ/h̄|3), if β > 7
. (3.44)

Proof: We write ϕout as follows:

ϕout = ϕout,1 + T1(p2/2m)ϕin,

where

ϕout,1 := [
I + i|p/h̄| 
0

1 − |p/h̄|2 
0
2

]
ϕin. (3.45)

Using this decomposition, we write P(ϕout) as follows:

P(ϕout) = P(ϕout,1) + R(σ ), (3.46)

where R(σ ) is given by

R(σ ) :=
B∑

i=1

Li(σ,ψ1,ψ2,ψ3,ψ4), (3.47)
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for some integer B, and where each of the Li(σ,ψ1,ψ2,ψ3,ψ4)
is equal to

Li(σ,ψ1,ψ2,ψ3,ψ4) = L(ψ1,ψ2,ψ3,ψ4), (3.48)

where for some 1 � k � 4, k of the ψj are equal to ϕout,1 and
the remaining 4 − k are equal to T1(p2/2m)ϕin.

We proceed to prove that as σ/h̄ goes to zero,

R(σ ) =
{
o(|σ/h̄|2), if β > 5

O(|σ/h̄|3), if β > 7
, (3.49)

which proves the theorem in view of Eq. (3.46). Without any
loss of generality, we can assume that

LB(σ,ψ1,ψ2,ψ3,ψ4) = L[ϕout,1,ϕout,1,ϕout,1,T1(p2/2m)ϕin].

(3.50)

By Eqs. (3.28) and (3.43), we have that

LB(σ,ψ1,ψ2,ψ3,ψ4) =
{
o(|σ/h̄|2), if β > 5
O(|σ/h̄|3), if β > 7

. (3.51)

We complete the proof of Eq. (3.49) estimating the remaining
terms in Eq. (3.47) in the same way. �

We denote by

μi = mi

m1 + m2
,i = 1,2 (3.52)

the ratio of the mass of the i particle to the total mass. It follows
from Eqs. (2.16) and (2.17) that

p1 = μ1pcm + p, (3.53)

p2 = μ2pcm − p, (3.54)

and that

ϕin = 1

(σ 2π )3/2
e
− μ2

1+μ2
2

2σ2 p2
cm e

− p2+(μ1−μ2)pcm ·p
σ2 . (3.55)

By a simple computation using Eqs. (3.45) and (3.53)–(3.55),
we prove that

P
([

I + i|p/h̄| 
0
1 − |p/h̄|2 
0

2

]
ϕin

)
= 1 − (σ/h̄)2[P1(ψin) + P2(ψin)]

+O((σ/h̄)3) as σ/h̄ → 0, (3.56)

where

P1(ψin) = 
3
j=1P1,j (ψin) (3.57)

with

P1,1(ψin) = −2
∫

dq1dq2dq3 |μ2q1 − μ1q2| |μ2q3 − μ1q2|

× (

0

1ψ(q1,q2)
) (


0
1ψ(q3,q2)

)
ψ(q1,q3),

(3.58)

P1,2(ψin) = −2
∫

dq1dq2dq3 |μ2q1 − μ1q2| |μ2q1 − μ1q3|

× (

0

1ψ(q1,q2)
) (


0
1ψ(q1,q3)

)
ψ(q2,q3),

(3.59)

P1,3(ψin) = 2

[ ∫
dq1dq2 |μ2q1 − μ1q2|

× (

0

1ψ(q1,q2)
)
ψ(q1,q2)

]2

, (3.60)

and

P2(ψin) = 4
∫

dq1dq2 |μ2q1 − μ1q2|2

× (

0

2ψ(q1,q2)
)
ψ(q1,q2). (3.61)

Explicitly evaluating the integrals in Eqs. (3.58)–(3.60) using
Eq. (3.55) and μ2 = 1 − μ1, we prove that

P1,1(ψin) = −8
c2

0σ
2

h̄2 J (μ1,1 − μ1), (3.62)

P1,2(ψin) = −8
c2

0σ
2

h̄2 J (1 − μ1,μ1), (3.63)

P1,3(ψin) = 8
c2

0σ
2

h̄2 [L(μ1,1 − μ1)]2, (3.64)

where

J (μ1,μ2) := 1

π9/2

∫
dq2

{ ∫
dq1|μ2q1 − μ1q2|

× exp

[
− 1

2

(
μ2

1 + μ2
2

)
(q1 + q2)2

− (μ2q1 − μ1q2)2 − q2
1/2

]

× sinh[(μ1 − μ2) |q1 + q2| |μ2q1 − μ1q2|]
(μ1 − μ2) |q1 + q2| |μ2q1 − μ1q2|

}2

,

(3.65)

and

L(μ1,μ2)

:= 1

π3

∫
dq1 dq2|μ2q1 − μ1q2|

× exp
[−(

μ2
1 + μ2

2

)
(q1 + q2)2 − 2(μ2q1 − μ1q2)2]

× exp[−(μ1 − μ2)(q1 + q2) · (μ2q1 − μ1q2)]

× sinh[(μ1 − μ2) |q1 + q2| |μ2q1 − μ1q2|]
(μ1 − μ2) |q1 + q2| |μ2q1 − μ1q2| . (3.66)

Furthermore,

P2(ψin) = 8
c2

0σ
2

h̄2 N (μ1,1 − μ1), (3.67)

where

N (μ1,μ2) : = 1

π3

∫
dqcm dq q2exp

[ − (
μ2

1 + μ2
2

)
q2

cm−2q2

− (μ1 − μ2)qcm · q
] sinh[(μ1 − μ2) |qcm| |q|]

(μ1 − μ2) |qcm||q| .

(3.68)

Note that the second and third term in the right-hand side of
Eq. (2.30) give no contribution to N (μ1,μ2), because as Y1(ν)
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is an odd function, the integrals of these terms are zero. By
Eqs. (3.44), (3.56), (3.57), (3.62)–(3.64), and (3.67),

P(ϕout) = 1 − 8(c0σ/h̄)2{[L(μ1,1 − μ1)]2 + N (μ1,1 − μ1)

− J (μ1,1 − μ1) − J (1 − μ,μ1)}

+
{

o(|σ/h̄|2), if β > 5

O(|σ/h̄|3), if β > 7
. (3.69)

In the Appendix, we prove by explicit computation that

L(μ1,1 − μ1) =
√

2

π
[1 + (2μ1 − 1)2]−1/2, (3.70)

N (μ1,1 − μ1) = 1

2(2μ1 − 1)2

1√
1 + (2μ1 − 1)2

×{[1 + (2μ1 − 1)2]3/2 − 1}, (3.71)

N (1/2,1/2) = 3/4. (3.72)

We denote by E(μ1) the entanglement coefficient

E(μ1) := 8{[L(μ1,1 − μ1)]2 + N (μ1,1 − μ1)

− J (μ1,1 − μ1) − J (1 − μ1,μ1)}. (3.73)

By Eqs. (3.70) and (3.71),

E(μ1) := 16

π [1 + (2μ1 − 1)2]

+ 4

(2μ1 − 1)2

[1 + (2μ1 − 1)2]3/2 − 1√
1 + (2μ1 − 1)2

− 8J (μ1,1 − μ1) − 8J (1 − μ1,μ1). (3.74)

Thus, we have proven the following theorem.
Theorem 3.4. Suppose that Assumption 2.1 is satisfied and

that at zero Hrel has neither a resonance (half-bound state) nor
an eigenvalue. Then, as σ/h̄ goes to zero,

P(ϕout) = 1 − (c0σ/h̄)2E(μ1) +
{

o(|σ/h̄|2), if β > 5

O(|σ/h̄|3), if β > 7
,

(3.75)

where the entanglement coefficient E(μ1) is given by
Eq. (3.74).

Proof: The theorem follows from Eqs. (3.69)
and (3.73). �

In the Appendix, we explicitly evaluate J (1/2,1/2),

J (1/2,1/2) = 3

2
+ 1

π

[√
27

4
− 3 arctan

(
1

2 − √
3

)]
= 0.663497. (3.76)

By Eqs. (3.74) and (3.76) for μ1 = 1/2, when the masses are
equal, the entanglement coefficient is given by

E(1/2) = 0.4770. (3.77)

We also explicitly evaluate in the Appendix J (1,0),

J (1,0) = 2

(
1 + 1√

3
−

√
2

)
= 0.32627. (3.78)

For μ1 ∈ [0,1] \ {1/2,1}, we compute J (μ1,1 − μ1) numer-
ically using Gaussian quadratures. In Table I and Fig. 1, we
give values of E(μ1) for 0.5 � μ1 := m1/(m1 + m2) � 1.

Remark 3.5. Note that there is no term of order σ/h̄ in
Eq. (3.75). Actually, the terms of order σ/h̄ cancel each other
because of the complex conjugates in the definition of the
purity in Eq. (3.1) and of the factor i in the second term in
the right-hand side of Eq. (2.28) that is there because of the
unitarity of the scattering matrix. This shows that for low
energy the entanglement is a second-order effect.

Remark 3.6. Remark that E(μ1) = E(1 − μ1), which im-
plies that the leading order in Eq. (3.75) is invariant under
the change μ1 ↔ 1 − μ1, as it should be, because P(ϕout) is
invariant under the exchange of particles one and two.

Remark 3.7. As we mentioned in Remark 3.5, at low energy
the entanglement is a second-order effect. As can be seen
in Theorem 2.2, for low energy the scattering is isotropic
at first order and is determined by the scattering length c0.
However, the effects of the anisotropy of the potential appear
at second order. It is quite remarkable that these effects give
no contribution to the evaluation of N (μ1,μ2), as mentioned
above. It follows from this that the leading order of the
entanglement for low energy [Eq. (3.75)] is determined by the
scattering length c0, and that the anisotropy of the potential
plays no role, in spite of the fact that entanglement is a
second-order effect.

IV. CONCLUSIONS

We considered the entanglement creation in the low-energy
scattering of two particles of mass m1,m2, in three dimensions
with the interaction given by potentials that are not required
to be spherically symmetric. Initially, the particles are in a
pure state that is a product of two normalized Gaussian states
with the same variance σ but opposite mean momentum. The
entanglement creation by the collision was measured by the
purity P of one of the particles in the state after the collision.
Before the collision, the purity is one. We gave a rigorous
computation, with error bound, of the leading order of the
purity P at low energy. Namely, we proved that the leading
order of the purity is given by 1 − (c0σ/h̄)2E , where c0 is the
scattering length, and the entanglement coefficient E depends
only on the masses of the particles.

We proved that the entanglement takes its minimum when
the masses are equal and that it strongly increases with the
differences of the masses. There is no term of order σ/h̄ in the
leading order of the purity, which shows that for low energy
the entanglement is a second-order effect. As is well known,
for low energy the effects of the anisotropy of the potential
appear at second order. It was found that these effects give no
contribution to the evaluation of the leading order of the purity
and that the anisotropy of the potential plays no role, in spite
of the fact that entanglement is a second-order effect.
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APPENDIX

For the reader’s convenience, we compute in this Appendix
the integrals that we need in Sec. II. We first state some
elementary integrals that we need:∫ ∞

0
e−ax2

dx = 1

2

√
π

a
, a > 0, (A1)

∫ ∞

0
e−ax2

x2 dx = 1

4a

√
π

a
, a > 0, (A2)

∫ ∞

−∞
e−ax2−2bx dx =

√
π

a
eb2/a, a > 0, (A3)

∫ ∞

0
e−ax2−2bx dx = 1

2

√
π

a
eb2/a [1 − erf(b/

√
a)], a > 0,

(A4)

where erf(x) is the error function

erf(x) = 2√
π

∫ x

0
e−y2

dy. (A5)

Equation (A2) follows integrating by parts using
−(1/2a) ∂

∂x
e−ax2 = e−ax2

x and Eq. (A1). Equations (A3) and
(A4) follow from Eq. (A1), changing the variable of integration
to y = x + b/a,∫

1

(1 + x2)
√

(2 + x2)
dx

= arctan

(
1

x

)
+ arctan

(
x

2 − √
2 + x2

)
+ C. (A6)

We have that

∂

∂z
[erf(

√
z)]2 = 4

π

∫ 1

0
dy e−z(y2+1) .

Hence,

1 − [erf(
√

z)]2 =
∫ ∞

z

∂

∂z
[erf(

√
z)]2 = 4

π

∫ 1

0

e−z(y2+1)

y2 + 1
dy.

It follows that

[erf(z)]2 = 1 − 4

π

∫ 1

0

e−z2(y2+1)

y2 + 1
dy. (A7)

We first compute J (1/2,1/2). By Eq. (3.65),

J (1/2,1/2) = 1

4π9/2

∫
dq2 e−q2

2g(|q2|)2, (A8)

where

g(|q2|) :=
∫

dq1|q1 − q2| e−q2
1 dq1. (A9)

To evaluate Eq. (A9), we take a system of coordinates
where q2 = (|q2|,0,0), we do the change of coordinates
(q1,1,q1,2,q1,3) → (q1,1 − |q2|,q1,2,q1,3), and we compute the
integral in spherical coordinates to obtain

g(|q2|) = π e−|q2|2

|q2|
∫ ∞

0
e−ρ2

ρ2 (e2|q2|ρ − e−2|q2|ρ). (A10)

After repeated integrations by parts using −(1/2a) ∂
∂ρ

e−aρ2 =
e−aρ2

ρ and Eq. (A4), we prove that

g(|q2|) = π3/2

2|q2| erf(|q2|)(1 + 2|q2|2) + πe−|q2|2 . (A11)

Introducing Eq. (A11) into Eq. (A8) and passing to spherical
coordinates, we obtain

J (1/2,1/2)

= 1

π7/2

∫ ∞

0
ρ2 e−ρ2

[
π3/2

2ρ
erf(ρ)(1 + 2ρ2) + πe−ρ2

]2

dρ.

(A12)

After expanding the square in the right-hand side of Eq. (A12),
several integration by parts using −(1/2a) ∂

∂ρ
e−aρ2 = e−aρ2

ρ

and Eqs. (A1), (A2), (A6), and (A7), we obtain that

J (1/2,1/2) = 3

2
+ 1

π

[√
27

4
− 3 arctan

(
1

2 − √
3

)]
= 0.663497. (A13)

We now compute J (1,0). By Eq. (3.65),

J (1,0) = 1

4π9/2

∫
dq2q2

2 e−2q2
2 [h(q2)]2, (A14)

where

h(q2) =
∫

dq1 e−(q1+q2)2/2 e−q2
1/2 e|q1+q2| |q2| − e−|q1+q2| |q2|

|q1 + q2| |q2| .

(A15)

Changing the integration coordinate in Eq. (A15) to Q = q1 +
q2, we obtain

h(q2) = e−q2
2/2

∫
dQ e−(Q)2 e|Q| |q2| − e−|Q| |q2|

|Q| |q2| eQ·q2 . (A16)

Using spherical coordinates and doing the integration in the
angular variables, we get

h(q2) = 2π

|q2|2 e−q2
2/2

∫ ∞

0
dρ e−ρ2

[e2ρ |q2| + e−2ρ |q2| − 2]

= 2π

|q2|2 e−q2
2/2

∫ ∞

−∞
dρ e−ρ2

[e2ρ |q2| − 1]. (A17)

By Eqs. (A1) and (A3),

h(q2) = 2π3/2

|q2|2 e−q2
2/2

(
eq2

2 − 1
)
. (A18)

Introducing Eq. (A18) into Eq. (A14) and performing the
remaining integrals with the aid of Eq. (A1), we prove that

J (1,0) = 2

(
1 + 1√

3
−

√
2

)
= 0.32627. (A19)
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We proceed to compute L(μ,1 − μ1). Using spherical coordi-
nates and performing the integrals in the angular variables, we
prove that for μ1 �= μ2,

L(μ1,μ2) = 4

(μ1 − μ2)2π

∫ ∞

0
dλ λ e−2λ2

×
{ ∫ ∞

−∞
e−(μ2

1+μ2
2)ρ2

[e2(μ2−μ1)λρ − 1]dρ

}
.

(A20)

By Eqs. (A1) and (A3), and integrating by parts using
−(1/2a) ∂

∂ρ
e−aρ2 = e−aρ2

ρ, we prove that

L(μ1,1 − μ1) =
√

2

π
[1 + (2μ1 − 1)2]−1/2. (A21)

Finally, we compute N (μ1,1 − μ1). Using spherical coordi-
nates in Eq. (3.68) and evaluating the integrals in the angular
coordinates, we obtain for μ1 �= μ2 that

N (μ1,μ2) = 4

π (μ1 − μ2)2

∫ ∞

0
dλ λ2 e−2λ2

×
∫ ∞

−∞
e−(μ2

1+μ2
2)ρ [e2(μ1−μ2)λ ρ − 1]. (A22)

By Eqs. (A2) and (A3),

N (μ1,1 − μ1) = 1

2(2μ1 − 1)2

1√
1 + (2μ1 − 1)2

×{[1 + (2μ1 − 1)2]3/2 − 1}. (A23)

Taking the limit as μ1 → 1/2, we get

N (1/2,1/2) = 3/4. (A24)
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