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We consider design of the quantum stabilizer codes via a two-step, low-complexity approach based on the
framework of codeword-stabilized (CWS) codes. In this framework, each quantum CWS code can be specified
by a graph and a binary code. For codes that can be obtained from a given graph, we give several upper bounds
on the distance of a generic (additive or nonadditive) CWS code, and the lower Gilbert-Varshamov bound
for the existence of additive CWS codes. We also consider additive cyclic CWS codes and show that these
codes correspond to a previously unexplored class of single-generator cyclic stabilizer codes. We present several
families of simple stabilizer codes with relatively good parameters.
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I. INTRODUCTION

It was the invention of quantum error correcting codes
[1-3] (QECCs) that opened quantum computing (QC) as a
theoretical possibility. However, high precision required for
error correction [4-13] combined with the large number of
auxiliary qubits necessary to implement it have so far in-
hibited any practical realization beyond proof-of-the-principle
demonstrations [14-20].

In any QECC, one needs to perform certain many-body
quantum measurements in order to decide how to correct the
encoded state. The practical difficulty is that a generic code
requires measurements that are both complicated and frequent
at the same time. It is therefore clear that a quantum computer
can only be built via a thorough optimization at every step of
the design. In particular, code optimization targets codes that
combine good parameters with fairly simple measurements.
It is also desirable to parallelize these measurements given a
specific on-chip layout of a QC architecture.

To date, the main focus of the QECC-research has been on
finding good codes with the traditional code parameters, which
are the block length n, code dimension K, and code distance
d (or code rate R = (log, K)/n and the relative distance § =
d/n). For stabilizer codes [21,22], we also consider the number
of encoded qubits k = log, K.

A number of stabilizer codes [23] have been designed that
meet or nearly achieve the existing bounds on distance d for
the given k and n. Code parameters can be further refined by
going beyond the family of stabilizer codes. One example
is a recently introduced framework of codeword-stabilized
(CWS) quantum codes [24-27]. A qubit CWS code Q =
(G,C) (in standard form) is determined by a graph G and
a classical binary code C. CWS codes include all stabilizer
codes as a subclass (the corresponding binary code C must
be linear) but also the codes that have been proven to have
parameters superior to those of any stabilizer code [25,28-32].
Unfortunately, typical gains in code dimension K correspond
to a fraction of a qubit. Moreover, error-correcting algorithms
known for general nonadditive CWS codes have exponential
complexity [33,34], as opposed to polynomial complexity of
the stabilizer codes.
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Even for the relatively simple additive codes, their op-
timization is a very difficult problem that has exponential
complexity. This is one of the main reasons as to why the two
relatively simple code families are almost exclusively used
among stabilizer codes to estimate the threshold accuracy
required for scalable quantum computation: the concate-
nated codes [4,5,7-12] and the surface codes [6,13], which
originated from the toric codes [35]. Both families have
very low code rates that scale as inverse powers of code
distance.

In this work, we explore how the framework of CWS codes
can be used to relegate the design of quantum stabilizer codes
to classical binary linear codes in order to simplify the overall
design. In particular, we formulate several theorems framing
the parameters of an additive CWS code, which can be obtained
from a given graph. We also suggest a simple decomposition
of the 4 generator matrix corresponding to the stabilizer in
terms of the graph adjacency matrix and the parity check
matrix of the binary code. Finally, we design several graph
families corresponding to regular lattices, which result in some
particularly good codes. These include graphs with circulant
adjacency matrix, which can be used to construct single-
generator cyclic additive codes, a class of codes overlooked
in previous publications. In particular, we prove the existence
of single-generator cyclic additive codes with the parameters
[[km,k,m]],k > 10,and [[t? + (t + 1)?,1,2¢ + 1]] (version of
toric codes). Note that these code families have distances that
are not bounded, unlike any CWS code families constructed
previously [25,36].

The paper is organized as follows. In Sec. II, we introduce
the notations and briefly review some known results for
quantum and classical codes. In Sec. III, we establish several
upper bounds on general CWS codes. In Sec. IV, we give a
CWS decomposition of the [F4 matrix corresponding to the
stabilizer generators. In Sec. V, we formulate the Gilbert-
Varshamov (GV) bounds for additive CWS codes, which
can be obtained from a given graph. Cyclic additive CWS
and more general single-generator additive cyclic codes are
considered in Sec. VI, where we discuss their properties
and give several examples. We give our conclusions in
Sec. VIL
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II. NOTATIONS AND SOME KNOWN RESULTS

A. Classical and quantum error correcting codes

A classical g-ary block error-correcting code (n,K,d), is
a set of K length-n strings over an alphabet with ¢ symbols.
Different strings represent K distinct messages that can be
transmitted. The (Hamming) distance between two strings is
the number of positions where they differ. Distance d of the
code C is the minimum distance between any two different
strings from C.

In the case of linear codes, the elements of the alphabet
must form a Galois field IF; all strings form n-dimensional
vector space IF{;'. A linear error-correcting code [n,k,d], is a
k-dimensional subspace of I/. The distance of a linear code
is just the minimum weight of a nonzero vector in the code,
where weight wgt(c¢) of a vector ¢ is the number of nonzero
elements. A basis of the code is formed by the rows of its
generator matrix G. All vectors that are orthogonal to the
code form the corresponding (n — k)-dimensional dual code,
its generator matrix is the parity-check matrix H of the original
code.

For a binary code C[n,k,d], the field is just F, = {0,1}. For
a quaternary code C, the field is Fy = {0,1,w,®}, with

W =w+1, &®=1, and =’ (1)

For nonbinary codes, there is also a distinct class of
additive classical codes, defined as subsets of IF;,’ closed
under addition (in the binary case these are just linear
codes). A code C is cyclic if inclusion (cg,c1, - - ,¢—1) € C
implies that (c¢,_1,cp,c1, .. .,cn—2) € C. Codes that are both
linear and cyclic are particularly simple: by mapping vectors
to polynomials in the natural way, ¢ — c(x) = co+ c1x +
...+ c,_1x"7!, it is possible to show that any such code
consists of polynomials that are multiples of a single generator
polynomial g(x), which must divide x” — 1 (using the algebra
corresponding to the field IF;). The quotient defines the check
polynomial h(x)

h(x)g(x) = x" — 1, 2

which is the generator polynomial of the dual code. The
degree of the generator polynomial is deg g(x) = n — k. The
corresponding generator matrix G can be chosen as (the first
k rows of) the circulant matrix formed by subsequent shifts of
the vector that corresponds to g(x).

Qubit quantum error correcting codes are defined in the
complex Hilbert space Hf’”, where H, is the Hilbert space of
a single two-level system. H; is formed by all vectors «|0) +
B|1) with a,8 € C, and the inner product such that the two
states are orthonormal, (i|j) = §;;, ,j € {0,1}. Any operator
acting in H?" can be represented as a linear combination of
Pauli operators, which form the n-qubit Pauli group &, of
size 2212

P, =i"{1,X,Y,Z}*", m=0,....3, 3)
where X, Y, and Z are the usual Pauli matrices, and [/ is the
identity matrix. The weight wgt(E) of a Pauli operator E is
the number of nonidentity terms in the corresponding tensor
product.
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All Pauli operators are unitary; they are also Hermitian
with eigenvalues 1 when the phase factor i” in Eq. (3) is
real-valued, m = 0,2. A state |) is stabilized by a Hermitian
Pauli operator M if M |yr) = |v). Alinear space Q is stabilized
by a set of operators M if each vector in Q is stabilized by
every operator in M.

An ((n,K,d)) quantum error-correcting code is a K-
dimensional subspace of the Hilbert space H?". Such a
subspace can be described by an orthonormal basis {|i) le I
Let £ C &2, be some set of Pauli errors. A QECC detects all
errors E € £ if and only if [21,37]

(JIE]i) = CEdij “4)

where Cg only depends on the error E but is independent
of the basis vectors. A QECC has distance d if it can detect
all Pauli errors of weight (d — 1) but not all errors of weight
d. The errors in the set £ can be corrected if and only if
all the nontrivial pairwise combinations of errors from £ are
detectable [2,3]. Thus, a distance-d code corrects all errors of
weight s <t = |(d — 1)/2].

The code Q is nondegenerate if linearly independent
errors from & produce corrupted spaces E(Q) = {E|y) :
|Yr) € Q} that are linearly independent. Otherwise, the code
is degenerate, implying the existence of at least two mutually
degenerate linearly independent operators {E1,E,} € £ that
act identically on Q.

The code is called pure if linearly independent errors from £
produce corrupted spaces that are not only linearly independent
but also mutually orthogonal. For all codes considered in this
work, nondegenerate codes are also pure [22,34].

Two codes are considered equivalent if they differ just by
qubit order, and/or discrete rotations leaving each of the single-
qubit Pauli groups invariant. The latter are called local Clifford
(LC) transformations.

B. Stabilizer quantum error correcting codes

Here we briefly review the well-known family of stabilizer
codes [21]. An [[n,k,d]] stabilizer code Q is a 2¥-dimensional
subspace of the Hilbert space H$" stabilized by an Abelian
group . C &, with n — k Hermitian Pauli generators, . =

(G1,...,Gu—). Explicitly,

Q={ly):Sly)=1y¥),

Such a code exists only if —1 ¢ .. The group . is called the
stabilizer of the code. Changing the sign(s) of one or several of
the generators G; results in replacing Q with one of 2" % — 1
equivalent codes whose direct sum (together with Q) is the
entire space &,,.

The normalizer of . is a set of Pauli operators generating
unitary transformations that leave .% invariant:

VS e 7). (5)

N ={UeP, :U'SU=SVSec.¥}. (6)

Elements of the normalizer form a group commuting with .%
but not necessarily with each other. It is possible to construct
2k logical operators Yj, 71-, Jj = 1---kbelonging to &, with
the usual commutation relations that generate the normalizer
when the generators of . are included [21,38]. The Abelian
subgroup of A", .S = (G, '--Gn_k,z "‘71(), becomes a
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maximal Abelian subgroup of &2, when the generator i1 is
also included.
The group . stabilizes a unique stabilizer state |s) =

|0---0), an [[r,0,d']] stabilizer code, while the operators X;
generate the basis of the code, i.e.,

lcr ) =X, - X ) (N

By convention, the stabilizer state is considered nondegener-
ate, and its distance d’ is the minimum weight of a nontrivial
member of the group .%.

For stabilizer codes, phases of (Hermitian) Pauli operators
are only needed to choose one of the equivalent codes in
Eq. (5), as well as to introduce the commutation relations.
It is convenient to drop the phases and map the Pauli operators
to two binary strings, v,u € {0,1}" [22],

U=i"X"Z" - (v,u), (8)

where XV = X|"X}*--- X!, Z" = Z"Z5*--- Z!, and m' =
0---3 is generally different from that in Eq. (3). This
map preserves the operator algebra, with a product of two
Pauli operators U; and U, corresponding to a sum of the
corresponding binary vectors (vy,u;) and (v,,up).

The map of Eq. (8) can be taken one step further [22] to
quaternary codes by introducing IFy vectors € = u + wv [see
Eq. (1); note that this mapping differs slightly from that in
Ref. [22]]. We will denote this combined map as a function
e = ¢(U). Note that up to a phase this association also allows
us to define ¢! (e). To be specific, for the Pauli operator )
we will set m’ = v - u in Eq. (8), which corresponds to m = 0
in Eq. (3).

It is easy to check that two Pauli operators commute if
and only if the symplectic scalar product v -u; +u; - v,
vanishes (mod 2). In terms of the corresponding {e;,e;} C Fy,
this corresponds to the vanishing of the trace inner product

e ke =e;-€ 1 e ey, &)

where e; =u; + wv;,i =0,1.
A dual code to an additive F4 code C (equipped with trace
inner product) is defined as [22]

C.={e¢cF}:exe=0,forallec C}. (10)

If C € C,, one says C is self-orthogonal. A classical additive
code C corresponding to a set of operators .7 is self-
orthogonal if and only if .%] is an Abelian group. Thus, any
quantum stabilizer code can be described as a self-orthogonal
classical additive code over F4. The following theorem is
applicable to additive 4 codes (variant of Theorem 2 from
Ref. [22]):

Theorem 1. Suppose C is an additive self-orthogonal code
in [F, containing 2n—k yectors, such that there are no vectors
of weight < d in C, \ C. Then ¢~!(C) defines a stabilizer of
an additive QECC with parameters [[n,k,d]].

Example 1. The well-known Calderbank-Shor-Steane
(CSS) [[7,1,3]] code [39,40] has the stabilizer with the
generators [21]

XXXXIII,
ZZZ7ZI111,

XXIIXXI,
ZZI117Z71,

XIXIXIX,
ZIZIZIZ, (11)
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and the logical operators

X=27727777, 7=XXXXXXX. (12)

As any CSS code, this code is linear. Qubit permutations
also give an equivalent cyclic linear code with the generator
polynomial g(x) = 1 4+ x 4+ x> 4+ x*; g(x) is a factor of x” —
1. The corresponding check polynomial is 4(x) = 1 4+ x + x3.

C. Codeword stabilized codes

CWS codes [25] represent a general class of nonadditive
QECC:s. A general CWS code is defined in terms of a stabilizer
state |s) and a set of K mutually commuting codeword
operators W = {W;}X | ¢ 2,. Explicitly [cf. Eq. (7)],

Q = span ({W;[s)},). (13)

For nontrivial CWS codes, this construction coincides with
union-stabilizer (USt) codes [41], restricted to the zero-
dimensional originating code.

Any stabilizer state is LC-equivalent to a graph state [42—
45], a stabilizer state with the stabilizer group /g = (S - - - S»)
whose generators S; are determined by the adjacency matrix
R € {0,1}"" of a (simple) graph G,

S = X, Z", (14)

where r;, i = 1---n denotes the i-th row of R. In fact, such
a graph is usually not unique, even after accounting for graph
isomorphisms. The full set of LC-equivalent graph states
can be generated by a sequence of local complementations,
operations on a graph where the subgraph corresponding to a
neighborhood of a particular vertex is inverted. Such graphs
are called locally equivalent [46].

Any CWS code ((n,K,d)) is LC equivalent to a CWS code
in standard form, defined by an order-n graph G and a classical
binary code C containing K binary words. The graph defines
the graph state, while the vectors of the classical code ¢; € C
are used to generate the codeword operators, W; = Z%. Thus,

Q = span ({Z|s)}K ). (15)

It is customary to use notation Q = (G,C) for CWS codes in
standard form.

The key simplification of the CWS construction comes from
the fact that the basis states W; |s) are eigenvectors of the graph
stabilizer generators,

SiWi |S) = :|:Wi |S) , Sl' (S yg. (16)

Thus, a Pauli operator in the form of Eq. (8) can be transformed
to a Z-only operator Z%9Y) where the graph image of the
operator U is the binary vector

Clg(U) =u+ ) _vir; (mod2). (17)
i=1

The error correcting properties of a quantum CWS code
0 =(G,0) and the classical code C are related by the

following:
Theorem 2. (after Theorem 3 from Ref. [25]) Consider a
CWS code Q = (G,C). An error E such that Clg(E) # 0, is
detectable in Q if and only if the binary vector Clg(E) is
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detectable within the code C. An error E such that Clg(E) = 0
is detectable in Q if and only if Z°FE = EZ forallc € C.

The case Clg(E) # 0 corresponds to pure (nondegenerate)
errors, while Clg(E) = 0 indicates that the error is in the graph
stabilizer group .7; the corresponding detectability condition
is a requirement that the error must be degenerate.

While in general CWS codes are nonadditive, they include
all stabilizer codes as a subclass. A CWS code Q = (G,0)
is additive if C is a linear code [25]. The stabilizer . of an
additive CWS code in standard form is a subgroup of the graph
stabilizer .#3; it can be obtained from the graph-stabilizer
generators by a symplectic Gram-Schmidt orthogonalization
procedure [34]. Conversely, the representation Eq. (7) of an
additive code corresponds to a general CWS code; an LC
transformation may be needed to obtain the corresponding
standard form, and one can always find a standard form where
C is linear [26]. In the following we will always assume such
a representation.

Example 2. The smallest single-error-correcting code is the
linear cyclic [[5,1,3]] code [3,47,48] with the generator poly-
nomial g(x) =1+ wx + wx? + x3, which divides x° — 1.
The corresponding check polynomial is #(x) = 1 + wx + x°.
This code is unique; its stabilizer generators can be obtained
as cyclic permutations of a single operator, XZZ X1, and the
logical operators are

X=2Z7Z77Z, Z=XXXXX. (18)

The corresponding CWS code [25] can be generated from the
five-ring graph in Fig. 1 (left), and the binary code has a single
generator ¢ = (11111). Note that both the graph and the binary
code preserve the original cyclic symmetry.

Example 3. There exist only two inequivalent single-
correcting codes [[6,1,3]]; both are degenerate [39]. One of
the codes is obtained from the code in Example 2 by adding
a qubit; the graph of the corresponding CWS code can be
chosen as a five-ring [Fig. 1, left] and a disconnected vertex
i = 6; the binary code C is generated by ¢ = (111110). The
degeneracy group is generated by S¢ = X¢. The stabilizer
generators for the second code are listed in Ref. [39]. This code
corresponds to the graph in Fig. 1 (center), while the binary
code is generated by ¢; = (011100). While there are three bits
that are not involved with the classical code, they cannot be
dropped as they are part of the entangled state. The degeneracy
group is generated by 5,5, = XX, (the equivalence follows
from the fact that the first two vertices of G share all of their
neighbors).

S 3 5

FIG. 1. Left: five-ring graph corresponding to the [[5,1,3]] code
in Example 2. Center: “Kite” graph corresponding to the degenerate
code [[6,1,3]] from Example 3. Right: The graph corresponding to
the cyclic [[7,1,3]] code from Example 4.
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TABLE I. Families of the cyclic codes obtained numerically
from k copies of the classical repetition code, p(x)=x" —1,
corresponding to m = 3,5,7. The expected distance saturation, d =
m, is reached already at k£ < 4, even for k and m different from
those in Example 12. The operator strings in the last column are
representative graph-state generators (the remaining generators are
obtained by cyclic shifts).

m n k d S
3 6 2 2 7ZXZ
9 3 3 ZXZ
12 3 3 zZXZ7Z
5 5 1 3 ZXZ
10 2 3 ZX7Z
15 3 5 ZIZIIXIIZIZ
20 4 5 ZIZZXZZIZ
25 5 5 Z17Z7ZXZ7Z17Z
7 7 1 3 zZXZ7Z
14 2 5 ZZIXIZZ
21 3 6 ZIZZXZZIZ
28 4 7 ZI17ZZIXIZZI1Z

Example 4. The linear cyclic [[7,1,3]] CSS code from the
Example 1 is LC equivalent to a CWS code with the graph
in Fig. 1 (Right). The corresponding classical code is given
by C = {0000000,1110000}. Note that neither the graph nor
the binary code is explicitly symmetric with respect to cyclic
permutations of the qubits. Note also that an inequivalent CWS
cyclic [[7,1,3]] code exists; we constructed such a code among
others in Example 12, see Table I.

III. UPPER BOUNDS FOR CWS CODES

In this section we give upper bounds on general CWS codes
in terms of the properties of the corresponding graph G and
the binary code C.

Lemma 1. The distance d of the CWS code QO = (G,C)
cannot exceed that of C.

Proof. Indeed, any “classical” error in the form E = i" Z"
is mapped by Eq. (17) to the binary vector u. If E is detectable
by Q, u should be detectable by C. [ ]

Lemma 1 concerns with errors which are dealt with by
the binary code. On the other hand, a CWS code is an
enlargement of the code formed by the graph state. The
following observation has been made in Ref. [32,36]:

Lemma 2. The distance d of a nondegenerate CWS code
((n,K,d))is limited by the distance d’(G) of the graph stabilizer
state, d < d'(G).

It follows from the fact that any member of the graph
stabilizer is either a degenerate error, or it is a nondetectable
error. Note, however, as illustrated by the Example 3, in
general, the distance of a CWS code can actually be bigger
than that of the graph stabilizer state.

For a binary code C, we will say that the j-th bit is involved
in the code if there are vectors in the code for which the value
of j-thbitdiffer, ] # cj. Alternatively, if the all-zero vector 0
is in the code (which can always be arranged), the condition is
that there is a vector ¢ € C where j-th bit is nonzero, ¢/ # 0.
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Lemma 3. For a CWS code Q = (G,C) with K > 1, let us
assume that j-th bit is involved in the code C. Then the graph-
stabilizer generator S; violates the error detection condition in
Theorem 2.

Proof. Since the generator §; is in the graph stabilizer,
Clg(S;) =0, one has to check the degenerate condition in
Theorem 2. The commutativity of S; with a given Z¢ is
determined by the j-th bit of ¢; conditions of the Lemma
ensure that only one of the two vectors commute with §;. =

Note that this means that the code distance cannot exceed
that of any S; corresponding to bits involved in the binary
code. Since at least d bits must be involved in the binary code,
Lemma 3 guarantees the following bound:

Theorem 3. The distance d of a CWS code Q = (G,C)
cannot exceed the d-th largest weight of S;, minimized over
all graphs that are locally equivalent to G.

We will also be using the following:

Corollary 3.1. For a graph G with all vertices of the same
degree r, the distance of a CWS code Q = (G,C) cannot exceed
r+1.

In particular, for any ring graph r = 2, which gives d < 3,
for any double-ring graph [26] d < 4, and for a large enough
square lattice wrapped into a torus, d < 5.

Obviously, to maximize the distance of a CWS code, one
may want to maximize the distance of the binary code C. To
this end, it is a good idea to make sure that every bit is involved
in C. For such codes, we have

Theorem 4. The distance of a CWS code Q = (G,C), where
the binary code C involves all bits, cannot exceed the minimum
weight of S;, minimized over all graphs that are locally
equivalent to G.

IV. ADDITIVE CWS CODES AND QUATERNARY CODES

The stabilizer of an additive CWS code Q = (G,C) is a
subgroup of the Abelian graph stabilizer .73, and its generators
G; € . can be expressed as products of graph stabilizer
generators S; [25,34]. Explicitly,

n
P
G =][s;". (19)
j=1

where P € {0,1}"7%*" is the corresponding matrix of binary
coefficients. With the help of Eq. (14), we obtain the following
decomposition for the generator matrix G of the associated
additive IF4 code C,

G =P (wl+R), (20)

where R € {0,1}"*" is the symmetric graph adjacency matrix
with zeros along the diagonal, and 1 is the n x n identity
matrix. The relation between the binary code C and the
quaternary code C is explicitly given by the following:

Lemma 4. The additive F, code C with the generator
matrix Eq. (20) is the map ¢(.¥) of the stabilizer .¥ of the
additive CWS code Q = (G,C) generated by the graph with
the adjacency matrix R and the linear binary code C, if and
only if P is the parity check matrix of C.
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Proof. Use the basis vectors in Eq. (15) and the commuting
operators in Eq. (19) corresponding to the rows of the matrix
G [Eq. (20)]. Direct calculation gives

Gi z¢ls) = [[ 7" z°ls) = (=" z°1s), @1
j=I

where summation over repeated indices is assumed. The
statement of the Lemma (both ways) follows from the
definition of the parity check matrix. [

We can now easily relate the error detection conditions
for additive codes in Theorems 1 (codes over [F4) and 2
(CWS codes). The code C in Theorem 1 is given by additive
combinations of the n — k rows of the generator matrix
Eq. (20). Evaluating the outer trace product of the generator
matrix Eq. (20) with a vector e = u + wv, we obtain the
condition for the vector to be in C |

0=G xe= P(u+ Rv). 22)

This uniform linear system of n —k equations with 2n
variables has n + k linearly independent solutions. The cor-
responding basis can be chosen as a set of k linearly inde-
pendent “classical” vectors e; = u;, where Pu; = 0 and the
corresponding v; = 0,7 = 1 -- -k, plus n linearly independent
vectors such thatu; = Rvj, j =k +1---k 4+ n. Some linear
combinations of the latter vectors are actually in C. These can
be found using the identity (C1); = C: the corresponding v;
have to satisfy u; - v; = 0, which precisely corresponds to the
degenerate case, Clg(E) = 0, in Theorem 2.

General theory of CWS codes guarantees that generator
matrix of a quantum code equivalent to any additive self-
orthogonal code over [F4 can be decomposed in the form of
Eq. (20). Conversely, any matrix in the form of Eq. (20) with
binary matrices P and R generates a self-orthogonal code
over [F4 as long as the matrix R is symmetric. We use it in the
following section to prove the lower Gilbert-Varshamov (GV)
bound for the parameters of an additive CWS code, which can
be obtained from a given graph.

V. GV BOUND FOR THE ADDITIVE CWS CODES
WITH A GIVEN GRAPH

The GV bound is a counting argument which noncon-
structively proves the existence of codes with parameters
exceeding a certain threshold. The argument is based on
the fact that the set of possible codes (vector spaces) vastly
outnumbers the set of vectors. Then, if we count all codes
of a given length n, and then subtract the number of codes
that contain any vector of weight d — 1 or less, the remaining
codes (if any) will all have distance d or more. This “greedy”
argument ignores any possible double counting of codes that
contain several small-weight vectors. Note that the GV bound
necessarily gives asymptotically good codes with relative
distance § = d/n and code rate R = k/n bounded away from
Oasn — oo.

For the entire class of pure stabilizer codes, the asymptotic
GV bound [49] states that there exist codes of length n — oo
such that

8log,3 + Hy(8) > 1 —R, (23)

062319-5



ALEXEY A. KOVALEYV, ILYA DUMER, AND LEONID P. PRYADKO

where H>(8) = —6log, § — (1 — 6)log,(1 — 8) is the binary
entropy function. We are going to prove that the same bound
also holds for pure CWS codes corresponding to a given graph
G, aslong as d < d'(G) [see Lemma 2]. We are using Eq. (20)
to parametrize the stabilizer matrices; the resulting [F4 codes
are automatically self-orthogonal. Let Nng « be the number of
CWS codes that have length n, dimension at least k, and
correspond to a given graph G. Let also Neg,n’ « be the number
of such codes that contain a given vector e = u + wv, wgte <
d'(G), in C, [see Eq. (20)]. The corresponding condition
Eq. (10) is given by the trace inner product [Eq. (22)]. For
wgte < d'(G), the binary vector ¢ = u + Rvis always nonzero
(which also guarantees thate ¢ C). As aresult, Ng ax and Nng «
represent the corresponding numbers for the binary codes. 7
Then, the standard counting arguments [50] show that

"= DN, =@ = DNY,. (24)

Here, we use the fact that each of 2" — 1 vectors ¢ belongs
to the same number Negn  of binary codes; also each of N/,

binary codes contains 2% — 1 nonzero vectors ¢. The number
of quaternary vectors of weight s is 3*("). Thus, for any graph
G, there exists a distance-d CWS code, as long as

d—1
sfn
N5n3k23 <s) < NY,. (25)
s=1

Now we see that there exist [[n,k,d]] CWS codes for the graph
G with distance

d = min{dgy ,dmax}, (26)

where dp, is the distance of the graph state d’(G) and

d—1

2" —1
dGV:maXd:Z3S<Z><2k_1' 27

s=1

Note that thus obtained quantum codes are always pure,
since the summation in the Lh.s. can only be extended up
to dmax — 1. Apart from this latter condition, Eq. (27) is
identical to the quantum Gilbert-Varshamov bound [49] for
pure stabilizer codes, and takes the asymptotic form of Eq. (23)
asn — oo.

The exact GV bound d > dgy for pure stabilizer codes
(without the restriction on the distance) is recovered if we
go over different graphs. Indeed, the GV bound Eq. (23)
also applies for the special case of k = 0, corresponding to
stabilizer states or self-dual codes [51]. The GV bound on the
relative distance is monotonous in k and reaches its maximum
at

Sr=0 ~ 0.189. 28)

Then, for given n and & < §;—, one can always find a
suitable graph such that the GV bound d < dgy becomes more
restrictive than the condition d < diax.

In practice, graphs with large distance d’(G) are complicated
(have too many edges). It is much easier to come up with
graph families corresponding to a fixed graph-state distance
d'(G). For n — oo, the corresponding code families approach
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FIG. 2. (Color online) Square-lattice additive CWS code
[[25,4,4]]. Circles represent the qubits. All k = 4 translations of the
empty-circle pattern form the classical codewords ¢;. The generators
of the stabilizer are formed as the products of the graph-state stabilizer
generators along the directions parallel to the dashed lines.

the maximum rate R = 1 and have asymptotic redundancy
r = n — k defined by Eq. (27):

r < dlogy3+nHy(d/n). (29)

It is readily verified that the r.h.s of Eq. (29) has the order of
dlog,(3n/d) if d = const and n — oo.

Example 5. Graphs in the form of sufficiently large finite
square lattice fragments [Fig. 2] have maximum distance
dmax = 5, but this requires that the bits in the corners and
around the perimeter not be involved in the classical code.
Somewhat better redundancy can be achieved by avoiding only
the bits in the corners, which gives dpn.x = 4. Consider the
family of classical codes, where the codewords are obtained
by taking all translations of the pattern shown in Fig. 2
with open symbols. The weight of any linear combination
of such codewords is at least 4. The lattice shown corresponds
to the code [[25,4,4]], while general m, x m, lattice gives
the code with the parameters [[m, m,,(m, — 3)(m, — 3),4]].
Asymptotically, the redundancy for m, =m, is n —k ~
6n'/?, n — oo, which is bigger than the logarithm in Eq. (29).
However, the fraction of auxiliary qubits vanishes as
1/n'/? for large n. The code distance can be increased with
higher-dimensional generalizations, e.g., we can generalize
this construction to D-dimensional hypercubic lattice with
2D nearest neighbors so that the distance is d = 2D in full
analogy with the two-dimensional case. The corresponding
redundancy will scale with the area of the boundary.

While the code in Fig. 2 serves as a good illustration of
the concept of lattice codes with simple stabilizer structure,
it is still far from optimal. On the 5 x 5 square lattice
we have constructed numerically a code [[25,9,5]] with
weight-7 codewords, which can be mapped into each other
by translations and rotations. This design is only one logical
qubit short of the best-known generic code [[25,10,5]].

Example 6. Consider graphs in the form of L x L square
lattices wrapped into tori due to periodic boundary conditions.
For L > 5, these graphs have the distance d'(G) = 5. GV
bound Eq. (25) shows that the CWS codes with the following
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parameters can be obtained for these graphs: [[25,4,5]],
[[36,13,5]1, [[49,24,5]], [[64,38,5]1], [[81,53,5]1, ....

Example 7. Consider graphs in the form of L x L triangular
lattices wrapped into tori due to periodic boundary conditions.
These graphs have the distance d’(G) = min(L,7). GV bound
Eq. (25) shows that the CWS codes with the following
parameters can be obtained for these graphs: [[36,9,6]],
[[49,15,711, [[64,28,71], [[81,43,711, ....

VI. SINGLE-GENERATOR ADDITIVE CYCLIC CODES

Example 4 shows that a cyclic additive code does not
necessarily preserve its symmetry when converted to CWS
standard form. By a cyclic additive CWS code we just mean
a code that is cyclic in standard form, with a circulant graph.
For such a code, Eq. (20) can be rewritten as the generator
polynomial,

g(x) = p)lw +rx)], (30)

where the polynomials p(x) and r(x) are binary, p(x) is the
parity-check polynomial of a binary cyclic code (and therefore
must divide x" — 1), while r(x) corresponds to a symmetric
circulant matrix,

r(x"1 = r(x) (mod x" — 1). (31)

Any such symmetric polynomial r(x) leads to a valid self-
orthogonal additive code. The dimension of the quantum code
corresponding to the generator polynomial [Eq. (30)] is k =
deg p(x).

Previously, the additive cyclic QECCs were introduced
in Theorem 14 of Ref. [22], stating that any such code has
two generators. A single-generator additive code described by
Eq. (30) represents a new setting, in which the second generator
is equal to zero. This condition gives a self-orthogonal additive
code C [see Sec. II B] with no binary codewords (any e € C,
e =u+ wv, has v # 0).

A somewhat wider class of single-generator cyclic additive
codes can be also defined via Eq. (30), without requiring the
symmetry [Eq. (31)] of r(x). Then, two codes, Q and Q’, which
have a generator polynomial in the form of Eq. (30) with the
same p(x) = p’(x), are equivalent, if and only if

r(x) = r'(x) mod g(x), (32)
where g(x) = (x" — 1)/p(x) is the generator polynomial of

the binary code [22]. Such a polynomial [Eq. (30)] generates
a self-orthogonal F,4 code, if and only if [22]

p)pE" Hra"™h = p)pa"Hr(x) (modx" —1).  (33)

This guarantees self-orthogonality for any r(x), as long as
p(x)p(x"~1 =0 mod x" — 1. (34)

An alternative formulation of this sufficient condition is that

the corresponding generator polynomial ¢(x) must contain
no more than one root from each pair (a,a™!) of mutually
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conjugate n-th roots of unity, &” = 1. In particular, a self-
reciprocal (palindromic) polynomial,'

x98IW 4 (1/x) = g(x), (35)

always contains roots in pairs o and & ~!. For such polynomials,
Eq. (34) always fails [including the special case of g(x) =
1 + x, which has only one root @ = o' = 1].

A. Single-generator cyclic codes from a binary code

The algebraic condition Eq. (2) on check polynomials for
linear cyclic codes makes them simpler to implement but also
dramatically restricts their number. In particular, the general
counting approach to finding CWS codes [see Sec. V], where
one first chooses a graph and then searches for a suitable binary
code, can hardly be applied to cyclic CWS codes. Even for
classical binary cyclic codes, there are no counting arguments
known to date that yield asymptotically good codes, let alone
the stronger GV bound (see Research Problem 9.2 in Ref. [50]).
Also, long BCH codes—one of the major subclasses of cyclic
codes—are asymptotically bad and have a slowly declining
relative distance § ~ (2In R~')/log, n for any code rate R.
On the other hand, binary cyclic codes often achieve the best-
known parameters (exceeding the GV bound) on short lengths
n < 256. Thus, using simple cyclic codes in quantum design
can yield both good parameters and feasible implementation
on the short blocks.

To better evaluate code distance of single-generator quan-
tum cyclic codes [Eq. (30)], we will modify our counting
approach of Sec. V and begin with a binary cyclic code.
Namely, we will fix some parity-check polynomial p(x) with
a desired degree k among the binary factors of x" — 1. Then
we will search for a polynomial r(x), either corresponding to
a circulant graph [see Eq. (31)] or satisfying the more general
orthogonality condition Eq. (33). However, this transition will
show that the parameters of quantum codes generated this
way strongly depend on the chosen binary code. We will
concentrate exclusively on the binary codes with irreducible
generator polynomial g(x). We will show that the distance of
such a cyclic CWS code is limited from below by the GV
bound (or the variants thereof) and from above by the distance
of the classical cyclic code. Since GV bound always produces
asymptotically good codes, the parameters of our quantum
codes will be mostly limited (at least, for long blocks) by their
binary counterparts.

We begin with analyzing the condition Eq. (22) for a cyclic
CWS code. For a vector e € [Ff to be in C, this condition can
be rewritten in terms of the corresponding polynomials,

p(x) [ux) + r(x)v(x)] =0 modx" — 1, (36)

where the coefficients of the (reversed for notational conve-
nience) polynomial e(x"~') = u(x) + wv(x) are given by the

'In the literature, such polynomials have also been called “symmet-
ric.” We prefer to reserve this term for the polynomials [Eq. (31)] that
correspond to symmetric circulant matrices. Palindromic polynomials
have reflection symmetry with respect to their “centers,” while
Eq. (31) corresponds to a symmetry with respect to the free term,
with an implicit circulant symmetry.
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components of the vector e € IF}'. Since binary p(x) divides
x" — 1, we can rewrite this in terms of the corresponding
generator polynomial g(x) = (x" — 1)/p(x) for the binary
code C,

u(x) + r(x)v(x) = 0 mod g(x). 37

Now, if v(x) is mutually prime with ¢(x), Eq. (37) can
be solved for r(x). In this case, the answer is unique
[mod g(x)]. On the other hand, multiple solutions for r(x)
are possible when ged[v(x),q(x)] # 1. In this work, we avoid
the complications caused in the latter case? and only consider
irreducible polynomials g(x).

Overall, for any irreducible g(x) and any e with v # 0 and
wgte < d(C), Eq. (37) has a unique solution for r(x) such that
degr(x) < degq(x) = n — k. Respectively, there is no more
than one additive quantum code such that e € C . Generally,
only some of thus obtained r(x) correspond to self-orthogonal
codes; see Eq. (33).

Below we complete the greedy argument by counting
the polynomials r(x) corresponding to self-orthogonal codes,
Eq. (33). We consider separately the case when the irreducible
polynomial g(x) is palindromic [see Eq. (35)] in Lemma 7
below, and when it is not in

Lemma 5. Consider a cyclic binary code C[n,k,dc] with
the generator polynomial g(x) which is both irreducible and
nonpalindromic, x%84®™g(x~!) # g(x). Then, there exists a
single-generator additive cyclic code [[n,k,d]] with distance

d = min(dc,dgv),

restricted by both the distance d¢ of the binary code and the
following variant of GV bound

- ged(s,n) (n
dgy = d: 33—
Gv = max ;( ) ;. (s

) <2vk—2. (38)

Proof. The nonpalindromic generator polynomial g(x) is
one of the factors in x” — 1, which also contains its reciprocal,
x984™g(x~1). This implies that the corresponding parity-
check polynomial p(x) satisfies Eq. (33). Further, since g(x)
is irreducible, the solution (x) of Eq. (37) is unique, assuming
v(x) # 0 and degr(x) < n — k, which gives the exponential
term in the rh.s. of Eq. (38). Equation (38) improves on
the standard GV inequality of Eq. (27) by discarding a few
sets of vectors. The first set are vectors with u(x) = 0, which
implies r(x) = 0 mod g(x). The second set are vectors with
u(x) = v(x), which all give 7(x) = 1 mod g(x). The third set
are nonzero vectors with v(x) = 0, which can never be in C |
corresponding to the generator, Eq. (30). Finally, note that any
error vector of weight s produces at least n/ gcd(s,n) different
cyclic shifts. All of these cyclic shifts give the same polynomial
r(x) and can be discounted. The condition d < dr comes from
Lemma 1. [ ]

Note. The Lh.s. of bound Eq. (38) limits the number of
cyclic classes for 4-ary vectors e of weight s < d — 1. Most

2For polynomials g(x) with multiple factors, distance estimates
of quantum codes lead to the estimates of weight spectra of classical
cyclic codes that contain the code generated by g (x), which is beyond
the scope of this work.
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of these vectors have the maximum period n. Therefore, it can
be proven that the term gcd(s,n)/n in Eq. (38) can be replaced
with the smaller term that rapidly tends to 1/n for large n. In
turn, bound Eq. (38) adds about log, n information qubits to
bound Eq. (27) but tends to the standard quantum GV bound
Eq. (23) asn — oo.

In the following example, this bound coincides with
inequality d < d¢, which uniquely sets code distance d.

Example 8. The family of the binary codes with the parame-
ters[n =2% 4+ 23" _ 2" _ 1 k=n—6h,3],h=1,2---con-
structed in Ref. [52], has irreducible nonpalindromic generator
polynomials as required in Lemma 5. For d¢z = 3, the sum in
Eq. (38) has just one term at s = 2; for n odd ged(n,2) = 1.
Explicit calculation confirms that the parameters of these
codes satisfy inequality Eq. (38), which proves the existence
of single-generator cyclic quantum codes with exactly the
same parameters, [[n = 24 4 23 _oh _ 1k =n—6h,3]],
but not necessarily cyclic CWS codes. The smallest of
these codes, [[21,15,3]], corresponds to a polynomial g(x) =
1 +x + x>+ x* + x® (unique up to a reversal) and can be
obtained from an order-21 circulant graph corresponding to
r(x) = x +x* 4+ x'7 4+ x?°. This particular combination of
parameters gives the best existing code [23].

Example 9. According to the BCH bound [50], a cyclic code
hasdistanced > r + 1 (r + 1isthe “designed” distance) if the
corresponding generator polynomial g(x) has r consecutive
roots, e.g., a,a%--- o, where « is the primitive n-th root of
unity. A polynomial m,(x), which has root «, necessarily
has s distinct roots a2 for all j=0---5—1, if 5 is the
smallest number such that 2°* = 1 modn. We say that the
code has zeros «, where exponents i form the set I =
{2/(modn), j =0,...,s — 1}. The code generated by m(x)
has designed distance 5 if 3 € I or, equivalently, if 2° =
3 mod n for some s. The polynomial m,(x) is nonpalindromic
if —1 ¢ 1. We can further obtain codes with irreducible
nonpalindromic generators and designed distances 7, 9, etc.,
by imposing additional conditions, e.g., 5€ 1, 7 € I, etc.
The values of n, for which this is possible form an infinite
set, {235,475,717,955, 1 155, 1435, 1675, 1917,2355,2397, .. .},
where the subscripts indicate the designed distances. In fact,
the first three codes represent the well known quadratic-residue
codes with the higher distances (exceeding the BCH bound)
equal to 7, 11, and 11, respectively. GV bound proves the
existence of additive quantum CWS codes with the parameters
[[23,12,4]], [[47,24,d > 611, [[71,36,d > 711, [[95,59,5]],
[[115,71,5]], [[143,83,11]], etc. The first three codes have
the parameters as good as any known codes with such n and k.

Now let us consider the case of a palindromic polynomial
q(x). First, we prove

Lemma 6. Consider a binary code C generated by a
palindromic polynomial g(x) such that g(1) = 1. Then, any
quantum code [Eq. (30)] that satisfies self-orthogonality
condition Eq. (33) is equivalent to a cyclic CWS code with
a symmetric polynomial 7(x); see Eq. (31).

Proof. The corresponding check polynomial p(x) is sym-
metric, thus the condition Eq. (33) can be rewritten as

r(x) +r(x""" = 0mod g(x). (39)
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The condition g(1) = 1 guarantees that the palindromic poly-
nomial g(x) has odd weight and even degree 2m, in which case
the “central” monomial x™ has nonzero coefficient ¢,, = 1.
Given the block length n, let us choose an equivalent code [see
Eq. (32)] with r(x) such that the coefficients

Pl = T2 = ... = Ipp = 0. (40)

The coefficients of the polynomial in the Lh.s. of Eq. (39)
satisfy the same condition, except for the term x"~", which has
coefficient r,,,. The coefficients are arranged in such a way that
the 1.h.s. of Eq. (39) can only equal zero or x" ™" ¢(x) mod x* —
1. However, the latter possibility can be excluded by comparing
the corresponding coefficients of the free term x°. The only
remaining case corresponds to a symmetric r(x). [

It is now clear that for a palindromic irreducible generator
polynomial ¢(x) # 1 + x, one should reduce the count in the
r.h.s. of Eq. (38) by replacing 2"~ with 20"=%/2_ the number
of symmetric polynomials that satisfy Eq. (40). This gives the
following version of GV bound:

d—1
_ . s qyed(sn) (n (n-k)/2
de_maxd.Z]:G —3)T<s><2 —2.

(41)

While the resulting estimate is much weaker than the GV
bound Eq. (38), it still gives asymptotically good codes. A
better (especially, for small d) bound is given in the following:

Lemma 7. Consider a cyclic binary code C[n,k,dc], with
dc > 3 and the generator polynomial g(x), which is both
palindromic and irreducible. Then there exists a cyclic CWS
code [[n,k,d]] with the distance d = min(dg, |dgv/2]), where
dgy = maxd:

%(3“/2] _ 3) ng(S,n) (Ln/2J> < 2(n—k)/2 _9 (42)
o n \ls/2]

Proof. The restriction on the distance guarantees that
q(x) # 1 4+ x, and, therefore, g(x) satisfies the conditions
of Lemma 6; in particular, n — k is even. The inequality
just corresponds to symmetric polynomials r(x) and the
errors that are also symmetric, e(x"!") = e(x) mod x" — 1.
The statement of the Lemma follows from the fact that for
any general error e(x), there is a symmetric error egym(x) =
e(x) + e(x"""ymod x" — 1 whose weight is even and is limited
by wgtegym(x) < 2wgte(x). [ ]

Example 10. Among classical codes, the largest distance
is obtained for the repetition codes, with the parameters
C = [n,1,n]. The parity-check polynomial is p(x) =x + 1;
the generator polynomial g(x) =1 4+ x 4+ --- + x"~! is irre-
ducible and palindromic for n = 2, and for all n > 2 that
satisfy the condition ord,(2) =m — 1, where ord,(q) is
the multiplicative order of ¢ modulo m. This includes the
following n < 100:

{3,5,11,13,19,29,37,53,59,61,67,83 - - -}. (43)

Lemma 7 shows that for n from the set Eq. (43), additive
cyclic CWS codes with parameters [[n,1,|dgv(n,1)/2]]1]
exist, where dgy(n,1) is obtained from Eq. (42) with £ = 1.
Asymptotically, at large n, this corresponds to cyclic codes
with the relative distance given by half of that given by Eq. (28).
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FIG. 3. (Color online) Left: Correspondence between the cyclic
code [[5,1,3]] with generators ZXIXZ and a generalized toric
code on a square lattice. The generators of the latter are all possible
translations of the highlighted plaquette. Only qubits within the
dashed square are participating in the code (numbering in black); the
two-dimensional square lattice is numbered according to the periodic
boundary conditions that are given by two translation vectors. The
dashed line indicates a topologically nontrivial chain of errors that
limits the distance of the code: X, Z4Z5 is equivalentto Z,Z,Z3Z4Zs.
Right: same for the code [[13,1,5]] with the generator ZX111XZ
corresponding to the highlighted plaquette.

Example 11. (Cyclic analogs of the toric code) In the
setting of the previous example, cyclic CWS codes [[5,1,3]],
[[13,1,5]1, [[25,1,711, [[41,1,9]] with p(x) =14 x were
obtained numerically. The corresponding graph-state gen-
erators are ZXZ for d =3, ZZXZZ for d =5, etc. We
obtain a family of cyclic codes with the weight-4 generators,
S3=72ZXXZ, Ss=ZIXXIZ, etc. Codes with genera-
tors S3 =ZXIXZ, Ss=ZXI11I1XZ, S;=Z2ZXIIIIIXZ,
and So = ZXII111111XZ have the same parameters (the cor-
responding graphs are somewhat more complicated). The latter
family can be generalized to codes withn = 2 + (t + 1)*,k =
l,d=2t+1,t=1,2---; the corresponding stabilizer gen-
erators S+ having 2t — 1 identity operators separating ZX
and X Z. These cyclic codes correspond to a generalization of
the toric code construction [53] that in some cases yields better
code parameters compared to other known generalizations of
toric codes [54-56]; the square-lattice qubit layout preserving
the circulant symmetry is illustrated in Fig. 3 for ¢ = 1,2.

Example 12. (CWS codes from k copies of the repetition
code) Let us take the binary code C to be formed by k copies of
the repetition code with the distance d, = m. Then, the block
size is n = km, and the check polynomial is p(x) = x* — 1.
The generator polynomial g(x) = 14 x* + ... 4 x*km=D jg
always palindromic; it is also irreducible if m belongs to the
set Eq. (43), while k =m*, s =0,1,2--.. For sufficiently
large n, Lemma 7 gives asymptotically good codes with
kd oc n®. Since these parameters cannot exceed those of the
binary code C, which correspond to kd = n (thus § = 1/k),
for these values of m and k > 10, there exist cyclic CWS
codes with the parameters of the corresponding binary code,
[[n = m**!,m®,d = m]]. This prediction is readily verified
empirically; see Table I. Note that, as in the Example 11, many
of these codes have stabilizer generators with small weight.

VII. CONCLUSIONS

In this paper, we analyze how the general CWS framework
can facilitate the search of the additive quantum codes with
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reasonably good parameters. Unlike complete optimization
of CWS codes [26], which involves all nonisomorphic LC-
inequivalent order-n graphs and all binary codes of length n,
here one can independently pick a suitable graph G and then
search for a linear binary code C that can correct the error
patterns induced by G; see Eq. (22).

The choice of the graph is discussed in Sec. III. In the
simplest case of pure codes, one has to pick a graph with a
sufficiently large graph-state distance d’(G). Assuming that a
regular graph is being sought in this design, we consider graphs
with minimal vertex degrees d’(G) — 1 or more.

After the graph is chosen, the second step involves the
search of an appropriate binary code. In Sec. V we prove the
existence of the binary codes that give good quantum CWS
codes. The corresponding lower bound on the distance is given
by the quantum Gilbert-Varshamov bound Eq. (27). Note that
while this bound is proved for a given graph, it is the same
bound that holds for a generic stabilizer code.

Our results show that by restricting the graph G of a CWS
code to regular lattices, one can lower the complexity of
the code search and still obtain codes with relatively good
parameters. On the other hand, the graph structure could be
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mapped directly to a physical qubit layout. Therefore, such
codes can simplify both the hardware design and the error-
correcting procedures, which will easily admit the property of
translational invariance.

An unexpected byproduct of this work is the discovery of
a previously unexplored family of single-generator quantum
cyclic codes (Sec. VI A). These codes are relatively easy to
construct, and they are plentiful. We construct (or prove the
existence) of several simple families of such codes that have
unbounded distances. These include cyclic CWS codes with
weight-4 stabilizer generators, which turned out to be toric
codes in disguise (Example 11), as well as a code family
with the parameters of generalized repetition codes, [[kd,k,d]]
(Example 12). The main advantage of these families is a simple
structure of their stabilizers.
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