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Quantum fidelity between two density matrices F (ρ1,ρ2) is usually defined as the trace of the operator F =√√
ρ1ρ2

√
ρ1. We study the logarithmic spectrum of this operator, which we denote by the fidelity spectrum, in the

cases of the XX spin chain in a magnetic field, a magnetic impurity inserted in a conventional superconductor, and
a bulk superconductor at finite temperature. When the density matrices are equal, ρ1 = ρ2, the fidelity spectrum
reduces to the entanglement spectrum. We find that the fidelity spectrum can be a useful tool in giving a detailed
characterization of the different phases of many-body quantum systems.

DOI: 10.1103/PhysRevA.84.062318 PACS number(s): 03.67.−a, 05.70.Fh, 74.20.Fg

I. INTRODUCTION

A quantum system in a pure state is described by a density
matrix which is just a projector onto that state. At zero
temperature it is the projector to the ground state of the system.
In general, the Hamiltonian of the system is a function of some
parameters which determine the ground state. The quantum
fidelity between two states (for two sets of parameters) is, in
this simple case, the absolute value of the overlap between
the ground states for the two sets of parameters. When the
system is in a mixed state the density matrix is more complex.
Typical situations that lead to mixed states are (i) reduced
density matrices where a trace over some degrees of freedom
is carried out, or (ii) systems at finite temperatures where the
density matrix may be taken as the Boltzmann factor over the
energy eigenstates.

In general the quantum fidelity [1] between two states
characterized by two density matrices ρ1 and ρ2 may be defined
as the trace of the fidelity operator F

F (ρ1,ρ2) = TrF = Tr
√√

ρ1ρ2
√

ρ1 (1)

(see also the related work on the Bures metric [2], the transition
probability [3], and the statistical distance between pure [4]
and mixed [5] states). One may also consider the spectrum of
the fidelity operator F(ρ1,ρ2). Its set of eigenvalues λi , which
we denote the fidelity operator spectrum, and − ln λi , which
we call the fidelity spectrum, may provide more information
as compared to the fidelity (its trace), in a way parallel to the
extra information provided by the entanglement spectrum [6],
as compared to the von Neumann entropy.

In the case of pure states ρ1 = |GS1〉〈GS1| and ρ2 =
|GS2〉〈GS2| the fidelity is just the norm of the overlap

F (ρ1,ρ2) = |〈GS1|GS2〉|. (2)

If the two states are the same it is just the normalization of the
state (taken as 1). In the case of two equal mixed states the
fidelity is just

F (ρ,ρ) = Trρ = 1 (3)

and the operator F in this case has a set of eigenvalues λi = ri

such that − ln ri is called the entanglement spectrum, and has
received considerable attention lately [6].

In this work we will analyze the fidelity spectrum for several
physical systems paying particular attention to the vicinity of
quantum phase transitions (QPT) as well as the properties
characterizing their quantum phases.

The interplay between quantum information and condensed
matter physics has been extensively considered using entan-
glement as a measure for the behavior of many-body systems
[7]. The distinguishability between states has been used as a
possible criterion to study quantum phase transitions [8]. By
its own nature, the fidelity between the pure ground states
signals a change of state as one approaches a quantum phase
transition [9]. The fidelity between mixed states has also
been used as a signature of quantum phase transitions [10,11]
and to distinguish between different states of matter at finite
temperatures [12–14] (for general considerations on fidelity
and the Bures metric between mixed states, see Refs. [15–18]).
A standard measure of entanglement in a system is the von
Neumann entropy. However, as argued in Ref. [6], more
information about a mixed state is obtained if the entanglement
spectrum is analyzed. Considering reduced density matrices
where part of the degrees of freedom are integrated over, such
as dividing the system in real space into two parts A and B, it
was shown in the context of the quantum Hall effect [6,19] and
in the context of coupled spin chains [20] that the ground-state
entanglement spectrum of A contains information about the
excited energy states of the frontier of the subsystem A.
In particular, in the quantum Hall effect the entanglement
spectrum of the bulk system has a low-lying structure of levels
that matches the edge states, and in the case of two coupled
Heisenberg spin chains, considering the subsystem A as one
of the chains, the entanglement spectrum has a structure that
matches the energy excitations of a single Heisenberg chain.
Other partitionings of the system have been proposed that
lead to further information [21] and considering a partitioning
in momentum space it was shown that information about
energy excitations of a single Heisenberg chain is contained
in the ground-state wave function through the entanglement
spectrum [22].

An interesting connection between the fidelity operator
spectrum and the entanglement spectrum can be established,
via the so-called purification of mixed states and the Uhlmann
theorem (see, for example, Ref. [23], page 410), which
introduce the correspondence between density matrices and
pure states in a larger Hilbert space.
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The purification of mixed states allows to interpret a
mixed state ρ = ∑

i ri |ri〉〈ri | as a partial state of a larger
system in a global pure state |ψρ〉 = ∑

i

√
ri |ri〉|ri〉A. The

system of interest S, given by the Hilbert space H =
span{|ri〉}, is enlarged by a fictitious ancilla system A given
by an equally dimensional Hilbert space HA = span{|ri〉A},
such that ρ = TrA|ψρ〉〈ψρ |. Obviously, the basis {|ri〉A}
forming the ancilla’s Hilbert space is not unique: any
other basis {UA|ri〉A}, with UA being an arbitrary unitary
operator, would suffice. Having two mixed states ρ1 =∑

i r
(1)
i |r (1)

i 〉〈r (1)
i | and ρ2 = ∑

i r
(2)
i |r (2)

i 〉〈r (2)
i |, two possible

corresponding purifications are |ψρ1〉 = ∑
i

√
r

(1)
i |r (1)

i 〉|r (1)
i 〉A

and |ψρ2〉 = ∑
i

√
r

(2)
i |r (2)

i 〉|r (2)
i 〉A. Changing the bases of the

ancilla system by choosing the arbitrary unitaries U
(1)
A and U

(2)
A

changes the overlap |〈ψρ1 |ψρ2〉|, the change being determined
by the unitary U

(12)
A = (U (1)

A )†U (2)
A . The Uhlmann theorem

states that the fidelity between two mixed states ρ1 and ρ2

is the maximum of the overlap between any purifications

F (ρ1,ρ2) = max
U

(12)
A

|〈ψρ1 |ψρ2〉| ≡ F (|ψ̃ρ1〉〈ψ̃ρ1 |,|ψ̃ρ2〉〈ψ̃ρ2 |),

(4)

where |ψ̃ρ1〉 and |ψ̃ρ2〉 represent particular pairs of purifications
that satisfy the Uhlmann theorem achieving the equality
between the two (mixed state and pure state) fidelities.

As a measure of global state distinguishability, fidelity can
be considered as a general order parameter, encompassing
all possible order parameters of the system considered. Thus,
regions of nonanalyticity in the parameter space can signal
out the system’s critical behavior, without the need to consider
particular order parameters and their associated correlation
functions that display the triggering out of the phase transition.
Using the above correspondence (4) between mixed states
ρ(q) and their purifications |ψ̃ρ(q)〉 (note that the tilde refer
to a particular choice of purifications |ψ̃ρ(q)〉 that saturate
Eq. (4) of the Uhlmann theorem), both parametrized by the
same set of parameters q, it is possible to infer points of
quantum phase transitions of the enlarged composite system
consisting of our system of interest S and the ancilla A.
Moreover, the entanglement spectrum of the enlarged (S + A)
system, with respect to this particular division into subsystems
S and A, is given by the eigenvalues {ri(q)} of ρ(q) =∑

i ri(q)|ri(q)〉〈ri(q)|.
In the case of mutually commuting mixed states ρ(q) that

have the common eigenbasis |ri(q)〉 ≡ |ri〉, the (quantum)
fidelity F is nothing but the classical fidelity Fc between
two probability distributions {ri(q)} and {ri(q ′)}, taken in two
parameter points q and q ′

F (ρ(q),ρ(q ′)) =
∑

i

λi(q,q ′) =
∑

i

√
ri(q)ri(q ′)

≡ Fc({ri(q)},{ri(q
′)}). (5)

For this commuting case, the fidelity quantifies the dis-
tinguishability between two probability distributions (i.e.,
their change with respect to the change of parameters q).
Analogously, the fidelity operator spectrum λi(q,q ′) for mixed
states ρ(q) and ρ(q ′) of the system S would quantify the change

of the eigenvalues ri(q) of the reduced density matrix obtained
tracing out the subsystem A from the enlarged system (S + A),
which is in the pure states |ψ̃ρ(q)〉 and |ψ̃ρ(q ′)〉 that saturate
the Uhlmann theorem.

In a more general noncommuting case, the distinguisha-
bility between two mixed states will depend not only on the
change of the eigenvalues of a system’s mixed state ρ(q),
but also on the change of the corresponding eigenvectors.
Therefore, the fidelity operator spectrum would carry the
additional information regarding the rate of change of system’s
eigenvectors as well, which can be quantified by the Uhlmann
geometric phase, the mixed-state generalization of the Berry
phase, as shown in Ref. [12].

In the case of thermal equilibrium, the mixed state density
matrix is given by the (normalized) Boltzmann factor ρ =
e−βH /Z, where Z = Tr(e−βH ) is the partition function, H

the system’s Hamiltonian, and β = 1/(kBT ) (kB being the
Boltzmann constant and T the absolute temperature). This
can also be written as ρ = e−β(H−U+T S) = e−[S−(U−H )/T ]/kB

since the partition function Z can be written in terms of the
free energy F = U − T S as Z = e−βF , where U = 〈H 〉 is the
internal energy, and S the system’s entropy. Note that −F/T =
S − U/T is nothing but the Légendre transformation of the
entropy S with respect to the energy, called the Massieu
function.

In the commuting case, the eigenbases of all density
matrices are equal, and we are comparing the occupation
probabilities of the states being considered in forming
the mixture. In this case the fidelity operator for thermal

states becomes F = e
− 1

2 (β1H1+β2H2)
√

Z1Z2
and its eigenvalues

λi = (Z1Z2)−1/2e− 1
2 (β1ε

(1)
i +β2ε

(2)
i ) = e

− 1
2kB

(S1− U1−ε
(1)
i

T1
+S2− U2−ε

(2)
i

T2
)

are given as simple functions of the energies ε
(1)
i and ε

(2)
i of

the two mutually commuting Hamiltonians H1 and H2 and
the corresponding Massieu functions.

The fidelity operator F can be studied using different
basis states, associated with different representations, such as
position, momentum, energy or charge, and spin. Rewriting
the fidelity operator in these different representations allows
us to look more directly at the specific relevant modes that
are more directly associated with the usual order parameter,
thus participating more actively in the critical phenomena
accompanying the phase transition. In this way we can obtain
a more complete and physical characterization of the phase
transition and of its underlying physics mechanisms. While
the entanglement spectrum has some relation to the energy
spectrum of the edge states or even bulk states, the fidelity
spectrum contains information about which eigenvalues have
a larger contribution to the distinguishability between quantum
states.

In this work we consider the fidelity spectrum of vari-
ous systems. We start by considering two systems at zero
temperature: a magnetic impurity inserted in a conventional
superconductor and the XX chain in a magnetic field. In
the first case, described in Sec. II, the magnetic impurity is
coupled through a spin interaction to the spin density of the
conduction electrons, tuned by a coupling J . As previously
discussed [11,24,25], as the coupling J grows, the system
goes through a first-order phase transition. At this point the
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system becomes magnetized and various quantities such as
local density of states, spin content, gap function, and quantum
information measures can be used to detect this transition. For
instance, various entanglement measures [26] and the partial
state fidelity itself [11] have been used before. In the case of
the XX chain describing spins 1/2 confined to a plane (xy)
and with a transverse magnetic field h, aligned along the z

direction (Sec. III), there is a quantum phase transition from
an XX phase, where the spins are aligned in the xy plane,
if the magnetic field is small, and an Ising-like phase where
the spins point along the field direction, if the field is strong
enough. Considering the coupling between the spins as the
energy scale, the second-order transition occurs at the point
hc = 1. This transition is also signaled in various ways such as
the decrease of the fidelity near the critical point [8]. In Sec. IV
we consider thermal states in a conventional superconductor.

II. MAGNETIC IMPURITY IN A SUPERCONDUCTOR

Consider first a classical spin immersed in a two-
dimensional s-wave conventional superconductor. We use a
lattice description of the system. In the center of the system
i = lc = (0,0), we place a classical spin along the z direction
�S = S�ez, with no loss of generality. The Hamiltonian of the
system is given by

H = −
∑
〈ij〉σ

tij c
†
iσ cjσ − εF

∑
iσ

c
†
iσ ciσ

+
∑

i

(�ic
†
i↑c

†
i↓ + �∗

i ci↓ci↑)

−
∑
σσ ′

Jc
†
lcσ

σ z
σσ ′clcσ ′, (6)

where the first term describes the hopping of electrons between
different sites on the lattice, εF is the chemical potential,
the third term is the superconducting s pairing with the
site-dependent order parameter �i , and the last term, with
J > 0, is the exchange interaction between an electron at site
i = lc and the magnetic impurity. The hopping matrix is given
by tij = tδj,i+δ where δ is a vector to a nearest-neighbor site.
Note that both indices i,j ∈ {1,2, . . . ,N} specify sites on a
two-dimensional system (N is the number of sites). We take
energy units in terms of t (t = 1), and choose εF = −1.

If we divide the whole system in two subsystems, say A and
B, then the partial mixed state, given by the reduced density
operator ρA for the subsystem A, is defined as

ρA = TrBρ, (7)

where TrB[·] represents the partial trace evaluated over the
Hilbert space HB of the subsystem B. We take A to be one
site, either the impurity site or an arbitrary site in the bulk far
from the impurity such that ρ1 and ρ2 of Eq. (1) are one-site
density matrices.

In many-body systems second quantization is the natu-
ral way to perform any calculation. The matrix elements
of the density matrix are simply defined in terms of the
correlation functions of the whole system. For instance,
in the case of the single-site partial mixed states using
local basis states B = {|0〉,|↑↓〉,|↑〉,|↓〉}, which denote the
four possible states (unoccupied, double occupied, single
occupied with an electron with spin up, and single oc-
cupied with an electron with spin down, respectively) it
can be shown that the corresponding density matrix reads
as [11]

ρi =

⎛
⎜⎜⎜⎜⎝

〈(1 − n↑)(1 − n↓)〉 〈c†↑c
†
↓〉 0 0

〈c↓c↑〉 〈n↑n↓〉 0 0

0 0 〈n↑(1 − n↓)〉 〈c†↓c↑〉
0 0 〈c†↑c↓〉 〈(1 − n↑)n↓〉

⎞
⎟⎟⎟⎟⎠

i

, (8)

where the index i denotes the site. The spin and the charge
parts decouple. The spin part couples the two spin orientations
(single occupied states) and the charge part couples the empty
and doubly occupied states. The diagonal terms of the matrix
describe the number of empty sites, the number of doubly
occupied sites, the number of spin up sites, and the number
of spin down sites, respectively. The sum of the diagonal
terms is equal to 1 due to normalization. The matrix is easily
diagonalized and the fidelity between two different one-site
states obtained straightforwardly.

We will consider two density matrices of the form ρ1(J1; i1),
and ρ2(J2; i2) for two values, J1 and J2, of the spin coupling
J , and for two sites i1 and i2.

In Fig. 1 we show the fidelity operator spectrum as a
function of the coupling between the magnetic impurity and the
electronic spin density taking J1 = J , J2 = J + 0.05 where

i1 = i2 = i is the impurity site or a bulk site. The charge and
spin parts separate and in the charge part there is the empty
and the doubly occupied contributions and in the spin part the
spin up and spin down contributions. As the coupling J grows
there is a discontinuity in the eigenvalues. This discontinuity
is associated with the quantum phase transition previously
discussed. The sum of the four eigenvalues is the fidelity, as
discussed before. There is a discontinuity at the QPT both in the
total fidelity, in the charge and spin parts and in the individual
eigenvalues as well. As we can see, the discontinuities occur
mainly in one of the charge eigenvalues and in one of the
spin eigenvalues. As one crosses the QPT to a regime where
the impurity captures one electron breaking a Cooper pair
we see that the main contribution to the discontinuity in the
charge part comes from the doubly occupied states, where there
is a significant increase at the QPT. In the same way there
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FIG. 1. (Color online) Fidelity operator spectrum at the impurity
site (left) and at a bulk site (right) as a function of the spin coupling J ,
where one density matrix is calculated at J and the other at J + δJ ,
where δJ = 0.05. We show the charge contributions (c) and the spin
contributions (s).

is a significant decrease in the spin up eigenvalue, leading
to a smaller spin contribution beyond the QPT. For small
values of J there is a screening of the perturbation induced
by the magnetic impurity in the superconductor. A small
fidelity means a higher degree of distinguishability. For small
values of J the spin down eigenvalue is small but the spin up
is still high. Beyond the QPT both contributions are small.
This indicates that the transition is mainly of spin character: as
the fidelity tends asymptotically to 1 away from the QPT and
the spin eigenvalues are small, the charge eigenvalues have
to compensate, however, mainly through the doubly occupied
contribution, as expected. Note that, in the bulk, the transition
is quite small. The physics is very local, centered around the
impurity site. Finally, note the numerical differences between
the relative drop of the total fidelity, which is for δJ = 0.05

about 10% (see Fig. 1 from Ref. [11]), and the relative
changes of the two most prominent modes, which is about
100%–150%.

In Fig. 2 we consider that the coupling is fixed, but the
two density matrices are calculated at different sites i1 and i2:
ρ1(J,i1) and ρ2(J,i2). The various cases are specified in the
caption of the figure. In these figures the horizontal axis is the
lattice site. For each site there are four eigenvalues. The central
point is the impurity site. The symmetrical peaks close to the
central point are the neighbors of the central point [please note
that here we number the lattice sites of the two-dimensionl
(2D) system as a one-dimensional (1D) system sequentially
row by row; so the lattice nearest neighbors in the x direction
are close by neighbors but the neighbors in the y direction
are far apart). The fluctuations around the central peak are, of
course, better seen in a three-dimensional (3D) plot. This is
shown in Fig. 3 where we compare the four eigenvalues with
the results of Fig. 1(a). As discussed above, the empty site
and the spin down contributions are small and do not change
much as we change from J = 1.5 (below the QPT) to J = 2.5
(above the QPT).

III. X X SPIN-1/2 CHAIN IN A TRANSVERSE FIELD

The XX spin 1/2 model has been solved exactly via
the Jordan-Wigner transformation where it is reduced to
a system of free spinless fermions [27]. The correlation
functions were also calculated [28] as well as the reduced
density matrix of a system of L contiguous spins [29–31].
The information theoretic approach in terms of fidelity, Fisher
metric, and Chernoff bound was applied to the XY model in
Refs. [8,13,14,32–37].

The Hamiltonian we will consider here is of the form

H = −1

2

N−1∑
l=0

(
1 + γ

2
σx

l σ x
l+1 + 1 − γ

2
σ

y

l σ
y

l+1 + hσ z
l

)
.

(9)

FIG. 2. (Color online) Fidelity operator spectrum: charge and spin eigenvalues. System size is 15 × 15. (a) One of the sites is at the impurity
i1 = lc and the other site i2 is arbitrary. In the left panel J1 = J2 = 1.5, and in the right panel J1 = J2 = 2.5. (b) One of the sites, i1, is a site in
the bulk and the other site, i2, is arbitrary. The other parameters are the same as in (a). Recall that J = 1.5 < Jc and J = 2.5 > Jc.
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FIG. 3. (Color online) Fidelity operator spectrum as a function of real space in units of the lattice constant. System size is 15 × 15. Top
panels J = 1.5. Lower panels J = 2.5. From left to right, the first two panels are the charge eigenvalues and the right two panels the spin
eigenvalues, for lattice sites i1 = lc and i2 an arbitrary site.

Here the spin operators are described by Pauli matrices, h is
the transverse magnetic field, and γ is the anisotropy. We will
simplify and consider γ = 0 and we take 0 < h < 1. We will
consider a block of L contiguous spins. The reduced density
matrix of the block can be written as [29]

ρA =
L∏

i=1

(
1 + νi

2
b
†
i bi + 1 − νi

2
bib

†
i

)
. (10)

The operators bi are spinless fermionic operators with a two-
state space (the eigenvalues of the number operator ni = b

†
i bi

are 1 and 0, corresponding to the occupied or empty state,
respectively). The eigenvalues of the reduced density matrix
are 2L in number as the result of the direct product of the
i = 1, . . . ,L subspaces. Defining two Majorana operators of
the form

c2l−1 =
(

l−1∏
n=1

σ z
n

)
σx

l , c2l =
(

l−1∏
n=1

σ z
n

)
σ

y

l , (11)

in terms of the spin operators, it has been shown that

〈GS|cmcn|GS〉 = δm,n + i(BL)mn. (12)

The matrix BL is written as

BL = GL ⊗
(

0 1

−1 0

)
(13)

with

GL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0 g−1 . . . g1−L

g1 g0 . . . .

. . . . . .

. . . . . .

. . . . . .

gL−1 . . . . g0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

We have that gl = g−l , g0 = (2ϕc/π ) − 1, and gl =0 =
(2/lπ ) sin lϕc, where ϕc = arccos(h). Defining the new

Majorana fermions through the transformation d = V c and
imposing that

〈GS|dmdn|GS〉 = δm,n + i(B̃L)mn (15)

with

B̃L = V BlV
T = � ⊗

(
0 1

−1 0

)
, (16)

where � is a diagonal matrix with L diagonal elements νl ,
leads to the diagonal form Eq. (10) of the reduced density
matrix, ρA, having defined L complex fermionic fields like

bl = d2l + id2l+1

2
. (17)

The transformation V that block diagonalizes the problem de-
pends on the Hamiltonian parameters through the numbers gl .

To calculate the fidelity operator F = √√
ρ1ρ2

√
ρ1 one

needs to consider the product of two reduced density matrices
for two different magnetic fields. Even though each of the
reduced density matrices can be diagonalized, the transfor-
mations needed to diagonalize ρ1 and ρ2 are different. The
diagonalization of ρ1 (ρ2) is obtained introducing a matrix V1

(V2). To obtain the spectrum of F we rewrite the expression
for the diagonalized reduced density matrix ρ2 in terms of the
fermionic operators of the matrix ρ1 which leads to ρ2 = e−H2 ,
where

H2 = −
L∑

i=1

L∑
j=1

L∑
l=1

(
ln

1 + ν2,l

2
Tl,iTl,j |1〉i〈0|i ⊗ |0〉j 〈1|j

+ ln
1 − ν2,l

2
Tl,iTl,j |0〉i〈1|i ⊗ |1〉j 〈0|j

)
. (18)

Here

Tl,i =
L∑

p=1

V̄2,l,p(V̄ )−1
1,p,i , (19)
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FIG. 4. (Color online) Fidelity spectrum − ln λi , for system size L = 6. Left: Entanglement spectrum for different values of magnetic field.
From bottom to top h = 0.6,0.7,0.8,0.9,0.95,0.99. Middle: Fidelity spectrum for δh = 0.01 and for h = 0.7,0.8,0.9,0.95,0.99. Right: Fidelity
spectrum for pairs of the magnetic field as h1 = 0.5, h2 = 0.5,0.6,0.7,0.8,0.9. The magnetic field is in units of the spin coupling as in the
following figures.

where we defined V̄ by

V = V̄ ⊗
(

0 1

−1 0

)
. (20)

The diagonal elements ν2,l are the diagonal elements of �

for the magnetic field of ρ2. Diagonalizing H2, we obtain ρ2,
expressed in the eigenbasis of ρ1, and obtain the spectrum of
F , as intended. Note that this requires diagonalizing a 2L × 2L

matrix which is much larger than the L × L matrix required
for the entanglement entropy.

In Fig. 4 we show the fidelity spectrum − ln λi . In the
left panel we consider ρ1 = ρ2 and the operator F is just
the density matrix. Therefore, its logarithmic spectrum is the
entanglement spectrum. In the middle panel we consider the
fidelity spectrum and in the right panel we compare the en-
tanglement spectrum with the fidelity spectrum. As discussed
before [22] there is no clear structure in the entanglement
spectrum since we are considering a real space block of spins.
The fidelity spectrum when we consider two very close values
of the magnetic field is very similar to the entanglement
spectrum. In both cases, as we increase the magnetic field
and approach the critical point that separates the XX phase
from the Ising phase, the entanglement or fidelity spectrum
increases considerably. This implies that the fidelity operator
spectrum is decreasing fast. The same can be seen when we
compare the fidelity spectrum with the entanglement spectrum
in the right panel. Here we are considering two values of the
magnetic field h1 and h2 associated, respectively, with ρ1 and
ρ2 that differ by a finite amount. Therefore there is a significant
difference as the difference between h1 and h2 increases, even
though we are far from the critical regime. The further the
two points are the smaller the fidelity and the fidelity operator
eigenvalues λi should be.

To analyze the spectrum we calculate the moments of the
distribution of the eigenvalues [38] defined as

Mn =
2L∑
i=1

λn
i . (21)

The moment of order n = 1 is the fidelity. We also calculate
the von Neumann entropy of the fidelity

S1 = −
2L∑
i=1

λi ln λi (22)

and the Rényi entropies

Sn = 1

1 − n
ln Mn. (23)

Note that in the case of the entanglement (ρ1 = ρ2) the von
Neumann entropy can also be obtained as

S1 = −
L∑

i=1

(
1 + νi

2
ln

1 + νi

2
+ 1 − νi

2
ln

1 − νi

2

)
(24)

which only involves a sum with L terms.
In Fig. 5 we present the first five moments for several

choices of pairs of magnetic fields (h1,h2) and for several
block sizes L. In the case of the entanglement spectrum, when
h1 = h2, the first moment is just the trace of the density
matrix (top left panel). When h1 = h2 it is the fidelity and
therefore it is very close to 1 except in the vicinity of the phase
transition where we consider h2 = h1 − δh,δh = 0.01 (top
right panel). The higher momenta are very similar between the
entanglement spectrum and the fidelity spectrum, in this case.
A detailed study of the moments and Rényi entropies has been
carried out in Ref. [39]. Considering two values of the magnetic
fields further away from each other the moments change in
structure. Fixing, for instance, h1 = 0.5 (bottom left panel) or
h1 = 0.98 (bottom right panel) and varying h2 we find that
when h2 crosses h1 there is a sharp increase which equals 1 for
the first moment (trivially since for this case the first moment is
the trace of the density matrix). This maximum is also observed
in the higher moments of the spectrum. Similar information
can be obtained from the Rényi entropies. As explained above,
S1 is just the von Neumann entropy and the other entropies
are proportional to the logarithms of the moments of the
spectrum. In Fig. 6 we compare various cases for L = 1,6.
As the magnetic field approaches the critical point we find
that the various entropies have a minimum near the critical
point showing that the partial state density matrix signals the
QPT, as previously obtained. In the lower panels we consider
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FIG. 5. (Color online) First five moments of the entanglement operator (density matrix) and fidelity operator spectra for blocks of sizes
L = 1,2,4,6, as a function of magnetic field. In the top left panel we consider the moments of the entanglement operator spectrum. In the top
right panel we consider the moments of the fidelity operator spectrum for two close-by values of h. In the bottom left (right) panel we consider
the fidelity operator spectra for h1 = 0.5 (h1 = 0.98) and h2 arbitrary.

the Rényi entropies associated with the fidelity operator. The
structure is, in general, more complicated. Fixing h1 = 0.98
close to the critical point, as h2 approaches h1 the entropies
tend to those corresponding to the entanglement spectrum. Far
from this point the entropies differ considerably and depend
strongly on the block size. For instance for L = 1 they are of
the order of the entropies for the entanglement spectrum, but
for L = 6 the entropies are considerably higher, except the von
Neumann entropy. Also, note that the Rényi entropy S1 in the
fidelity case has a depression at small magnetic fields.

We also calculate the fidelity susceptibility, introduced
in Refs. [34,40], with its geometrical meaning discussed in
Refs. [34,41]. Global fidelity susceptibility for the XY model
was discussed in Refs. [8,34]. In the present paper we calculate
the fidelity susceptibility associated with the reduced density
matrices of blocks of spins. It is defined as

χF =
2L∑
i=1

χF,i, χF,i = ∂2λi

∂(δh)2
. (25)

In Fig. 7 we present the fidelity susceptibility associated
with blocks of different sizes as a function of the magnetic
field. The divergence of the susceptibility is clearly seen as we
approach the QPT.

IV. THERMAL STATES OF A CONVENTIONAL BCS
SUPERCONDUCTOR

In this section we consider a conventional s-wave super-
conductor at finite temperature described by the effective
mean-field BCS Hamiltonian

H eff
BCS =

∑
k

εk(nk↑ + n−k↓) −
∑

k

(�kc
†
k↑c

†
−k↓

+�∗
kc−k↓ck↑ − �∗

k〈c−k↓ck↑〉), (26)

with �k = −V 〈c−k↓ck↑〉, where the lattice-mediated pairing
interaction is constant and nonvanishing between electrons
around the Fermi level only. The density matrix is given by [12]

ρ = 1

Z
e−(H eff

BCS−μN)/T = e
∑

k
�̃hk

�Tk+K

Tr[e
∑

k
�̃hk

�Tk+K ]
=

∏
k e

�̃hk
�Tk∏

k Tr[e
�̃hk

�Tk ]
,

(27)

where T is the temperature, �̃hk = (h̃+
k ,h̃−

k ,h̃0
k) =

(2�∗
k/T ,2�k/T , − 2ε̄k/T ), �Tk = (T +

k ,T −
k ,T 0

k ), K =
−1/T

∑
k(ε̄k + �∗

kbk) and ε̄k = εk − μ. The norms of the

vectors �̃hk are given by h̃k = 2Ek/T , with Ek =
√

ε̄2
k + |�k|2.

The coefficients �̃hk = �̃hk(T ,V ) are functions of both the
coupling constant V and the temperature T , through the gap
parameters �k = �k(T ,V ) and the chemical potential μ. By
nkσ = c

†
kσ ckσ we denote the one-particle number operators,
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FIG. 6. (Color online) Rényi and von Neumann entropies for
L = 1 (left) and L = 6 (right), for the first five moments, as a function
of magnetic field. In the top panels we consider the entanglement
operator spectrum and in the bottom panels the fidelity operator
spectrum as a function of h2, for h1 = 0.98. Note the decrease
of the entropies close to the quantum critical point, both for the
entanglement case and the fidelity case.

while by b
†
k = c

†
k↑c

†
−k↓ and bk = c−k↓ck↑. The Tk operators

are given by T +
k = b

†
k , T −

k = bk and 2T 0
k + 1 = (nk↑ + n−k↓)

and form an su(2) algebra.
The fidelity is given by

F (ρa,ρb) = Tr
[(

ρ1/2
a ρbρ

1/2
a

)1/2]

=
Tr

[(∏
k e

�ak
2

�Tk e
�bk

�Tk e
�ak
2

�Tk

)1/2
]

∏
k(Tr[e�ak

�Tk ]Tr[e�bk
�Tk ])1/2

= Tr

[ ∏
k

(Fk)1/2

]
. (28)

FIG. 7. (Color online) Block fidelity susceptibility as a function
of magnetic field for L = 1, . . . ,6 which shows the sharp increase
near the critical point.

As for every k the operators �Tk form an su(2) algebra, and
therefore by exponentiation define a Lie group, we can write

e
�ak
2

�Tk e
�bk

�Tk e
�ak
2

�Tk = e2�ck
�Tk . For each value of the momentum we

get a four-dimensional space with respect to momentum states
that are empty, doubly occupied, or singly occupied by a
spin up or a spin down electron. The space is therefore of
the type B = {|0〉,|↑↓〉,|↑〉,|↓〉}, similarly to the problem
of the impurity in a superconductor. The fidelity operator
is then easily diagonalized in this 4 × 4 subspace. We will
study the possible eigenvalues of the fidelity operator for each
momentum. As before, the charge and spin parts separate.
Moreover, in this problem the two spin components are
degenerate. Therefore it is enough to look at three eigenvalues
(two for the charge part and one for the spin part). The results
are presented in Figs. 8 through 12 and discussed in more
detail below.

The fidelity operator for each momentum value (denoted
the k-fidelity operator) is of the form Fk = √

Ak , where

Ak = 1

Dk

⎛
⎜⎜⎜⎝

αk βk 0 0

βk γk 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ . (29)

The matrix elements are given by

αk = cosh Ea
k /T cosh Eb

k /T + sinh Ea
k /T sinh Eb

k /T
�a

k�
b
k + ε̄a

k ε̄b
k

Ea
k Eb

k

+ sinh Ea
k /T cosh Eb

k /T
ε̄a
k

Ea
k

+ sinh Eb
k /T

ε̄b
k

Eb
k

+ (
cosh Ea

k /T − 1
)

sinh Eb
k /T

�a
k�

b
k + ε̄a

k ε̄b
k

Ea
k Eb

k

ε̄a
k

Ea
k

, (30)

γk = cosh Ea
k /T cosh Eb

k /T + sinh Ea
k /T sinh Eb

k /T
�a

k�
b
k + ε̄a

k ε̄b
k

Ea
k Eb

k

− sinh Ea
k /T cosh Eb

k /T
ε̄a
k

Ea
k

− sinh Eb
k /T

ε̄b
k

Eb
k

− (
cosh Ea

k /T − 1
)

sinh Eb
k /T

�a
k�

b
k + ε̄a

k ε̄b
k

Ea
k Eb

k

ε̄a
k

Ea
k

(31)
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FIG. 8. (Color online) Exponential entanglement spectrum for a bulk superconductor as a function of momentum, labeled sequentially row
by row in the Brillouin zone, in the normal phase (� = 0, left panel), and in the superconducting phase (� = 0, right panel), at temperature T .
Note that in the right panel the lowest charge eigenvalue is smaller than the spin eigenvalues.

βk = sinh Ea
k /T cosh Eb

k /T
�a

k

Ea
k

+ sinh Eb
k /T

�b
k

Eb
k

+ (
cosh Ea

k /T − 1
)

sinh Eb
k /T

�a
k�

b
k + ε̄a

k ε̄b
k

Ea
k Eb

k

�a
k

Ea
k

, (32)

and

Dk = 2
(
1 + cosh Ea

k /T
)
2
(
1 + cosh Eb

k /T
)
. (33)

The eigenvalues of the k-fidelity operator Fk are therefore of
the form

1√
Dk

⎛
⎜⎜⎜⎝

ηk
+ 0 0 0

0 ηk
− 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ , (34)

where

ηk
± = 1

2

[
(αk + γk) ±

√
(αk − γk)2 + 4β2

k

]
. (35)

We will be interested in situations where ρ1 and ρ2

correspond to points in parameter space, which we choose to
be the temperature T and the gap function �k that are far apart
and may be in the same or different thermodynamic phases.

In Fig. 8 we present the k-fidelity operator spectrum (of
the operator Fk) for the case when the two density matrices
are equal (“exponential entanglement spectrum”) where we
compare the system in the normal phase (left) with the
superconducting phase (right). The horizontal axis is an index

over the eigenvalues and in the vertical axis we plot λk . We
only plot three eigenvalues because the spin eigenvalues are
degenerate. For each label the sum over the four eigenvalues
is 1 due to normalization. In both phases the higher eigenvalue
is the charge eigenvalue corresponding to empty sites (this
will be discussed later on). In the normal phase the lowest
eigenvalues merge into the higher eigenvalues, but in the
superconducting phase the energy gap is clearly visible. Note
that the eigenvalues are now labeled by the momentum. There
is no partitioning of the system in real space, but there is
a partitioning of the system in momentum space (since the
system can be block diagonalized). Recall, however, that here
the mixed state originates in the thermal states. We stress
that we are not plotting the fidelity operator F = ∏

k Fk

eigenvalues. In Fig. 9 we consider two different density
matrices where we plot the k-fidelity operator spectrum where
one of the density matrices corresponds to a point in phase
space in the normal phase and the other in the superconducting
phase. In the left panel the temperatures Ta,Tb are the same
(this can be obtained, for instance, considering two coupling
constants) and in the right panel the temperatures Ta,Tb are
different. In the first case the gap is still clearly visible. When
the temperatures are different the gap remains the same. There

FIG. 9. (Color online) Fidelity operator spectrum for a bulk superconductor as a function of momenta, between the normal phase and the
superconducting phase, at the same temperature (left) and at different temperatures (right).
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FIG. 10. (Color online) Top (bottom) panels: Normal (superconducting) phase exponential entanglement spectrum as a function of
momentum kx,ky . In the three panels we show three eigenvalues since the two spin eigenvalues are degenerate.

is a small decrease of the highest charge eigenvalue that can
be traced to the vicinity of the Fermi surface, as shown ahead.

To understand the spectrum in greater detail we consider
the various eigenvalues in momentum space. In Fig. 10
we consider the system in the normal phase and in the
superconducting phase for two equal density matrices ρa = ρb

and plot the three eigenvalues of the k-fidelity operator as a
function of momentum for a 2D system. The fidelity is one
for all momenta since Trρa = Trρb = 1. The depression in
the highest eigenvalue (left panels) marks clearly the Fermi
surface. For momenta larger than the Fermi momentum there
are no electrons (except for thermal excitations contained
in the Fermi function). So the eigenvalue corresponding
to empty states is 1. The other eigenvalues are close to
zero outside the Fermi surface. Due to the particle-hole
transformation of the Bogoliubov transformation, the empty
site eigenvalue (corresponding to doubly occupied sites in
terms of the electrons) is also close to 1 inside the Fermi
surface. Accordingly, the other eigenvalues are also close to
zero inside the Fermi surface. The noticeable features are
therefore close to the Fermi surface. A similar structure is
observed in the superconducting phase. There is a slight change
close to the Fermi surface which is due to the opening of the
superconducting gap. The amplitude of the doubly occupied

and spin eigenvalues are smaller in this case since the decrease
of the first eigenvalue is smaller along the Fermi surface.

In Fig. 11 we show the fidelity operator spectrum for the
case when one density matrix is in the normal phase and the
other corresponds to a quantum state in the superconducting
phase. The last panel shows the total fidelity. It is significantly
decreased around the Fermi surface where the difference
between the normal phase and the superconducting phase is
larger due to the pairing and opening of the gap. Note that
the highest eigenvalue has a structure that strongly resembles
the total fidelity, but the numerical decrease around the Fermi
surface is significantly more prominent than in the case of
total fidelity (about 0.4, with respect to about 0.15 for total
fidelity).

Finally, in Fig. 12 we compare the total fidelity as a function
of momentum for different temperatures. The right panel
corresponds to two quantum states in the normal phase, but at
different temperatures. As expected, around the Fermi surface
the fidelity decreases, however, there is a sharp region where
it approaches 1. The width of the region around the Fermi
surface is determined by the temperature through the Fermi
function. The sharp maximum corresponds to the point where
the two Fermi functions cross and so it pinpoints the location
of the Fermi surface.

FIG. 11. (Color online) Fidelity operator spectrum between superconducting and normal phases, as a function of momentum. In the first
three panels we show the three eigenvalues and in the last one the fidelity (smaller than 1 close to the Fermi surface). Note that the temperature
is the same, with � either finite (superconducting phase) or zero (normal phase).
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FIG. 12. (Color online) Total fidelity as a function of momentum.
Left panel: Different temperatures and same finite �; right panel:
different temperatures and � = 0.

V. CONCLUSION

We have introduced and analyzed the fidelity spectrum and
the fidelity operator spectrum for partial states for different
systems such as a magnetic impurity in a conventional
superconductor, a XX spin-1/2 chain in a transverse magnetic
field, and the thermal states of a finite temperature bulk
superconductor.

In the first problem we have found that only one charge
eigenvalue and one spin eigenvalue have important changes as
the quantum phase transition induced by the magnetic impurity
occurs. The transition is associated with the capture of one
electron by the impurity with a parallel spin. This feature is
clearly seen when we consider two density matrices associated
with the same lattice site (particularly the impurity site) and
different but close by spin couplings between the impurity
and the spin density of the electrons. Selecting two density
matrices with the same spin coupling but different lattice sites
leads to a signature of the phase transition that can be seen
both from the eigenvalues associated with lattice sites far from
each other and from the same lattice site.

In the spin chain problem we have studied the block fidelity
and the block fidelity susceptibility and found that the quantum
phase transition that occurs between an XX phase and an
Ising-like phase is well signaled by the block fidelity. Both the
entanglement spectrum and the fidelity spectrum do not show
any significant features and we analyzed the spectra calculating

the moments of the distribution and the Rényi entropies. The
S1 Rényi entropy associated with the block fidelity shows a
distinctive characteristic away from the critical point.

Finally, in the finite temperature bulk superconductor we
showed that in the superconductor there is a clear gap between
the various k eigenvalues, as for the energy spectrum. In the
case of two different density matrices we found that the effect
of temperature is stronger than the difference in the order
parameter distinguishing the normal from the superconducting
phase. Analysing the k-fidelity operator spectrum it was clearly
seen that the properties are determined by the structure around
the Fermi energy, as expected. In the case of two density
matrices for different temperatures in the normal phase the
fidelity has a sharp maximum at the location of the Fermi
surface, determined by the crossing of the Fermi functions.

We have shown that the fidelity spectrum, which we
have introduced, can give a more detailed description and
characterization of the phase transitions of many-body quan-
tum systems providing complementary information to other
techniques. Moreover, it allows to identify the modes that have
a larger contribution to the distinguishability between the states
across a phase transition and singles out the most divergent
contributions to the susceptibility. Therefore, we hope that
this can be applied to nontrivial problems where the traditional
Ginzburg-Landau theory with a local order parameter is not
known.

Note added: Recently another work appeared where the
importance of fidelity modes is stressed [42].
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