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Multipartite entanglement detection from correlation tensors
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We introduce a general framework for detecting genuine multipartite entanglement and non-full-separability in
multipartite quantum systems of arbitrary dimensions based on correlation tensors. Regarding genuine multipartite
entanglement, our conditions are comparable to those of previous approaches in the case of qubits, while
they show particular strength in the relatively unexplored case of higher-dimensional systems. In the case of
non-full-separability, our conditions prove to be advantageous in situations where more than two-body correlations
are relevant, where most previous conditions turned out to be weak. Moreover, they allow for the detection of fully
bound entangled states. Finally, we also discuss experimentally friendly ways of implementing our conditions,
which are based on directly measurable quantities.
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I. INTRODUCTION

In many-body quantum physics entanglement constitutes
a fundamental feature. Complex systems with multipartite
quantum correlations can be exploited to enable numerous
tasks in quantum-information processing. The multipartite
entanglement in these systems enables quantum computation
(e.g., [1]), multiparty cryptography (e.g., [2–4]), and the
implementation of various other quantum algorithms (e.g.,
[5]). Apart from these possible applications in modern quan-
tum technologies, it has become apparent that multipartite
entanglement also plays a fundamental role in the physics of
complex systems. While the involvement in quantum phase
transitions (e.g., [6]) and ionization procedures (e.g., [7])
seems clear, the recently suggested role in biological systems
is still a subject of debate (e.g., [8–11]).

Therefore, to decide if a state is entangled or not is a
fundamental problem in quantum-information theory [12,13].
Although a simple mathematical characterization is elusive
(the problem has in fact been proved to be nondeterministic-
polynomial-time hard or NP hard [14]), several works have
put up sufficient conditions to identify a multipartite state as
entangled [15–18]. These conditions not only are helpful for
entanglement detection but also provide more physical insight
into this phenomenon. In contrast to the bipartite case, there
exist different classes of multipartite entangled states. Genuine
multipartite entanglement is of particular interest since it
involves entanglement between all the subsystems. Recently
there has been a lot of progress concerning its detection,
mostly using linear and nonlinear entanglement witnesses
[19–27] and Bell-like inequalities [28,29]. However, with a
few exceptions (see, e.g., [20]), the approaches taken in each
particular case only allow detection of either entanglement or
genuine multipartite entanglement. Moreover, most of them
are limited to qubit systems.

In this paper we develop a general framework which
allows use of the same piece of information to detect both
entanglement and genuinely multipartite entanglement for
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multipartite states of arbitrary dimensions. Our main tool will
be correlation tensors which are built from the expectation
values of a local operator basis. Our motivation stems from
different facts. First, it has been shown that all information
about the entanglement properties of a system is encoded in
the correlation tensors [30], and these mathematical tools have
already been proven useful for the detection of entanglement in
the bipartite case [31]. In [16] a first step toward the extension
of these ideas to the detection of multipartite entanglement
was taken (see also [32] for a correlation-tensor approach to
multipartite entanglement detection). However, here we will
show that this allows for a much more general formalism
(in which the criterion of [16] is a particular case and that
of [32] is strictly weaker), which, furthermore, enables us
to identify different classes of multipartite entanglement.
Our conditions are expressed through simple mathematical
inequalities. In contrast to entanglement witnesses, which are
designed for a particular class of states, violations of these
inequalities signal genuine multipartite entanglement or non-
full-separability for general states. Moreover, since the entries
of the correlation tensors are directly related to measurable
quantities, we will discuss how our approach can be adapted
to optimize the experimental effort. Last, many conditions for
multipartite entanglement such as spin squeezing inequalities
[17], covariance matrices [18], entanglement witnesses based
on structure factors [21] or two-particle Hamiltonians [33],
or magnetic susceptibility measurements [34] rely only on
two-body correlations. It has been shown in [18] that this
limits their ability to detect entanglement as there are important
classes of states like graph states which have the same
two-particle reduced states as separable states. Hence, their
entanglement cannot be revealed by just looking at two-point
correlations. On the other hand, correlation tensors take into
account all m-body correlations. This suggests (and we will
later see) that correlation tensors may overcome the limitations
of the previous criteria.

II. PRELIMINARIES

Before we proceed to derive our main results let us
briefly review the definitions of multipartite entanglement and
correlation tensors. We consider n-partite quantum states ρ
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acting on the Hilbert space H = H1 ⊗ · · · ⊗ Hn of dimension
D = d1,d2 · · · dn. If a pure state |�〉 ∈ H can be written as a
tensor product of states for every subsystem, i.e.,

|�〉〈�| = |ψ1〉〈ψ1| ⊗ · · · ⊗ |ψn〉〈ψn|, (1)

then the state is said to be fully separable. Consequently,
fully separable mixed states are convex combinations of fully
separable pure states. These states contain no entanglement
at all. On the other hand, any n-partite pure state that can be
written as a tensor product

|�〉〈�| = |�A〉〈�A| ⊗ |�Ā〉〈�Ā| (2)

with respect to some bipartition AĀ (A denoting some subset
of subsystems and Ā its complement) is called biseparable.
These states might contain some entanglement (as |�A〉 and/or
|�Ā〉 might not be separable) but they are not completely
entangled. States that are not biseparable with respect to any
partition are then said to be genuinely multipartite entangled.
The generalization to mixed states is straightforward. Any
mixed state that can be decomposed into a convex sum of
biseparable pure states is called biseparable. Consequently,
any nonbiseparable mixed state is called genuinely multipartite
entangled. Due to the fact that the bipartitions might differ
for every element of the biseparable decomposition, it is an
intricate task to find out whether such a decomposition is
possible.

Let {λ(j )
i }d

2
j −1

i=1 denote the generators of SU(dj ) and let
λ

(j )
0 = Idj

, which altogether constitute an orthogonal basis of
the real Hilbert-Schmidt space of Hermitian operators acting
on Hj [i.e., with inner product 〈A,B〉 = Tr(AB)]. Thus, so
is {⊗n

j=1{λ(j )
i }} for the operators acting on H and, hence, ρ

is completely characterized by the expectation values 〈λ(1)
i1

⊗
· · · ⊗ λ

(n)
in

〉 := Ti1···in where ij = 0,1, . . . ,d2
j − 1, which gives

rise to the so-called (multipartite) Bloch representation or
(multipartite) Fano form of density operators.1 We will
decompose the tensor Ti1···in into the m-body correlation
tensors T

(j )
ij

, T (j,k)
ij ik

, etc., which are tensors of order m indicated
by the number of labels in the superscript. All the indices
not labeled in the superscript are fixed to be zero while the
other indices take every possible value but zero (i.e., the
identity is not taken into account). For instance, the one-body
correlation tensor for particle 1, given by T

(1)
i1

= Ti10···0 with
i1 �= 0, completely characterizes the reduced state ρ1, and the
two-body correlation tensor for subsystems 1 and 2, T

(1,2)
i1i2

=
Ti1i20···0 (i1,i2 �= 0), together with the one-body correlation
tensors of 1 and 2, characterizes ρ12, and so on. For the n-body
correlation tensor, which we shall also call the full correlation
tensor, we will drop the superscripts to ease the notation, i.e.,
Ti1···in = Ti1···in (ij �= 0 ∀ j ).

Given two tensors Ti1···in and Sj1···jm
, their outer product ◦

is the (n + m)th-order tensor (T ◦ S)i1···inj1···jm
= Ti1···inSj1···jm

.
If some tensor can be written as the outer product of two other
tensors, say Ti1···in = Ri1i2i3Si4···in , we will say that the tensor

1Notice that T0···0 is fixed by the normalization condition Trρ = 1
and there are indeed

∏
j d2

j − 1 parameters.

factorizes in the corresponding splitting ({1,2,3},{4,5, . . . ,n}
in this case). If a tensor cannot be written as the outer product
of any two lower-order tensors, we will say that the tensor does
not factorize.

It has been shown in [31] that a bipartite pure state is
separable if and only if (iff) T

(1,2)
i1i2

= T
(1)
i1

T
(2)
i2

. Accordingly,
a multipartite pure state is biseparable with respect to the
partition AĀ iff T (A,Ā)

iAiĀ
= T (A)

iA
T (Ā)

iĀ
. Thus, we have the

following characterization of biseparable pure states:
Fact 1. A pure state is biseparable iff there exists some

partition of the subsystems AĀ for which all the m-body
correlation tensors involving k particles from A and m − k

from Ā (k �= 0,m) factorize into the corresponding k-body
correlation tensor of the k particles from A and the (m − k)-
body correlation tensor of the m − k particles from Ā.

This leads to a simple sufficient condition for genuinely
multipartite entangled pure states:

Corollary 1. If some m-body correlation tensor of a
pure state cannot be factorized into meaningful lower-order
correlation tensors, then the state contains genuine multipartite
entanglement.

Analogously, this can be extended to non-fully-separable
states (see also [16]):

Corollary 2. If some m-body correlation tensor of a pure
state cannot be fully factorized into meaningful one-body
correlation tensors, then the state is not fully separable.

We stress that the factorization must be possible into
meaningful correlation tensors. This a consequence of the fact
that the Bloch representation holds for Hermitian operators
and not only for density operators, which are furthermore
positive semidefinite. Hence, not all values of Ti1···in give rise
to a density matrix, i.e., are meaningful. To characterize this
subset is a quite involved problem (see, e.g., [35]). However,
there exist several conditions that should be fulfilled by the set
of meaningful correlations. For instance, it will be useful later
on that for one-body correlation tensors it must hold that

||T (j )|| �
√

2(dj − 1)

dj

, (3)

with equality iff the state is pure and where || · || is the
standard Euclidean norm for vectors. This expresses the fact
that Trρ2

j � 1. This condition holds for the following choice
of normalization for the generators of SU(dj ): Tr(λmλn) =
2δmn [of course m,n �= 0 since for the identity we have
Tr(λ(j )

0 λ
(j )
0 ) = dj ]. We will follow this convention throughout

the paper, with which for qubits the generators correspond to
the standard Pauli matrices.

Following [16,31], the main idea behind this paper is to
express the factorizability of some tensor into lower-order
meaningful tensors as an upper bound on some convex
function. Convexity will then imply that this bound must hold
as well for biseparable (fully separable) mixed states and,
hence, a violation of this bound will signal the presence of
genuine multipartite entanglement (non-full-separability) for
general quantum states. It seems that some tensor norm is the
best choice of convex function since the norm of meaningful
correlation tensors is upper bounded, as we have just seen
for one-body correlation tensors. Notice that convexity in this
case is guaranteed by the triangle inequality. Physical intuition
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suggests that full correlation tensors should be the first ones to
check and usually we will restrict ourselves to them.

The rest of the paper is organized as follows. In Secs. III and
IV we provide two different approaches that lead to conditions
for the identification of genuine multipartite entanglement.
In Sec. V we show that similar techniques can be used
to obtain conditions for non-full-separability. Section VI is
devoted to some mathematical properties of our conditions
which are related to their experimental implementation. Final
conclusions are drawn in Sec. VII.

III. GENUINE MULTIPARTITE ENTANGLEMENT
CONDITIONS BASED ON THE STANDARD

TENSOR NORM

The standard tensor norm is defined as the natural gener-
alization of the Euclidean vector norm to higher-order tensors
(recall that we will always deal with real tensors), i.e.,

||Ti1···in ||2 =
∑

i1,...,in

T 2
i1···in . (4)

This seems to be a very good choice for our purposes since this
norm is multiplicative under outer products, i.e., ||T ◦ S|| =
||T ||||S|| ∀ T ,S. Hence, we will just need to upper-bound the
standard norm of the m-body correlation tensors. This turns
out to be quite easy. As we mentioned above, the condition
that Trρ2

j � 1 must hold translates into an upper bound for
the standard norm of the one-body correlation tensors. Now,
combining this condition with Trρ2

ij � 1 will yield an upper
bound for the two-body correlation tensors (see, e.g., [36]).
This procedure can be recursively applied to upper-bound the
standard norm of all meaningful m-body correlation tensors.
For instance, this gives

||T (j,k)|| � 2

√
djdk − 1

djdk

, (5)

with equality iff the state ρjk is a maximally entangled state
[36].

To illustrate this, let us start by considering a tripartite pure
state with subsystems of equal dimension dj = d ∀ j . Then,
full separability implies

||Ti1i2i3 || = ||T (1)||||T (2)||||T (3)|| =
(

2(d − 1)

d

)3/2

, (6)

and biseparability between any two subsystems and the other
yields

||Ti1i2i3 || = ||T (j )||||T (k,l)|| �
√

8(d − 1)(d2 − 1)

d3
. (7)

Since the last condition is more restrictive and using convexity
we then have the following.

Theorem 1. If for an arbitrary (pure or mixed) tripartite state
it holds that

||Ti1i2i3 || >

√
8(d − 1)(d2 − 1)

d3
, (8)

then the state is genuinely multipartite entangled.
This simple mathematical idea is already strong enough

to detect paradigmatic cases of genuine multipartite entangle-

ment. If we consider (8) for three qubits, this gives the bound√
3 
 1.73 while the Greenberger-Horne-Zeilinger (GHZ)

and W states have respectively ||Ti1i2i3 || = 2 and ||Ti1i2i3 || 

1.92. Therefore, their genuine multipartite entanglement
is successfully identified, leading to (modest) white noise
tolerances of pGHZ � 0.13 and pW � 0.10.2 Furthermore,
the power of this condition increases with the subsystem
dimension improving remarkably on [23]. In Fig. 1 we plot
the detection power of Eq. (8) for dimensions 4, 5, and 6.
As the other criteria for genuine multipartite entanglement in
high-dimensional systems are still based on qubit subsystems
of the high-dimensional Hilbert space, it is perhaps not
surprising that our criteria, exploiting all degrees of freedom,
quickly outperform them with growing dimensionality of the
system.

As discussed above, the extension of this condition to states
with more subsystems or different subsystem dimensions is
straightforward. However, for four qubits we have for both the
GHZ and the Dicke state with two excitations ||Ti1i2i3i4 || = 3,
which is precisely the same value of a tensor product of two
maximally entangled bipartite states (||Ti1i2i3i4 || = √

3 × √
3).

On the analogy of (8), one might hope to improve for larger
d; nevertheless, in the next section we will present a different
and more powerful approach.

It is worth mentioning that ||Ti1···in || − [2(d − 1)/d]n/2 has
been shown to be an entanglement monotone [37]. Our results
show that a high value of this measure can imply not only some
entanglement but even genuine multipartite entanglement.

IV. GENUINE MULTIPARTITE ENTANGLEMENT
CONDITIONS BASED ON NORMS OF

MATRICIZATIONS OF TENSORS

As an alternative to the previous section one can seek for
other norms. Unfortunately, to our knowledge, the standard
norm is the only norm which is multiplicative under outer
products, a property which is very convenient for the math-
ematical simplicity of our derivations. Nevertheless, it turns
out that considering matricizations of tensors (i.e., particular
rearrangements of the tensor values to form a matrix) [39] and
the usage of matrix norms on these matricizations will lead
to interesting and more powerful results. The matrix norms
we will be dealing with are the Frobenius or Hilbert-Schmidt
norm (which is the standard tensor norm on a matrix), the trace
norm, and the Ky Fan k norms [40]. That is, let A ∈ Rm×n;
then

||A|| =
√∑

ij

A2
ij =

√∑
i

σ 2
i ,

||A||tr = Tr
√

AT A =
∑

i

σi, (9)

||A||k =
k∑

i=1

σi,

2Here and throughout the paper the white noise tolerance of some
entanglement condition for a state ψ is defined as the values of p for
which pID/D + (1 − p)|ψ〉〈ψ | is still detected by this condition.
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FIG. 1. (Color online) Here the parameter regions for which the state ρ = αρGHZ(d) + βρW (d) + 1−α−β

2d−2 (
∑d−1

i=0 |i,i,i + 1〉〈i,i,i + 1| + |i +
1,i + 1,i〉〈i + 1,i + 1,i|) for (a) d = 4, (b) d = 5, and (c) d = 6 exhibits genuine multipartite entanglement are identified. The generalized
GHZ and W states for d-dimensional systems are defined as ρGHZ(d) = |GHZ(d)〉〈GHZ(d)| with |GHZ(d)〉 := 1√

d

∑d−1
i=0 |i,i,i〉 and ρW (d) =

|W (d)〉〈W (d)| with |W (d)〉 = 1√
3(d−1)

∑d−2
i=0 (|i,i,i + 1〉 + |i,i + 1,i〉 + |i + 1,i,i〉). The (red) region labeled II uses criterion II from Ref. [23]

optimized numerically over all local unitary representations of the density matrix. The (yellow) region labeled III uses criterion III from
Ref. [23] optimized numerically over all local unitary representations of the density matrix. The numerical optimization was performed using
the composite parametrization from Ref. [38]. The (blue) region labeled C shows the states detected to be genuinely multipartite entangled
using Eq. (8).

where {σi} [i = 1, . . . , min (m,n)] denote the singular values
of the matrix, which are arranged, as usual, in nonincreasing
order. Notice that the last Ky Fan norm is the trace norm, i.e.,
|| · ||min(m,n) = || · ||tr.

We will define matricizations in the following way:
(non)underlined indices are joined together in lexicographical
order to give rise to the row (column) indices. Let A be the
subset of underlined indices; then we will call that an A,Ā

matricization. For example, let ij = 1, . . . ,nj ∀ j ; then

Ti1i2i3i4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T111k T121k · · · T1n21k

T112k T122k · · · T1n22k

... · · ...

T11n3k · · · · · · ·
T211k · · · · · · ·

... · · ...

T21n3k · · · · · · ·
... · · ...

Tn111k · · · · · · ·
... · · ...

Tn11n3k · · · · · · Tn1n2n3k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where Txyzk = (Txyz1 · · · Txyzn4 ) is a row vector (k =
1,2, . . . ,n4), is a 13,24 matricization. In Dirac notation we
would have

Ti1i2i3i4 =
∑

i1,...,i4

Ti1i2i3i4 |i1i3〉〈i2i4|. (11)

This way of matricizing is a generalization of the concept of
matrix unfolding or mode-n matricization that is often used in
multilinear algebra [39], which corresponds to matricizations
of one index giving rise to the row column and the rest to the
column vectors. The matricizations we have defined are quite

convenient for the problem at hand because they have a well-
defined structure under the outer product of tensors. Of course,
if all the indices of a tensor are joined together, the tensor
is vectorized, Ti1i2i3 = vec(T ), while it is straightforward to
check that Ti1i2Wi3i4 = (Ti1i2 ) ⊗ (Wi3i4 ). Concatenating these
rules, a matrix form for any matricization of more involved
outer products of tensors can be readily found. For instance,

Ti1i2i3Ri4Si5i6Wi7i8

= (Ti2,i1i3 ) ⊗ (Ri4 )T ⊗ vec(Si5i6 ) ⊗ (Wi7i8 )T . (12)

This is the kind of structure we need because the norms
we are going to use are either multiplicative (|| · ||, || · ||tr, and
|| · ||1) or submultiplicative (|| · ||k) under tensor products.3

So, analogously to the previous section, we just need to upper-
bound these quantities for meaningful correlation tensors to
obtain conditions for genuine multipartite entanglement. For
the sake of simplicity we will consider multiqubit systems in
the following sections.

A. Three qubits

According to the above discussion the only thing left to be
able to derive genuine multipartite entanglement conditions is
to obtain upper bounds for the matrix norms of the correlation
tensors, as we did with the standard norm in the previous
section. We have the following.

Lemma 1. The two-body correlation tensor of two qubits
satisfies ∣∣∣∣T (j,l)

ij il

∣∣∣∣
k

� k ∀ k (13)

with equality iff the two qubits are in a maximally entangled
state.

3This is a consequence of the fact that, if {σi} and {σ ′
j } are

respectively the singular values of the matrices A and B, then the
singular values of A ⊗ B are {σiσ

′
j }.
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Proof. We will use the local unitary invariance of the norms
of any matricization of the correlation tensors (see Sec. VI
below). Notice then that, because SO(3) 
 SU(2), the two-
body correlation tensor (i.e., correlation matrix) can be brought
into diagonal form by choosing properly local unitaries in the
two subsystems (see, e.g., [41]). Since the entries of this matrix
are expectation values of observables with eigenvalues 1 or −1
we have that |Tii | � 1 ∀ i. It can be readily checked that this
bound is attained by the maximally entangled state (and only
by the maximally entangled state because this value of the trace
norm of the correlation matrix implies the maximal possible
amount of entanglement, as measured, for instance, by the
concurrence [42]). �

Lemma 2. If a pure three-qubit state is biseparable, then it
holds that

(i) if the state is fully separable

||Tij il im ||k � 1 ∀ k; (14)

(ii) if the state contains no entanglement across j |lm
||Tij il im ||k �

√
3 ∀ k; (15)

(iii) if the state contains some entanglement across j |lm
||Tij il im ||k � k ∀ k. (16)

Proof. We will use repeatedly the upper bounds (3), (5) and
(13).

(i)

||Tij il im ||k = ∣∣∣∣T (j )
ij

T
(l)
il

T
(m)
im

∣∣∣∣
k

= ||(T (j )) · (T (l) ⊗ T (m))T ||k
= ||T (j )||||T (l) ⊗ T (m)||
= ||T (j )||||T (l)||||T (m)|| = 1. (17)

(ii)

||Tij il im ||k = ∣∣∣∣T (j )
ij

T
(l,m)
il im

∣∣∣∣
k

= ||(T (j )) · vec(T (l,m))T ||k
= ||T (j )||||T (l,m)|| �

√
3. (18)

(iii)

||Tij il im ||k = ∣∣∣∣T (j,l)
ij il

T
(m)
im

∣∣∣∣
k

= ||(T (j,l)) ⊗ (T (m))T ||k
� ||T (j,l)||k||T (m)|| � k. (19)

�
From Lemma 2 we read three sufficient conditions for

genuine multipartite entanglement, namely, that the norm of
any of the three possible matricizations of the full correlation
tensor is greater than

√
3, 2, and 3 for || · ||1, || · ||2, and

|| · ||tr, respectively. To illustrate the power of these conditions,
consider that the singular values of these matricizations are
{1.414,1.414,0} for the GHZ state and {1.374,0.943,0.943}
for the W state. Hence, the last two conditions can detect
genuine multipartite entanglement. Notice that these states are
symmetric, so all matricizations of the full correlation tensor
are equal; however, for general states our ability to detect a
state as genuinely multipartite entangled might depend on
the choice of matricization. To avoid this and to obtain a
stronger condition which takes into account a combination of
the bounds of Lemma 2 rather than just picking one of them,
we introduce the average matricization norm ||M(Ti1i2i3 )|| =

(||Ti1i2i3 || + ||Ti1i2i3 || + ||Ti1i2i3 ||)/3, which leads to the follow-
ing.

Theorem 2. If for a three-qubit state it holds that

||M(Ti1i2i3 )||k >
2k + √

3

3
, (20)

then the state contains genuine multipartite entanglement.
Proof. Simply use the fact that any biseparable state can

be written as ρbs = ∑
k pkρ

k
12 ⊗ ρk

3 + qkρ
k
13 ⊗ ρk

2 + rkρ
k
23 ⊗

ρk
1 and combine properly the bounds (15) and (16). �

Thus, Theorem 2 allows detection of genuine multipartite
entanglement in mixtures of the GHZ and W states with
white noise for noise levels of pGHZ � 0.324 and pW �
0.209. Notice that it is known that these states are genuinely
multipartite entangled iff pGHZ � 0.571 and pW � 0.521
[27].

B. Four qubits

Now, as in previous sections, we need upper bounds to
the norms of the matricizations of the three-body correlation
tensor. However, it is not clear which states should attain the
maximum values of these norms in opposition to the two-
body case, where the maximally entangled state, as intuition
would suggest, does the job. Moreover, numerics indicate that
max|ψ〉 ||Tij il im ||tr 
 3.272 for a state which, although close
to the W state, has no simple mathematical structure. This
indicates that devising a systematic procedure to find the
maximum value of these norms as we did with the standard
norm in Sec. III might be very hard. Nevertheless, it turns out
that we can use this procedure to obtain reasonable estimates
by using the equivalence of the norms: || · ||k �

√
k|| · ||.

Lemma 3. The three-body correlation tensor of three qubits
satisfies ||T (j,l,m)

ij il im
||k � 2

√
k ∀ k.

Proof. The result follows from ||T (j,l,m)
ij il im

|| � 2. To see this

we proceed as in Sec. III. Trρ2
j lm = 1 translates to∑

s=j,l,m

||T (s)||2 +
∑
s<q

||T (s,q)||2 + ||T (j,l,m)||2 = 7. (21)

The minimum possible values of the norms of the lowest-
order correlation tensors are ||T (s)|| = 0 and ||T (s,q)|| = 1
∀ s,q (since the one-qubit reduced density matrices can be
maximally mixed, but the highest mixing allowed by the
two-qubit reduced density matrices is them being equal
to the identity in a two-dimensional subspace). Therefore,
||T (j,l,m)|| � 2, which is attained by the GHZ state. Finally,
notice that the Hilbert-Schmidt norm of any matricization of a
tensor equals its standard norm as tensor. �

Notice that Lemma 3 provides accurate estimates, as the
trace norm bound 2

√
3 
 3.464 is quite close to the numerical

maximum given above, while the Ky Fan 2 norm bound is
actually sharp since it is attained by the GHZ state.

Now, we can proceed as in Lemma 2 to upper-bound
||Tij il imis ||k . Then, for pure biseparable states, one obtains

the bounds 2
√

k (for k � 3 and 2
√

3 otherwise) if Tij il imis =
T

(j )
ij

T
(l,m,s)
il imis

or Tij il imis = T
(j,l,m)
ij il im

T
(s)
is

(i.e., the state is bisep-
arable in one subsystem versus the other three, and we
consider the two possibilities that the two indices giving rise
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to the row of the matricization belong to either unentangled
or entangled particles), 3 if Tij il imis = T

(j,l)
ij il

T
(m,s)
imis

and k if

Tij il imis = T
(j,m)
ij im

T
(l,s)
il is

. One could also consider one vs three
matricizations of the full correlation tensor; however, one finds
that ||Tij il imis ||k �

√
3k for Tij il imis = T

(j,l)
ij il

T
(m,s)
imis

(i.e., any two
vs two biseparable states), which turns out to be a weak
condition and, thus, it is better not to take these matricizations
into account. Combining all the above bounds, defining the
two vs two average matricization norm ||M22(Ti1i2i3i4 )|| =
(||Ti1i2i3i4 || + ||Ti1i2i3i4 || + ||Ti1i2i3i4 ||)/3, and proceeding as in
Theorem 2, we have the following.

Theorem 3. If for a four-qubit state one of the following
inequalities holds:

||M22(Ti1i2i3i4 )||k >

{
2
√

k, 1 � k � 3,

1 + 2k/3, 4 � k � 9,
(22)

then the state contains genuine multipartite entanglement.
With this, genuine multipartite entanglement is detected

in the GHZ state with a white noise tolerance of pGHZ �
0.307 and for the Dicke states of one and two excitations we
have respectively pD1 � 0.018 and pD2 � 0.328. From [27]
we know that there is genuine multipartite entanglement iff
pGHZ � 0.533 and if pD2 � 0.539.

These examples indicate that the matricization approach is
more powerful than that of the standard norm and that it can
detect different classes of entangled states. Interestingly, the
detection capability of Theorems 2 and 3 is already comparable
to [23,26] for qubits, as shown in Fig. 2.

Using the matricization approach we have thus constructed
versatile criteria, detecting genuine multipartite entanglement
in a broad variety of cases. All famous examples of four-qubit
multipartite entangled states are detected (GHZ, W, Dicke,
and singlet states) using the same criterion, without any
optimization involved as the norms of any matricization
of a correlation tensor are invariant under local unitary
transformations on the density matrix (see Sec. VI). Although
for some specific states optimizing over all possible witnesses
can yield a higher noise resistance in some cases, a comparable
result is achieved in a computationally far more efficient way.
As shown in Fig. 2, there even exist states that were not
detected to be genuinely multipartite entangled with any of
the optimized criteria so far.

V. DETECTION OF NON-FULLY-SEPARABLE STATES

As mentioned above, we can also use correlation tensors
to discriminate states containing some form of entanglement
and fully separable states. This has already been carried out
in [16], where the authors show that for fully separable states
an upper bound on the trace norm of the full correlation tensor
must hold for any matricization of the form one particle versus
the rest (i.e., matrix unfoldings). However, remarkably, our
picture allows not only for a very simple proof of this fact, but,
also, for a significantly stronger result since we can show that
such a bound must hold for any possible matricization of the
correlation tensor.

FIG. 2. (Color online) Here the parameter regions for which
the state ρ = αρGHZ(2) + βρD(2) + 1−α−β

16 I exhibits genuine multi-
partite entanglement are identified. The GHZ and two-excitation
Dicke state for four-qubit systems are defined as ρGHZ(2) =
|GHZ(2)〉〈GHZ(2)| with |GHZ(2)〉 := 1√

2

∑1
i=0 |i,i,i〉 and ρD(2) =

|D4
2〉〈D4

2 | with |D4
2〉 = 1√

6
(|0011〉 + |0101〉 + |1001〉 + |1010〉 +

|1100〉 + |0110〉). The (red) region labeled II uses criterion II from
Ref. [23] optimized numerically over all local unitary representations
of the density matrix. The (yellow) region labeled I 4

2 uses criterion
I 4

2 from Ref. [26] optimized numerically over all local unitary
representations of the density matrix. The numerical optimization
was performed using the composite parametrization from Ref. [38].
The (blue) region labeled C shows the region detected to be genuinely
multipartite entangled using Theorem 3.

Theorem 4. For any fully separable state any matricization
of the full correlation tensor must fulfill

||Ti1···ik ik+1···in ||tr �
n∏

j=1

√
2(dj − 1)

dj

, (23)

i.e., k = 1, . . . ,n − 1 and all possible permutations of the
particles are taken into account.

Proof. Since the correlation tensor of a fully separable pure
state must fully factorize into the one-body correlation tensors,
it is straightforward to note that

||Ti1···ik ik+1···in ||tr
= ∣∣∣∣T (1)

i1
· · · T (k)

ik
T

(k+1)
ik+1

· · · T (n)
in

∣∣∣∣
tr

= ||(T (1) ⊗ · · · ⊗ T (k)) · (T (k+1) ⊗ · · · ⊗ T (n))T ||tr
= ||T (1) ⊗ · · · ⊗ T (k)|| ||T (k+1) ⊗ · · · ⊗ T (n)||
=

∏
j

||T (j )||. (24)

Using Eq. (3) the proof is finished. �
Notice that similar bounds hold as well for lower-order

correlation tensors. Of course, one could also consider other
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matrix norms, but the trace norm yields the most powerful
condition as they all lead to the same bound. In particular,
if one considers the standard norm one obtains the criterion
of [32], which is then proved to be strictly weaker than our
Theorem 4 as || · ||tr � || · ||.

Theorem 4 is then clearly stronger than the criterion of
[16], since it contains matrix unfoldings as a particular case
while the other matricizations can further restrict the set of
fully separable states, leading to a substantially more powerful
detection of entangled states. For instance, consider the Dicke
states of four qubits for which the matrix unfolding (i.e., the
criterion of [16]) detects entanglement in some form up to
white noise levels of 0.698 (one excitation) and 0.807 (two
excitations), while the 12,34 matricization raises these levels
to 0.732 and 0.842, respectively. As we will see in more detail
with the examples below, this seems to be a general feature.

A very interesting conclusion of our study of multipartite
entanglement detection with correlation tensors is the fact
that the very same piece of information can be used to
decide both non-full-separability and genuine multipartite
entanglement. This gives Theorem 4 an advantage over other
conditions for the detection of some form of entanglement
in multipartite states, since used together with Theorems
2 and 3 one can furthermore discriminate when genuine
multipartite entanglement is present. Moreover, as discussed
in the Introduction, the correlation tensors take into account
all m-body correlations while many important conditions rely
only on two-point correlations. This constrains the power of
these conditions since, for instance, they cannot detect the
important class of graph states as has been shown in [18].
In particular, this means that, in contrast to our case, they
cannot detect the GHZ state, one of the most paradigmatic
multipartite entangled states. As we will see with some
examples, this limitation is extendable to other classes in which
interactions of more than two particles are somehow relevant
(e.g., graph states cannot be nondegenerate ground states of
Hamiltonians containing at most two-body interactions [43]).
On the contrary, Theorem 4 turns out to be quite efficient in
these cases.

Let us start by considering the four-qubit three-body
interaction Hamiltonian with transverse magnetic field of
strength h,

H1 =
∑

j

( − σ (j−1)
z σ (j )

x σ (j+1)
z + hσ (j )

x

)
, (25)

where periodic boundary conditions are assumed and the
superscript indicates on which qubit the operation is acting.
For brevity, the tensor products and the identity operation
are omitted. In Fig. 3 we plot the detection efficiency of
correlation tensors and the optimal spin-squeezing inequalities
(OSSI) [17] for the thermal states of H1,4 i.e.,

ρ(kT ,h) = exp(−H1/kT )

Tr[exp(−H1/kT )]
. (26)

4The OSSI is the strongest entanglement criterion possible if
only averaged two-particle correlations are used. Hence, in what
follows we will take it as a good indicator of the power of all the
aforementioned criteria based on two-body correlations.

0 1 2 3 4 5 6
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kT

FIG. 3. (Color online) Maximal temperature for which entangle-
ment is detected in the thermal states of H1 by Theorem 4, i.e., any
matricization of the full correlation tensor (×), the criterion of [16],
i.e., matrix unfoldings of the full correlation tensor (+), and OSSI
(circles).

The superiority of our condition is not so surprising as it is
known that the (nondegenerate) ground state of H1 when h = 0
is the cluster state, a graph state. Moreover, one can consider
a slight variation of H1, namely,

H2 =
∑

j

[ − σ (j−1)
z

(
σ (j )

x + σ (j )
y + σ (j )

z

)
σ (j+1)

z + hσ (j )
x

]
, (27)

for which the thermal ground state when h = 0 is not a graph
state.5 Nevertheless, correlation tensors remain more powerful
than the OSSI as shown in Fig. 4, and, furthermore, a region
of genuine multipartite entanglement can be identified with
them. Let us mention that these Hamiltonians are not artificial,
they can arise as effective interactions in the context of optical
lattices in a triangular configuration [44] and their statistical
mechanical properties are a subject of current research [45].

In the same vein we have considered the class of locally
maximally entanglable (LME) states [46], which generalize
graph states. These states can be generated with nonlocal gates
acting on a product state, these operations being generalized
phase gates with m-body interactions. We have checked
Theorem 4 in randomly generated four-qubit LME states and
they were always found to be entangled.6 Moreover, in most
cases they were found to be genuinely multipartite entangled

5This is because there is a finite set of local-unitary-inequivalent
four-qubit graph states, which can be seen not to be the thermal
ground state in this case.

6The states are detected both with a matrix unfolding and with two
vs two matricization, but the latter provides a larger violation, which,
for instance, translates into a stronger white noise tolerance.
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FIG. 4. (Color online) The same as in Fig. 3 for H2. The area in
the lower left corner represents genuine multipartite entanglement as
detected by Theorem 3.

by Theorem 3. On the contrary, the OSSI always failed for
these states.7

Last, we have checked that Theorem 4 is able to detect
entangled states with a positive partial transposition (PPT).
This was already known in the bipartite case [31,36]. However,
one may wonder if this is still possible in the multipartite
case for states which are PPT with respect to every possible
bipartition. This question is answered in the affirmative.
We have considered the three-qubit Hyllus state [47] which
depends on one free parameter. For all values of this parameter,
despite not being fully separable, this state is not only PPT with
respect to every possible bipartition but separable with respect
to every possible bipartition. It can be readily checked that
Theorem 4 detects this state as entangled for many values of the
free parameter. This shows the strength of our condition since
the entanglement in this state is very weak: it is fully bound
entangled, i.e., the state cannot be distilled even if different
parties act together.

VI. MATHEMATICAL PROPERTIES AND
EXPERIMENTAL IMPLEMENTATION

As we have shown, the correlation tensor provides a
powerful tool, enabling the detection of a wide range of
multipartite entangled states. It is worth pointing out the
following.

Fact 2. All the quantities needed to apply the conditions
presented here (Theorems 1–4) are invariant under local
unitary (LU) transformations on the density matrix.

More precisely, all the norms considered here (|| · ||, || · ||k ,
and || · ||tr ) of any matricization of any correlation tensor

7Notwithstanding, some nongeneric LME states (i.e., of measure
zero) can be found to be detected by OSSI. Nevertheless, we found a
greater white noise tolerance for them using Theorem 4.

are invariant under these transformations. This is because
of the well-known fact that LU operations acting on the
density matrix correspond to rotations in correlation space
(see, e.g., [31,32,48]). Hence, the transformation ρ → U1 ⊗
· · · ⊗ UnρU

†
1 ⊗ · · · ⊗ U

†
n amounts to Ti1···ik ik+1···in → (O1 ⊗

· · · ⊗ Ok)Ti1···ik ik+1···in(Ok+1 ⊗ · · · ⊗ On) for any matricization
of a correlation tensor T for some real orthogonal matrices
{Oi}. The result then follows because the aforementioned
norms are all unitarily invariant [40].

This is a convenient property which is not shared by other
conditions for genuine multipartite entanglement [22,23].
Although one can nevertheless make the effort of optimizing
over LUs for the application of these criteria in practice,
LU invariance is a very satisfactory property from the
theoretical point of view since this is a fundamental property
of entanglement. Moreover, this could lead to the use of these
norms of correlation tensors not only as qualitative indicators
of entanglement but also as quantitative tools (this is already
the case for the trace norm in the bipartite case [42] and for the
standard norm in the multipartite case for non-full-separability
[36,37]). Furthermore, LU invariance is also quite convenient
from the experimental point of view, since this implies that the
local measurement settings of each party need not be aligned
with the others.8

Regarding experimental implementation, it is also worth
discussing the number of measurements required to use our
criteria. Although knowledge of the full correlation tensor
requires fewer parameters than does the density matrix, the
statistical data that need to be collected to reconstruct it allows
one to do state tomography. Nevertheless, partial knowledge
of a correlation tensor allows us as well to implement our
conditions as the norm of a matrix can be estimated from
below by knowing just some of its entries. This is clear for the
standard norm from Eq. (4). Using again the equivalence of
the norms, e.g. || · ||tr � || · ||, one can lower bound the other
norms. In addition to this, if particular entries of a matrix are
known one can directly obtain lower bounds for the Ky Fan
norms. For instance, we have that

||A||tr �
∑

i

|aii |, (28)

and, also that the Ky Fan norm of any principal submatrix
is a lower bound for the Ky Fan norm of the full matrix.
Furthermore, the minimum value of the trace norm of a
matrix subject to the knowledge of some of its entries can
be efficiently computed using convex optimization techniques

8Besides their fundamental limitations for entanglement detection,
Bell-like inequalities can be used to detect genuine multipartite
entanglement in a device-independent way (i.e., with no need to
trust the measurement devices) [29]. This can be quite convenient
from the experimental point of view since, as this reference argues,
the presence of tilts in the measurements notoriously reduces the
entanglement detection capability of entanglement witnesses. Our
scheme is of course not device independent but measurements only
need to be locally perfect (each party has to measure othogonal
observables but they do not need to match those of other parties),
which can be very useful when the different parties are far away from
each other.
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(see, e.g., [49]). Hence, if the numbers given by these lower
bounds are already large enough to violate the inequalities
given by Theorems 1–4, one can then conclude with certainty
the presence of genuine multipartite entanglement or non-full-
separability with considerably fewer measurements.

Genuine multipartite entanglement is usually addressed in
terms of entanglement witnesses. They are locally measurable,
and the number of required measurements can scale very favor-
ably with the system size (i.e., polynomially in Refs. [23,26]
and even linearly in Ref. [25]). However, this limited number
of measurements of course also severely limits the number
of states that are detected by such criteria (e.g., GHZ states
using the criteria from Refs. [23,26]). Nevertheless, if one has
theoretical expectations of what the state should look like,
one can then use a suitable criterion which should be able to
detect these states. Our presented framework can allow as well
for a versatile detection of any state that is detected by our
criteria using only a very limited number of measurements as
in many cases a considerable number of expectation values
(i.e., elements of the correlation tensors) are zero.

(1) First calculate all correlation tensor elements of the
theoretically expected state in an experiment.

(2) Second, perform only the measurements corresponding
to exactly these elements.

(3) Then lower-bound the norm of the correlation tensor
using only this limited amount of elements.

If this lower bound exceeds the threshold of any of
our inequalities it is certain that it contains entanglement.
This implies that in cases where entanglement witnesses are
applicable (i.e., some prior expectations of the state), we can
apply our criteria in a just as experimentally feasible way.
For example, for three-qubit GHZ states the criterion from
Ref. [23] requires seven local measurement settings, which is
exactly the number of correlation-tensor elements that have to
be ascertained.

VII. CONCLUSIONS

We have provided a general framework to detect different
classes of multipartite entanglement in systems of arbitrary
dimension using as a main tool correlation tensors. In
particular, considering several norms on these objects, we
have shown that different upper bounds can be established
such that violations signal the presence of either non-full-
separability or genuine multipartite entanglement. Regarding
genuine multipartite entanglement, we have explicitly worked
out the case of tripartite qudit (Theorems 1 and 2) and four-

partite qubit (Theorem 3) systems. The approach, however,
can be generalized to an arbitrary number of subsystems
and dimensions in a tedious but systematical way. It would
be interesting to study in the future whether this procedure
can be rendered more straightforward. This is the case for
our sufficient condition for non-full-separability (Theorem 4),
which has a very simple proof for an arbitrary number of
subsystems and dimensions.

We have demonstrated as well with exemplary cases
that our approach can improve and complement previous
comparable criteria in both the non-full-separability and
genuine multipartite entanglement scenarios. Furthermore,
the entries of the correlation tensors are directly related to
measurable quantities, and we have discussed how to estimate
the relevant norms with fewer measurements to ease the
experimental implementation. Last, our norms are all LU
invariant, which, besides some implementation advantages, is
a satisfactory property from the theoretical point of view. This
suggests that they might be connected to the quantification
of entanglement with entanglement measures, thus providing
not only qualitative information. This would be particularly
interesting in the genuine multipartite entanglement case,
where the first quantification steps have been taken in [27,50].
We leave for future research the question of whether our norms
could provide a (rough) easily computable quantification of
genuine multipartite entanglement.

Another interesting point for future research is the con-
nection between the norms of the correlation tensor and
nonlocality. It has been shown in [51] that the set of two-qubit
states violating the Clauser-Horne-Shimony-Holt (CHSH)
inequality is characterized in terms of the singular values of the
correlation matrix, i.e., a state violates the CHSH inequality
iff the sum of the squares of the two largest singular values of
T (1,2) is greater than 1. It would be interesting to study whether
this connection can be extended to the multipartite regime
using the norms and correlation tensors we have introduced
here and to establish analogous characterizations for other
Bell inequalities.

ACKNOWLEDGMENTS

We thank B. C. Hiesmayr, B. Jungnitsch, B. Kraus,
T. Moroder, T. Paterek, and Ch. Spengler for useful dis-
cussions. J.I.deV. acknowledges financial support from the
Austrian Science Fund (FWF) Grants No. Y535-N16 and No.
F40-FoQus F4011-N16 and M.H. support from the Science
Fund Grant No. FWF-P21947N16.

[1] R. Raussendorf and H.-J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[2] M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. A 59, 1829
(1999).

[3] S. Schauer, M. Huber, and B. C. Hiesmayr, Phys. Rev. A 82,
062311 (2010).

[4] N. Gisin, G. Ribordy, and H. Zbinden, Rev. Mod. Phys. 74, 145
(2002).

[5] D. Bruss and C. Macchiavello, Phys. Rev. A 83, 052313 (2011).
[6] S. Sachdev, Quantum Phase Transitions (Cambridge University

Press, Cambridge, England, 1999).
[7] D. Akoury et al., Science 318, 949 (2007).
[8] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio,

J. Chem. Phys. 131, 105106 (2009).
[9] M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley, Nat.

Phys. 6, 462 (2010).

062306-9

http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevA.82.062311
http://dx.doi.org/10.1103/PhysRevA.82.062311
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/PhysRevA.83.052313
http://dx.doi.org/10.1126/science.1144959
http://dx.doi.org/10.1063/1.3223548
http://dx.doi.org/10.1038/nphys1652
http://dx.doi.org/10.1038/nphys1652


JULIO I. DE VICENTE AND MARCUS HUBER PHYSICAL REVIEW A 84, 062306 (2011)

[10] E. Rieper, J. Anders, and V. Vedral, e-print arXiv:1006.4053.
[11] M. Tiersch, S. Popescu, and H. J. Briegel, e-print

arXiv:1104.3883.
[12] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
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