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Efficient synthesis of quantum gates on a three-spin system with triangle topology
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Experiments in coherent nuclear and electron magnetic resonance and optical spectroscopy correspond
to control of quantum-mechanical ensembles, guiding them from initial states to target states by unitary
transformations. The control inputs (pulse sequences) that accomplish these unitary transformations should
take as little time as possible so as to minimize the effects of relaxation and decoherence, and to optimize the
sensitivity of the experiments. Here, we give an efficient synthesis of a class of unitary transformations on a three
coupled spin- 1

2 system with equal Ising coupling strengths. We show a significant time saving compared with
conventional methods.
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I. INTRODUCTION

Control of quantum systems has important applications
in physics and chemistry. In particular, the ability to steer
the state of a quantum system (or an ensemble of quantum
systems) from a given initial state to a desired target state
forms the basis of spectroscopic techniques such as nuclear
magnetic resonance (NMR), electron spin resonance (ESR)
spectroscopy [1,2], laser coherent control [3], and quantum
computing [4,5]. Developing a specific set of control laws
(pulse sequences) that produce a desired unitary evolution of
the state has been a major thrust in NMR spectroscopy [1].
For example, in the NMR spectroscopy of proteins [6], the
transfer of coherence along spin chains is an essential step in a
large number of key experiments. Spin-chain topologies have
also been proposed as architectures for quantum information
processing [7,8]. In practice, the transfer time should be as
short as possible in order to reduce the loss due to relaxation
or decoherence.

The time-optimal synthesis of unitary operators is now
well understood for coupled two-spin systems [9–15]. This
problem has also been studied recently in the context of linear
three-spin topology [16–21], where significant savings in the
implementation time of trilinear Hamiltonians and synthesis of
couplings between indirectly coupled spins were demonstrated
compared with conventional methods. In [16,18–21], it was
shown that the time-optimal synthesis of indirect couplings
and of trilinear Hamiltonians from linear Ising couplings can
be reduced to the problem of computing geodesics on a sphere
under a special metric. In this paper, we extend these methods
to three-spin system with equal Ising couplings, and we study
the efficient synthesis of the unitary transformations on the
system, which constitutes an important step in understanding
control of multiple-spin dynamics. Synthesizing quantum
gates on more than two qubits is appealing because, although
single- and two-qubit operations form a universal set for
quantum computing, it scales unfavorably with the complexity
of implemented algorithms. Multiqubit gates can replace
complex sequences of two-qubit gates, thus promising faster
execution and higher fidelity.

*haidong.yuan@gmail.com
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II. TIME-OPTIMAL CONTROL FOR THREE LINEARLY
COUPLED SPINS

In this section, we give a brief introduction of previous
results on efficient synthesis of unitary transformations on
three linearly coupled spins [16], upon which our present
results are based.

Consider a chain of three spins coupled by scalar couplings
(J13 = 0), Fig. 1(a). Furthermore, assume that it is possible to
selectively excite each spin (perform one-qubit operations in
the context of quantum computing). The goal is to produce a
desired unitary transformation, U ∈ SU (8), from the specified
couplings and single-spin operations in the shortest possible
time. The dynamics of the unitary propagator U , describing
the evolution of the system in a suitable rotating frame, is well
approximated by

U̇ = −i

(
Hd +

6∑
j=1

ujHj

)
U, U (0) = I, (1)

where

Hd = 2πJ12I1zI2z + 2πJ23I2zI3z, H1 = 2πI1x,

H2 = 2πI1y, H3 = 2πI2x, H4 = 2πI2y,

H5 = 2πI3x, H6 = 2πI3y.

Here Ix := ( 0 1
1 0 )/2, Iy := ( 0 −i

i 0 )/2, and Iz := ( 1 0
0 −1 )/2 are

the Pauli spin matrices, and we denote by I�ν the operator that
acts as Iν on the �th spin, for example, I1x = Ix ⊗ I0 ⊗ I0,
where I0 := ( 1 0

0 1 ) is the (2 × 2)-dimensional identity matrix.
The symbols J12 and J23 represent the strength of scalar
couplings between spins (1,2) and (2,3), respectively. Here
we will treat the important case of this problem when the
couplings are both equal (J12 = J23 = J ). We will be most
interested in unitary propagators of the form

U = exp(−i2πκ I1zI2zI3z).

These propagators are hard to produce as they involve trilinear
terms in the effective Hamiltonian. We will refer to such
propagators as trilinear propagators.

We assume that we can selectively rotate each spin at a rate
much faster than the evolution caused by the couplings, i.e.,
the single-spin operations can be done in a negligible amount
of time.
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FIG. 1. Spins in linear (a) and triangle (b) topology.

Theorem 1 [16]. Given the spin system in (1), with J12 =
J23 = J and J13 = 0, the minimum time required to produce
a propagator of the form UF = exp(−i2πκI1zI2zI3z), κ ∈
[0,2], by using an effective Hamiltonian Heff(t) equal to

2πJ {(I1zI2x + I2xI3z) cos θ (t) + (I1zI2y + I2yI3z) sin θ (t)},
is

T (κ) =
√

κ(4 − κ)

2J
.

The sequence of unitary transformations that produces the
propagator UF is as follows:

UF = exp

(
− i

π

2
I2y

)
exp

(
− i

[
π + β

2

]
I2x

)

× exp

(
T (κ)

[
− i2πJ (I1zI2z + I2zI3z) + i

β

T (κ)
I2x

])

× exp

(
i
π

2
I2y

)
, (2)

where β = (2 − κ)π and T (κ) =
√

κ(4−κ)
2J

.

Some properties of the function T (κ) =
√

κ(4−κ)
2J

are in
order.

Theorem 2. The function

T (κ) =
√

κ(4 − κ)

2J
, κ ∈ [0,2],

is a concave function satisfying

T (κ1 + κ2) � T (κ1) + T (κ2).

To prove concavity, we just have to show that d2T
dκ2 < 0.

The computation is simplified by substituting κ = 2 − γ , and
then d2T

dκ2 = d2T (2−γ )
dγ 2 . A direct computation shows that for γ ∈

[0,2),

d2T (2 − γ )

dγ 2
= −(4 + 2γ 2)

(4 − γ 2)
3
2

< 0.

Thus T is a concave function, which implies

T (αδ1 + (1 − α)δ2) � αT (δ1) + (1 − α)T (δ2). (3)

Proposition 1. If

(κ1,κ2), where κ2 � κ1

and

(κ ′
1,κ

′
2), where κ ′

2 � κ ′
1

are two divisions of κ , i.e., κ = κ1 + κ2 = κ ′
1 + κ ′

2, and
furthermore if κ1 � κ ′

1, then

T (κ1) + T (κ2) � T (κ ′
1) + T (κ ′

2).

To see this, first note that κ ′
1 ∈ [κ2,κ1], so κ ′

1 = ακ1 + (1 −
α)κ2 for α ∈ [0,1]. Then using κ1 + κ2 = κ ′

1 + κ ′
2, one gets

κ ′
2 = (1 − α)κ1 + ακ2. Using concavity,

T (κ ′
1) � αT (κ1) + (1 − α)T (κ2),

T (κ ′
2) � (1 − α)T (κ1) + αT (κ2).

Adding the two equations, we get

T (κ ′
1) + T (κ ′

2) � T (κ1) + T (κ2).

In particular, this implies
T (κ1) + T (κ2) � T (κ1 + κ2) + T (0) = T (κ1 + κ2).

III. EFFICIENT CONTROL ON THREE COUPLED SPINS
WITH A TRIANGLE TOPOLOGY

Now consider three spins coupled to each other with
equal Ising couplings, Fig. 1(b). The dynamics of the unitary
propagator U , which describes the evolution of the system in
a suitable rotating frame, is well approximated by

U̇ = −i

(
Hd +

6∑
j=1

ujHj

)
U, U (0) = I, (4)

where

Hd = 2πJI1zI2z + 2πJI2zI3z + 2πJI1zI3z, H1 = 2πI1x,

H2 = 2πI1y, H3 = 2πI2x, H4 = 2πI2y,

H5 = 2πI3x, H6 = 2πI3y.

We will be most interested in synthesizing a Toffoli gate on this
three-spin system. The quantum Toffoli gate is the archetype
of a three-qubit gate that performs a controlled NOT operation
on a target qubit depending on the state of two control qubits.
It constitutes one of the basic building blocks for quantum
computation and is widely used in quantum computation, for
example in Shor’s algorithm and quantum error correction.

The quantum Toffoli gate is a unitary propagator of the
form

UT = exp

[
− iπ

(
1

2
I − I1z

)(
1

2
I − I2z

)
I3x

]

= exp

[
− i

π

2
I3y

]

× exp

[
− iπ

(
1

2
I − I1z

)(
1

2
I − I2z

)
I3z

]

× exp

[
i
π

2
I3y

]
.
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Since the single operations take a negligible amount of time,
it is equivalent to synthesize the gate

U = exp
[ − iπ

(
1
2I − I1z

)(
1
2I − I2z

)
I3z

]
= exp

[ − iπ
(

1
4I3z − 1

2I1zI3z − 1
2I2zI3z + I1zI2zI3z

)]
,

(5)

which is again equivalent to synthesizing

exp
[ − iπ

( − 1
2I1zI3z − 1

2I2zI3z + I1zI2zI3z

)]
. (6)

The rest of the paper will focus on how to efficiently
synthesize this unitary operator. The conventional way is to
synthesize terms in the Hamiltonian separately while using π

pulses to decouple part of the coupling interactions. It takes
1

4J
to generate exp[i π

2 I1zI3z] by decoupling the second spin,
which is obtained by using the Hamiltonian

H1 = 2πJ (I1zI2z + I2zI3z + I1zI3z) (7)

and

H2 = 2πJ (−I1zI2z − I2zI3z + I1zI3z), (8)

each for 1
8J

units of time, and then applying a hard π pulse
on spin 1 or spin 3. The Hamiltonian H2 is synthesized by
application of a hard π pulse on spin 2, i.e.,

exp(−iH2t) = exp(−iπI2y) exp(−iH1t) exp(iπI2y). (9)

It takes same amount of time to generate exp[i π
2 I2zI3z].

The term exp[−iπI1zI2zI3z] can be obtained by the Baker-
Campbell-Hausdorff formula

exp(−iπI1zI2x) exp

(
− i

πI2yI3z

2

)
exp(iπI1zI2x)

= exp(−iπI1zI2zI3z). (10)

Therefore, the total time required to produce the unitary
propagator is

2
1

4J
+ 1

4J
+ 2

1

2J
= 7

4J
.

We will show that this can be significantly shortened.
From the preceding section, we know that

exp

(
− i

π

2
I2y

)
exp

(
− i

[
π + β

2

]
I2x

)
exp

(
T (κ)

[
− i2πJ (I1zI2z + I2zI3z) + i

β

T (κ)
I2x

])
exp

(
i
π

2
I2y

)

= exp(−i2πκI1zI2zI3z),

where β = (2 − κ)π and T (κ) =
√

κ(4−κ)
2J

. Now, replace the linear-coupled Hamiltonian with the triangle-coupled Hamiltonian.
As the new coupling term I1zI3z commute with all other terms, we get

exp

(
− i

π

2
I2y

)
exp

(
− i

[
π + β

2

]
I2x

)
exp

(
T (κ)

[
− i2πJ (I1zI2z + I2zI3z + I1zI3z) + i

β

T (κ)
I2x

])
exp

(
i
π

2
I2y

)

= exp{−i[2πκI1zI2zI3z + 2πJT (κ)I1zI3z]}.

Similarly, we can get

exp

(
− i

π

2
I1y

)
exp

(
− i

[
π + β

2

]
I1x

)
exp

(
T (κ)

[
− i2πJ (I1zI2z + I2zI3z + I1zI3z) + i

β

T (κ)
I1x

])
exp

(
i
π

2
I1y

)

= exp{−i[2πκI1zI2zI3z + 2πJT (κ)I2zI3z]}.

All the terms we need have appeared but some signs are
different, which can be reversed by applying π rotations on
a single spin. From now on, we just show how to optimally
combine the terms

exp{−i[2πκI1zI2zI3z ± 2πJT (κ)I1zI3z]},
(11)

exp{−i[2πκI1zI2zI3z ± 2πJT (κ)I2zI3z]},

with possible decoupling terms to get the desired gate,
particularly the Toffoli gate.

We begin by considering how to generate

Uk = exp

[
− i

(
2πκI1zI2zI3z − π

2
I1zI3z

)]
(12)

efficiently.

A. When T (κ) � 1
4 J

If T (κ) � 1
4J

, then the minimum time to synthesize the
above propagator is simply 1

4J
. The first T (κ) units can be

used to synthesize exp{−i[2πκI1zI2zI3z − 2πJT (κ)I1zI3z]}
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and the remaining 1
4J

− T (κ) to synthesize the remaining part
of I1zI3z. Note that it takes at least 1

4J
to synthesize the term

π
2 I1zI3z, so the minimum time is 1

4J
.

B. T (κ) > 1
4 J

If T (κ) > 1
4J

, then it is not a good strategy to sequentially
synthesize Hamiltonians

exp{−i[2πκaI1zI2zI3z − 2πJT (κa)I1zI3z]} (13)

and

exp{−i[2πκbI1zI2zI3z − 2πJT (κb)I1zI3z]}, (14)

where κa + κb = κ . As by concavity T (κa) + T (κb) � T (κa +
κb) � 1

4J
, so additional overhead in a time of T (κa) + T (κb) −

1
4J

is needed to remove the extra buildup of the term I1zI3z.
Therefore, in this way the total time would be

T (κa)+ T (κb) − 1

4J
+ T (κa) + T (κb) � T (κ) − 1

4J
+ T (κ),

i.e., it takes more time than directly synthesizing
exp[−i2πκI1zI2zI3z + 2πJI1zI3zT (κ)], which takes T (κ)
units of time, then removing the extra build up of the term
I1zI3z with T (κ) − 1

4J
units of time.

But, if we flip one sign, we sequentially synthesize

exp{−i[2πκaI1zI2zI3z − 2πJT (κa)I1zI3z]} (15)

and

exp{−i[2πκbI1zI2zI3z + 2πJT (κb)I1zI3z]}. (16)

Combining these two terms,

exp{−i[2πκaI1zI2zI3z − 2πJT (κa)I1zI3z]}
× exp{−i[2πκb2I1zI2zI3z + 2πJT (κb)I1zI3z]}

= exp{−i2π (κa + κb)I1zI2zI3z + i2πJ [T (κa)

−T (κb)]I1zI3z}, (17)

where κa + κb = κ , then the total time for this strategy
is T (κa) + T (κb) + | 1

4J
− [T (κa) − T (κb)]|, which can be

shorter than direct synthesis. To find the minimum time with
this strategy, we need to solve the following optimization
problem:

S(κ) = min

∣∣∣∣ 1

4J
− [T (κa) − T (κb)]

∣∣∣∣ + T (κa) + T (κb)

such that κa + κb = κ � 2. (18)

Here T (κ) =
√

κ(4−κ)
2J

.
It is worth observing that if T (κ) > 1

4J
, the minimum S(κ)

is achieved when

T (κ∗
a ) − T (κ∗

b ) − 1

4J
= 0. (19)

As for other choices of κa,κb, where κa + κb = κ , if
κa > κ∗

a , we will have [T (κa) − T (κb)] > 1
4J

. The cost then
becomes 2T (κa) − 1

4J
, which is an increasing function of κa .

If κa < κ∗
a , then [T (κa) − T (κb)] < 1

4J
, and the cost becomes

2T (κb) + 1
4J

, which is an increasing function of κb and hence a
decreasing function of κa = κ − κb. Therefore, the minimum

value is achieved at κ∗
a . With this observation, we find that

when T (κ) � 1
4J

, the optimal (κ∗
a ,κ∗

b ) to the minimum problem
described by Eq. (18) is the solution to the following joint
equations:

κa + κb = κ,

T (κa) − T (κb) = 1

4J
,

where T (κ) =
√

κ(4−κ)
2J

.
Remark 1. We will denote κJ as the solution to the equation

T (κ) = 1
4J

, i.e., T (κJ ) = 1
4J

.

IV. EFFICIENT SYNTHESIS OF THE TOFFOLI GATE

We now use the results of the previous section to efficiently
construct the Toffoli gate. The strategy is to generate

exp

[
− i

(
2πκ1I1zI2zI3z − π

2
I1zI3z

)]
,

(20)

exp

[
− i

(
2πκ2I1zI2zI3z − π

2
I2zI3z

)]
,

separately, where κ1 + κ2 = κ (for the Toffoli gate, κ = 1
2 ) and

each term is generated optimally as in the previous section.
Under this strategy, the goal is to find the optimal splitting,

κ = κ1 + κ2, such that

G(κ) = min{S(κ1) + S(κ2)}, (21)

where S(κ) is defined in Eq. (18).
A few observations are in order.
Proposition 2. For T (κ) � 1

4J
, the function S(κ) is an

increasing function of κ .
Note S(κ) = 2T (κ∗

a ) − 1
4J

, where, κ∗
a solves Eq. (19). κ is

an increasing function of κ∗
a as T is an increasing function of

κ∗
a . Therefore, for κ > κJ ,

dS

dκ
= 2

dT (κ∗
a )

dκ∗
a

dκ∗
a

dκ
> 0.

Proposition 3. For κ > κJ , the function S(κ) is a concave
function of κ .

To show this, we would like to evaluate d2S(κ)
dκ2 . We express

this in terms of the derivative of T (κ∗
a ) as

d2S(κ)

dκ2
= − 2(

dκ
dκ∗

a

)2

{
dT (κ∗

a )

dκ∗
a

d2κ∗
b

dκ∗
a

2 − d2T (κ∗
a )

dκ∗
a

2

dκ

dκ∗
a

}
,

d2S(κ)

dκ2
= − 2

J
(

dκ
dκ∗

a

)2 {F (κ)}.

The function F (κ) is plotted in Fig. 2, which is non-negative,
thus d2S(κ)

dκ2 is nonpositive, so S(κ) is a concave function of κ

when κ > κJ .
Proposition 4. If κ = κ1 + κ2 = κ3 + κ4 are two divisions

such that T (κi) � 1
4J

, k2 � k1, and k4 � k3, then when k1 � k3

we will have

S(κ1) + S(κ2) � S(κ3) + S(κ4).

The result follows from concavity of S(κ) over the range of
κ1,κ2,κ3,κ4.
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FIG. 2. (Color online) Plot of function F (κ) vs κ , demonstrating
concavity of S(κ).

We are now ready to find the best division of κ in Eq. (21).
It can be shown that for T (κ) � 1

2J
, the best division of κ in

Eq. (21) is

κ = (κ − κJ ) + κJ ,

and the minimum time is

G(κ) = S(κ − κJ ) + 1

4J
,

where T (κJ ) = 1
4J

.
To see this, consider a splitting of κ = κ1 + κ2 if κ2 < κJ .

Then from Sec. III A, we know S(κ2) = 1
4J

, therefore

S(κ1) + S(κ2) = S(κ − κ2) + 1

4J
> S(κ − κJ ) + 1

4J
.

If S(κ1) > 1
4J

and S(κ2) > 1
4J

, then using concavity of the
function S(κ), we will have

S(κ − κJ ) + S(κJ ) � S(κ1) + S(κ2).

So the best splitting of (κ1,κ2) in Eq. (20) to generate the
Tofolli gate is (0.5 − κJ ,κJ ), i.e., the best value of κ2 in Eq. (20)
should satisfy T (κ2) = 1

4J
, that is,√

κ2(4 − κ2) = 1
2 ,

0 0.1 0.2 0.3 0.4 0.5
2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

k
1

T

FIG. 3. The time T (in units of 1
2J

), spent to construct the Toffoli
gate as a function of κ1 (in units 2π ) as in Eq. (21).

0 0.1 0.2 0.3 0.4 0.5
1.6

1.8

2

2.2

2.4

2.6

2.8

3

k
a

T

FIG. 4. The time T (in units of 1
2J

), spent to construct the first
term in Eq. (20), as a function of κa as in Eq. (23).

hence κ2 = (2 −
√

15
2 ) ∼ 0.0635, and κ1 = 0.5 − κ2 = (

√
15
2 −

1.5) ∼ 0.4365, which again needs to be divided into two parts
κa , κb as in the preceding section, i.e., to solve the following
equations:

√
κa(4 − κa)

2J
−

√
κb(4 − κb)

2J
= 1

4J
, κa + κb = κ1. (22)

It is easy to find that the solution is κa = 0.339 607, κb =
0.096 884 7.

Thus the total time to generate the Toffoli gate is

1

4J
+ T (κa) + T (κb) = 2.229 88

2J
,

which is 63.71% of the conventional method.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.5

1

1.5

k’a

T  

FIG. 5. The time T (in units of 1
2J

), spent to construct the second
term in Eq. (20), as a function of κ ′

a as in Eq. (24).
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V. NUMERICAL RESULTS

We can also numerically search for the best choice of κ1 and κ2. For each such subdivision κ1 + κ2 = 0.5, we solve the following
two optimal problems numerically:

min

√
κa(4 − κa)

2J
+

√
κb(4 − κb)

2J
+

∣∣∣∣ 1

4J
−

√
κa(4 − κa)

2J
+

√
κb(4 − κb)

2J

∣∣∣∣ such that κa + κb = κ1, and (23)

min

√
κ ′

a(4 − κ ′
a)

2J
+

√
κ ′

b(4 − κ ′
b)

2J
+

∣∣∣∣ 1

4J
−

√
κ ′

a(4 − κ ′
a)

2J
+

√
κ ′

b(4 − κ ′
b)

2J

∣∣∣∣ such that κ ′
a + κ ′

b = 0.5 − κ1. (24)

We plot the time as a function of κ1 as in Fig. 3. There are two minima, and we just work out one of them as the other is
totally symmetric:

κ1 = 0.4365, κ2 = 0.0635,

which agrees with the analytical results.
The corresponding best splitting for κ1 and κ2 is κa = 0.3396 and κb = 0.0969, as can be seen in Fig. 4, and κ ′

a = 0.0635 and
κ ′

b = 0, as can be seen in Fig. 5, which again agrees with the analytical results. The time to generate the first term is 1.7299
2J

with
the following propagators:

exp

[
− i

(
0.873πI1zI2zI3z − π

2
I1zI3z

)]

= exp[−iπI2y] exp[−iπI3x] exp

(
− i

π

2
I2y

)
exp(−i1.83πI2x) exp{1.115[−iπ (I1zI2z + I2zI3z + I1zI3z) + i1.489πI2x]}

× exp[iπI2y] exp[iπI3x] exp[−i(1.9515π )I2x] exp{0.615[−iπ (I1zI2z + I2zI3z + I1zI3z) + i3.09πI2x]} exp

(
i
π

2
I2y

)
,

and the time to generate the second term is 0.5
2J

with the following propagators:

exp

[
− i

(
0.127πI1zI2zI3z − π

2
I2zI3z

)]
= exp[−iπI1y] exp[−iπI3x] exp

(
− i

π

2
I1y

)
exp(−i1.968πI1x)

× exp{0.5[−iπ (I1zI2z + I2zI3z + I1zI3z) + i3.873πI1x]} exp[iπI1y] exp[iπI3x].

Combining the two, we get the pulse sequences and the total time to generate the Toffoli gate, which is 2.2299
2J

, 63.71% of the
conventional method, which again agrees with the analytical result.

VI. CONCLUSION

This paper demonstrated some novel pulse sequences for efficient synthesis of unitary transformations in a three triangle-
coupled spin- 1

2 system. In particular, unitary transformations that map onto Toffoli gates in the context of quantum computing
were described, and a significantly better performance compared with state-of-the-art methods was demonstrated. Future work
will involve extending to a broader class of unitary transformations, more general multiqubit topologies, and incorporating noise
effects.
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