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Escape behavior of a quantum particle in a loop coupled to a lead

Ph. A. Jacquet*

Department of Physics, Kwansei Gakuin University, Sanda 669-1337, Japan
(Received 14 October 2011; published 29 December 2011)

We consider a one-dimensional loop of circumference L crossed by a constant magnetic flux � and connected
to an infinite lead with coupling parameter ε. Assuming that the initial state ψ0 of the particle is confined inside
the loop and evolves freely, we analyze the time evolution of the nonescape probability P (ψ0,L,�,ε,t), which
is the probability that the particle will still be inside the loop at some later time t . In appropriate units, we found
that P (ψ0,L,�,ε,t) = P∞(ψ0,�) +∑∞

k=1 Ck(ψ0,L,�,ε)/tk . The constant P∞(ψ0,�) is independent of L and
ε, and vanishes if ψ0 has no bound state components or if | cos(�)| �= 1. The coefficients C1(ψ0,L,�,ε) and
C3(ψ0,L,�,ε) depend on the initial state ψ0 of the particle, but only the momentum k = �/L is involved. There
are initial states ψ0 for which P (ψ0,L,�,ε,t) ∼ Cδ(ψ0,L,�,ε)/tδ , as t → ∞, where δ = 1 if cos(�) = 1 and
δ = 3 if cos(�) �= 1. Thus, by submitting the loop to an external magnetic flux, one may induce a radical change
in the asymptotic decay rate of P (ψ0,L,�,ε,t). Interestingly, if cos(�) = 1, then C1(ψ0,L,�,ε) decreases with
ε (i.e., the particle escapes faster in the long run) while in the case cos(�) �= 1, the coefficient C3(ψ0,L,�,ε)
increases with ε (i.e., the particle escapes slower in the long run). Assuming the particle to be initially in a bound
state of the loop with � = 0, we compute explicit relations and present some numerical results showing a global
picture in time of P (ψ0,L,�,ε,t). Finally, by using the pseudospectral method, we consider the interacting case
with soft-core Coulomb potentials.
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I. INTRODUCTION

The study of open quantum systems has attracted many
researchers in theoretical physics during the last decades and
is still under intense investigation. One of the most basic
problems in this field is to understand how a quantum particle
initially confined inside an open cavity will escape (see, e.g.,
[1] for a general discussion). In the literature, such systems
are commonly described in terms of the following quantities:
the nonescape probability P (t), which is the probability that
the particle will still be inside the cavity at some later time t ,
and the survival probability S(t), which is the probability of
finding the particle in the initial state at time t [2]. Let us
suppose that the configuration space is the one-dimensional
(1D) half-line [0,∞) and that the cavity is the interval [0,L].
Then, at time t = 0, the particle is supposed to be in a
normalized state ψ0 satisfying ψ0(x) = 0 for all x �∈ [0,L].
If H denotes the Hamiltonian of the particle and ψ(x,t) =
(e−iH t/h̄ψ0)(x) its state at time t > 0, where h̄ is the reduced
Planck constant, then the nonescape and survival probabilities
are given by

P (t) =
∫ L

0
ψ(x,t)ψ(x,t)dx, (1)

S(t) =
∣∣∣∣
∫ L

0
ψ0(x)ψ(x,t)dx

∣∣∣∣
2

, (2)

where the overbar denotes complex conjugation. It is easy to
check that these quantities satisfy S(0) = P (0) = 1 and 0 �
S(t) � P (t) � 1 for all times t > 0. Although both quantities
are interesting, we shall discuss only P (t) in this paper.
Note, however, that by analyzing the time decay of P (t) one
automatically gets an upper bound for S(t).
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The nonescape probability P (t) has been discussed in free
1D quantum systems [3], in free two-dimensional (2D) quan-
tum billiard systems [4,5], and also in three-dimensional (3D)
quantum systems with finite range potentials [6]. Interestingly,
if the initial state ψ0 has no bound state components, then it
is always found that the long-time behavior of P (t) is a power
law: P (t) = C/tδ + O(1/tδ+1) as t → ∞, where the constant
C and the exponent δ depend on the geometry of the system
and on the initial state ψ0 of the particle. Some readers may
be surprised since it is well known that various spontaneous
decays have been observed to follow an exponential law. This
apparent discrepancy may actually be only a time-scale prob-
lem. Indeed, although quantum mechanics clearly predicts in
general some deviation from exponential decay, the following
phases may well occur [7–9]: for a short time the decay is
parabolic P (t) = 1 − ct2, then it is approximately exponential
and finally becomes a power-law at very large times.

In the present paper, we consider the model introduced
in [10] in which the cavity is a one-dimensional loop [0,L]
crossed by a constant magnetic flux � and connected, with
coupling parameter ε, to an infinite one-dimensional lead
[L,∞) (the points x = 0 and x = L are identified), so that
the particle may escape freely from the loop; see Fig. 1.
This model contains rich physics and is simple enough to
be amenable by analytical means or numerical simulations,
and thus has been the subject of several works [10–18].
Nevertheless, the nonescape probability P (ψ0,L,�,ε,t) has
never been discussed in this model and it is interesting to
know precisely how it depends on the initial state ψ0 of the
particle and on the three physical parameters: the loop’s length
L, the external magnetic flux �, and the coupling ε.

In appropriate units, here is a summary of our main results.
(1) Let λ > 0, then one has the following scaling law:

P (ψ0,λL,�,ε,t) = P

(
ψ0,L,�,ε,

t

λ2

)
. (3)
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FIG. 1. A loop connected to a lead.

Thus, increasing, for example, the length of the loop by a factor
λ = 2 leads to a nonescape probability evolving λ2 = 4 times
slower.

(2) The nonescape probability may be written as

P (ψ0,L,�,ε,t) = P∞(ψ0,�) +
∞∑

k=1

Ck(ψ0,L,�,ε)

t k
. (4)

The constant P∞(ψ0,�) is given in (58): It is independent of
L and ε, and vanishes if ψ0 has no bound state components
or if | cos(�)| �= 1. In the infinite series, the leading term
always has an odd power. The coefficients C1(ψ0,L,�,ε)
and C3(ψ0,L,�,ε) are given in (66)–(68): They depend on
the initial state ψ0 of the particle, but only the momentum
k = �/L is involved. When � = 0, this coincides with the
well-known fact that only the zero momentum of ψ0 plays a
role in the long-time behavior of the nonescape probability [3].
If cos(�) = 1, then there are initial states ψ0 with no bound
state components [e.g., (85)] for which C1(ψ0,L,�,ε) �=
0, while the coefficients C1(ψ0,L,�,ε) and C2(ψ0,L,�,ε)
always vanish if cos(�) �= 1. The important consequence is
that there are initial states ψ0 giving a power law decay:

P (ψ0,L,�,ε,t) = Cδ(ψ0,L,�,ε)

t δ
+ O

(
1

t δ+1

)
, (5)

where δ = 1 if cos(�) = 1 and δ = 3 if cos(�) �= 1. In
particular, we see that by submitting the loop to an external
magnetic flux (thus going from � = 0 to � �= 0), one may
induce a radical change in the decay rate of P (ψ0,L,�,ε,t).
If cos(�) = 1, then C1(ψ0,L,�,ε) decreases with ε (i.e., the
particle escapes faster in the long run) and if cos(�) �= 1,
then C3(ψ0,L,�,ε) increases with ε (i.e., the particle escapes
slower in the long run). Interestingly, similar features were
obtained in a circular dielectric cavity containing classical
waves [19], the nature of the waves (TM or TE) and the
refractive index of the cavity playing a similar role to
� and ε.

(3) Assuming the particle to be initially in a bound state
of the loop with � = 0 [see (72)], we computed explicitly
P∞(ψ0,�), C1(ψ0,L,�,ε), and C3(ψ0,L,�,ε) [see (73)–
(76)]. As one may expect, we found that higher energetic
bound states decay faster. Interestingly, we observed that the
coefficient C3(ψ0,L,�,ε) oscillates, nonperiodically, with �;
see Fig. 5. We also present some numerical results showing a
global picture in time of P (ψ0,L,�,ε,t); see Figs. 6–10. They
reveal in particular that if cos(�) �= 1, then by increasing the
value of ε, the particle escapes faster in the beginning but
slower in the long run as stated previously.

This paper is organized as follows. In Sec. II, we model
the situation depicted in Fig. 1 in the framework of standard
quantum mechanics. In the paper [10], the scattering processes

occurring at the connecting point (between the loop and
the lead) are described in terms of an energy-independent
scattering matrix S. We shall show that this scattering matrix
may be used to prescribe boundary conditions at the connecting
point for which the Hamiltonian of the particle is self-adjoint.
In Sec. III, we solve the time-dependent Schrödinger equation
and derive its associated propagator. We then analyze the
long-time behavior of the propagator and consequently that
of the nonescape probability. We discuss our general results in
Sec. IV and consider some particular initial states in Sec. V.
In Sec. VI, we present an interesting and highly nontrivial
application of the pseudospectral method by considering the
interacting case with soft-core Coulomb potentials. Finally, in
Sec. VII we make some concluding remarks.

II. THE HAMILTONIAN

In standard quantum mechanics, the situation depicted in
Fig. 1 is modeled as follows: The physical states of the particle
belong to the Hilbert space H = L2([0,L]) ⊕ L2([L,∞)) and
the Hamiltonian of the particle reads [10]

H =
[
−i

d

dx
− �

L
χ[0,L](Q)

]2

, (6)

where χ[0,L](Q) is the operator of multiplication by χ[0,L](x),
where χ[0,L](x) = 1 if x ∈ [0,L] and χ[0,L](x) = 0 otherwise.
Here we have set h̄ = 1 for the reduced Planck constant, e = 1
for the electric charge, c = 1 for the speed of light, and m =
1/2 for the mass of the particle.

Let ψ be a state in H, then it can be uniquely written
as ψ = ψLOOP + ψLEAD, with ψLOOP ∈ L2([0,L]) and ψLEAD ∈
L2([L,∞)). To simplify the notations, we shall use the
following convention: ψ(x) = ψLOOP(x) if x ∈ (0,L), ψ(x) =
ψLEAD(x) if x ∈ (L,∞) and ψ(0+) = ψLOOP(0), ψ(L−) =
ψLOOP(L), ψ(L+) = ψLEAD(L).

The Hamiltonian H is an unbounded operator and thus
cannot be defined on the entire Hilbert space H. We thus have
to find the domain D(H ) ⊂ H corresponding to the situation
depicted in Fig. 1 such that Hψ ∈ H for all ψ ∈ D(H )
and {H,D(H )} is self-adjoint. The precise definition of a
self-adjoint operator is given in Appendix A and we refer
to the paper [20] for some physical motivations. This section
is not crucial to understand the remainder of this paper, so
the uninterested reader may look at the scattering matrix (7)
and then go directly to the solution (19). In the paper [10],
the scattering processes occurring at the connection point
(between the loop and the lead) are described in terms of
the following energy-independent (unitary) scattering matrix:

S =

⎛
⎜⎝

−(a + b)
√

ε
√

ε√
ε a b√
ε b a

⎞
⎟⎠ , (7)

where a = 1
2 (

√
1 − 2ε − 1), b = 1

2 (
√

1 − 2ε + 1), and ε ∈
(0, 1

2 ]. Here, ε = 0 corresponds to the uncoupled situation
(which is excluded) and ε = 1

2 to the maximally coupled
one. Note that a and b never vanish. To implement such a
scattering matrix, it is convenient to work in the local reference
coordinates {x1 ∈ [0,∞) and x2,x3 ∈ [0,L]} associated with
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FIG. 2. The local reference coordinates.

the three branches exiting from the connection point x1 = x2 =
x3 = 0; see Fig. 2. Then, a general scattering matrix S(k) at
energy k2 > 0, with k > 0, relates the incoming and outgoing
amplitudes at the connection point through the following
solutions of the stationary Schrödinger equation Hϕ	 = k2ϕ	,
with k > 0 and 	 = 1,2,3:

ϕ	
1(x1) = δ1	e

−ikx1 + S1	(k)eikx1 , (8)

ϕ	
2(x2) = [δ2	e

−ikx2 + S2	(k)eikx2 ]ei �
L

x2 , (9)

ϕ	
3(x3) = [δ3	e

−ikx3 + S3	(k)eikx3 ]e−i �
L

x3 , (10)

where δij is the Kronecker delta. Inspired from quantum
networks studies [21–24], we shall now derive the correspond-
ing boundary conditions at the connection point insuring the
self-adjointness of the Hamiltonian H .

Let f and g be two functions in H such that Hf and Hg

are still in H. Then, a simple calculation gives

〈f |Hg〉 = 〈Hf |g〉 + BT, (11)

where 〈·|·〉 denotes the usual scalar product in L2([0,∞))
and BT contains the boundary terms appearing during the
integrations by parts:

BT =
3∑

j=1

[fj (0)g′
j (0) − f ′

j (0)gj (0)]

+ 2i
�

L
[f3(0)g3(0) − f2(0)g2(0)], (12)

where f1(x1) = f (L + x1), f2(x2) = f (x2), f3(x3) = f (L −
x3), and similarly for g1, g2, and g3. The self-adjointness of
H requires that BT vanishes for all f = (f1,f2,f3) and g =
(g1,g2,g3) satisfying the same boundary conditions at x1 =
x2 = x3 = 0 (see Appendix A for a more precise statement).
Setting f = g, one thus has the following necessary condition:

〈f(0)|f′(0)〉C3 −〈f′(0)|f(0)〉C3 + 2i
�

L
[|f3(0)|2 − |f2(0)|2] = 0,

(13)

where 〈·|·〉C3 denotes the canonical scalar product in C3. If
|| · ||C3 = √〈·|·〉C3 , then (13) is satisfied if and only if ||f(0) +
i[f′(0) − i �

L
h(0)]||C3 = ||f(0) − i[f′(0) − i �

L
h(0)]||C3 , where

h(0) = (0,f2(0),−f3(0)). This is the case if and only if there
is a unitary matrix U such that

f(0)+i

[
f′(0) − i

�

L
h(0)

]
=U

{
f(0)−i

[
f′(0) − i

�

L
h(0)

]}
,

(14)

or

(1 − U )f(0) + i(1 + U )

[
f′(0) − i

�

L
h(0)

]
= 0. (15)

We thus have the following necessary condition for the self-
adjointness of {H,D(H )}: There must be a unitary matrix U

such that the boundary conditions (15) are satisfied for all
f ∈ D(H ).

To specify the boundary conditions (15) in terms of the
scattering matrix S(k), one requires that the scattering states ϕ	

(which are not in H) satisfy the relation (15). Setting f = ϕ	,
with 	 = 1,2, or 3, one easily checks that the relation (15)
is verified with U = [(k + 1)S(k) − (k − 1)1] × [(k + 1)1 −
(k − 1)S(k)]−1, which means that the scattering matrix may be
written as S(k) = [(k − 1)1 + (k + 1)U ] × [(k + 1)1 + (k −
1)U ]−1. Note that the knowledge of the scattering matrix S(k)
at any energy E = k2 uniquely determines the boundary con-
ditions (15) and that if S does not depend on k, then one simply
has U = S. Returning to our original reference frame, the scat-
tering matrix (7) leads to the following boundary conditions:

ψ(0+) − ψ(L−) = 0, (16)√
εψ(0+) − bψ(L+) = 0, (17)√

εψ ′(L+) + b[ψ ′(0+) − ψ ′(L−)] = 0. (18)

Note that these conditions do not depend on the magnetic flux
�, that they are contained in the model considered in [16], and
that the free boundary conditions ψ(0+) = ψ(L−) = ψ(L+)
and ψ ′(L−) = ψ ′(0+) + ψ ′(L+) correspond to the case
ε = 4/9. As explained previously, the boundary conditions
(16)–(18) are necessary for H to be self-adjoint. In
Appendix A, we show that these boundary conditions are
also sufficient for H to be self-adjoint. Therefore, we deduce
that the relations (16)–(18) are in fact the unique boundary
conditions associated with the scattering matrix (7) for
which the Hamiltonian (6) is self-adjoint. More precisely, the
Hamiltonian H associated with S is self-adjoint if and only if

D(H ) = {ψ ∈ H | Hψ ∈ H and (16)−(18) are satisfied}.
(19)

III. THE PROPAGATOR

Let us recall that the model we are describing contains
three parameters: the loop’s length L > 0, the magnetic
flux � ∈ R, and the coupling parameter ε ∈ (0, 1

2 ]. In what
follows, we shall suppose that their values are kept constant
and that at time t = 0 the initial state ψ0 ∈ D(H ) of the
particle is localized in the loop [i.e., it satisfies ψ0(x) = 0, for
all x �∈ [0,L]], and is normalized:

∫ L

0 |ψ0(x)|2dx = 1. Note
that the property ψ0(L+) = ψ ′

0(L+) = 0 together with the
boundary conditions (16)–(18) imply ψ0(0+) = ψ0(L−) = 0
and ψ ′

0(0+) = ψ ′
0(L−). Then, the nonescape probability is

given by (t > 0)

P (ψ0,L,�,ε,t) =
∫ L

0
|ψ(x,t)|2dx, (20)

where the wave function obeys the Schrödinger equation,

i
∂

∂t
ψ(x,t) = Hψ(x,t), with ψ(x,0) = ψ0(x). (21)
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We see that we need to solve the Schrödinger equation (21)
inside the loop (x ∈ [0,L]) in order to compute the nonescape
probability (20). To determine ψ(x,t) we shall write the initial
state ψ0(x) as a superposition of generalized eigenstates of
H , satisfying (16)–(18), over the spectrum of H , which is
σ (H ) = [0,∞) (see Appendix A).

Let k > 0, then the general solution of the time-independent
Schödinger equation Hϕk = k2ϕk is

ϕk(x) = [A(k)eikx + B(k)e−ikx]ei �
L

xχ[0,L)(x)

+ [C(k)eik(x−L) + D(k)e−ik(x−L)]χ[L,∞)(x), (22)

where A(k), B(k), C(k), and D(k) are complex numbers. We
shall choose these constants such that the boundary conditions
(16)–(18) are satisfied and such that the generalized eigenstates
{ϕk(x)} are δ normalized [as we shall see ϕ−k(x) = −ϕk(x),
so only the ϕk(x) with positive k needs to be considered]:

〈ϕk|ϕp〉 =
∫ ∞

0
ϕk(x)ϕp(x)dx = δ(k − p), for all k,p > 0.

(23)

Solving (16)–(18) and (23), one finds [25]

A(k) = e−i(kL−�) − 1

�(k)
, (24)

B(k) = −ei(kL+�) − 1

�(k)
, (25)

C(k) = 1

2b
√

ε

(2b − ε)(1 + e2i�) − 2(b − ε)e−i(kL−�) − 2bei(kL+�)

�(k)
, (26)

D(k) = − 1

2b
√

ε

(2b − ε)(1 + e2i�) − 2(b − ε)ei(kL+�) − 2be−i(kL−�)

�(k)
, (27)

where

�(k) =
{

8π

ε
{a2 sin2(kL) + b2[cos(kL) − cos(�)]2}

}1/2

.

(28)

In Appendix B, we show that the coefficients A, B, C, and D

are well defined in R. In addition, if cos(�) = 1 or cos(�) =
−1, there are the bound states ϕ̃+

n ,ϕ̃−
n ∈ D(H ) of H (C =

D = 0 and A = −B):

cos(�) = 1 : ϕ̃+
n (x) =

√
2

L
sin (k2nx) ei �

L
x χ[0,L)(x),

(29)
n = 1,2, . . . ,

cos(�) = −1 : ϕ̃−
n (x) =

√
2

L
sin (k2n+1x) ei �

L
x χ[0,L)(x),

(30)
n = 0,1, . . . ,

where kn = nπ
L

. Note that the eigenvalues En = (
nπ
L

)2
, with

n = 1,2, . . . , associated with the bound states (29)-(30) are
as expected inside the continuous spectrum [0,∞) of H . If
cos(�) = 1, then one has for all m,n = 1,2, . . . , and every
k > 0 (k ∈ { 2nπ

L
}∞n=1 included):

〈ϕ̃+
m |ϕ̃+

n 〉 = δmn and 〈ϕk|ϕ̃+
n 〉 = 0. (31)

Similarly, if cos(�) = −1, then for all m,n = 0,1, . . . , and
k > 0 (k ∈ { (2n+1)π

L
}∞n=0 included):

〈ϕ̃−
m |ϕ̃−

n 〉 = δmn and 〈ϕk|ϕ̃−
n 〉 = 0. (32)

Since the Hamiltonian H is self-adjoint, it follows
from the spectral theorem that the family of states
{ϕk,δcos(�),1ϕ̃

+
n ,δcos(�),−1ϕ̃

−
n } generates the whole Hilbert

space H. To avoid technical complications, we shall assume
that the initial state ψ0 can be written punctually in terms of
these states [this assumption may be checked explicitly in the
cases (ε = 1/2,� = 0) and (ε = 1/2,� = π/2)].

Assumption (completeness). Let ψ0 ∈ D(H ) be an initial
state localized in the loop. Then, we assume that for (almost)
every x ∈ [0,∞),

ψ0(x) =
∫ ∞

0
〈ϕk|ψ0〉ϕk(x)dk + δcos(�),1

∞∑
n=1

〈ϕ̃+
n |ψ0〉ϕ̃+

n (x)

+ δcos(�),−1

∞∑
n=0

〈ϕ̃−
n |ψ0〉ϕ̃−

n (x). (33)

Under this assumption and using the orthogonality rela-
tions (23) and (31)-(32), one may write the solution of the
Schrödinger equation (21) as

ψ(x,t) = (e−iH tψ0)(x) =
∫ L

0
K(x,y,t)ψ0(y)dy, (34)

where the propagator is

K(x,y,t) =
∫ ∞

0
e−ik2tϕk(x)ϕk(y)dk

+ δcos(�),1

∞∑
n=1

e−ik2
2nt ϕ̃+

n (x)ϕ̃+
n (y)

+ δcos(�),−1

∞∑
n=0

e−ik2
2n+1t ϕ̃−

n (x)ϕ̃−
n (y). (35)
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Looking back at (20) and (34) one sees that it is sufficient to
know the propagator K(x,y,t) for x,y ∈ [0,L). In this case,
one may write

K(x,y,t) = K1(x,y,t) + δcos(�),1K2(x,y,t)

+ δcos(�),−1K3(x,y,t), (36)

where

K1(x,y,t) = ei �
L

(x−y)
∫ ∞

−∞
{f1(k)e−i[k2t−k(x−y)]

+ f2(k)e−i[k2t−k(x+y)]} dk, (37)

K2(x,y,t) = ei �
L

(x−y)

2L

∞∑
n=−∞

{e−i[k2
2nt−k2n(x−y)]

− e−i[k2
2nt−k2n(x+y)]}, (38)

K3(x,y,t) = ei �
L

(x−y)

2L

∞∑
n=−∞

{e−i[k2
2n+1t−k2n+1(x−y)]

− e−i[k2
2n+1t−k2n+1(x+y)]}, (39)

with

kn = nπ

L
, n ∈ Z, (40)

f1(k) = ε[1 − cos(kL − �)]

4π{a2 sin2(kL) + b2[cos(kL) − cos(�)]2} , (41)

f2(k) = − ε[1 + e−2ikL − 2e−ikL cos(�)]

8π{a2 sin2(kL) + b2[cos(kL) − cos(�)]2} . (42)

Clearly, the propagator K1(x,y,t) describes the decaying
aspect of the initial state ψ0, while the two other propagators,
K2(x,y,t) and K3(x,y,t), describe the stationary aspect of ψ0,
(i.e., the part of ψ0 which remains in the loop for all times [26]).

In the case (ε = 1/2, � = π/2), one has �(k) = √
4π

and one may evaluate the propagator exactly by splitting the
different terms. We find

(ε= 1
2 ,�= π

2 )

K(x,y,t) = ei π
2L

(x−y)

√
16πit

[
2ei

(x−y)2

4t − ei
(x+y)2

4t − ei
(x+y−2L)2

4t

+ iei
(x−y+L)2

4t − iei
(x−y−L)2

4t

]
. (43)

Also, in the case (ε = 1/2, � = 0), one has f1(k) = 1/(4π )
and f2(k) = e−ikL/(4π ), so that

(ε= 1
2 ,�=0)

K(x,y,t) = 1√
16πit

[
ei

(x−y)2

4t + ei
(x+y−L)2

4t

]+ K2(x,y,t). (44)

In general, we are not able to integrate explicitly K1(x,y,t), so
we shall only discuss its long time behavior [some comments
concerning the short-time behavior of P (ψ0,L,�,ε,t) can be
found in Sec. VII]. For this, we need to analyze the asymptotic
behavior of an integral of the following form:

I (t) =
∫ ∞

−∞
f (k)e−i(k2t−kz)dk, (45)

where f is either f1 or f2 and z = (x ± y) ∈ R. Looking at
the expressions (41)-(42), (B5)-(B6) and (B8)-(B9), it is clear

that, for any k ∈ R, the function f (k) may be written as a
Maclaurin series:

f (k) =
∞∑

n=0

f (n)(0)

n!
kn. (46)

Substituting this expression in (45) and exchanging formally
the order of integration and summation we obtain

I (t) =
∞∑

n=0

f (n)(0)

n!

∫ ∞

−∞
kne−i(k2t−kz)dk. (47)

We next use the following identity (see Appendix C):

∫ ∞

−∞
kne−ak2+bkdk =

√
π

a
e

b2

4a

 n
2 �∑

	=0

n!

	! (n − 2	)!

(2b)n−2	

(4a)n−	
,

(48)

where  n
2 � = n/2 if n is even and (n − 1)/2 if n is odd, and

a,b ∈ C\{0}, with Re(a) > 0. The cases b = 0 and Re(a) = 0
are obtained as the limiting expressions of the right-hand side
of (48) as b → 0 and Re(a) → 0+, respectively. Thus, writing

ei z2

4t =
∞∑

m=0

1

m!

imz2m

(4t)m
, (49)

we obtain

I (t) =
∞∑

n=0

∞∑
m=0

 n
2 �∑

	=0

√
π im−	−1/2

22m+n m! 	! (n − 2	)!
f (n)(0) z2(m−	)+n

× 1

t [2(m+n−	)+1]/2
. (50)

Using the relation (50), one can write

K1(x,y,t) = ei �
L

(x−y)
∞∑

n=0

∞∑
m=0

 n
2 �∑

	=0

√
π im−	−1/2

22m+n m! 	! (n − 2	)!

× 1

t [2(m+n−	)+1]/2

[
f

(n)
1 (0) (x − y)2(m−	)+n

+ f
(n)
2 (0) (x + y)2(m−	)+n

]
, (51)

where the functions f1 and f2 are given by (41)-(42). The first
two leading terms are

K1(x,y,t)

= ei �
L

(x−y)

{√
π

i
[f1(0) + f2(0)]

1

t1/2

+
{√

π i

4
[f1(0)(x − y)2 + f2(0)(x + y)2]

+
√

π

4 i
[f ′

1(0)(x − y) + f ′
2(0)(x + y)]

+
√

π

4 i3/2
[f ′′

1 (0) + f ′′
2 (0)]

}
1

t3/2

}
+ O

(
1

t5/2

)
. (52)
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A careful analysis of the expressions (41)-(42) shows that one
has to deal with two cases (see also Appendix B): cos(�) = 1
and cos(�) �= 1. In particular, one has

f1(0) = f2(0) = ε

8πa2
if cos(�) = 1, (53)

f1(0) = −f2(0) = ε

4πb2[1 − cos(�)]
if cos(�) �= 1.

(54)

As we shall see, the fact that f1(0) = f2(0) in the first case,
while f1(0) = −f2(0) in the second, will lead to a drastic

change in the decay properties of the nonescape probability.
If cos(�) = 1, then

K(x,y,t)

= K2(x,y,t) + εei �
L

(x−y)

√
16πi a2

{
1

t1/2
+ i

4

[
x2 + y2

−L(x + y) + L2

2

(
b

a

)2 ] 1

t3/2

}
+ O

(
1

t5/2

)
. (55)

If cos(�) �= 1, then

K(x,y,t) = δcos(�),−1 K3(x,y,t) − iε ei �
L

(x−y)

8
√

πi b2

×{L − [1 − cos(�) + i sin(�)]x} {L − [1 − cos(�) − i sin(�)]y}
[1 − cos(�)]2

1

t3/2
+ O

(
1

t5/2

)
. (56)

As one may easily check, the expression (55) with (ε =
1/2,� = 0) and the expression (56) with (ε = 1/2,� = π/2)
coincide with the leading terms of (44) and (43), respectively.

IV. GENERAL RESULTS

From the relations (55)-(56), it follows that

lim
t→∞ P (ψ0,L,�,ε,t) =

{
P∞(ψ0,L,�) if | cos(�)| = 1

0 otherwise
,

(57)

where

P∞(ψ0,L,�) =
∫ L

0
dx

∣∣∣∣
∫ L

0
dy[δcos(�),1 K2(x,y,0)

+ δcos(�),−1 K3(x,y,0)]ψ0(y)

∣∣∣∣
2

. (58)

If cos(�) = 1 [or cos(�) = −1], then the initial state ψ0 may
be written as a sum of two terms [see (33)], one associated with
the scattering states ϕk and the other with the bound states ϕ̃+

n

[or ϕ̃−
n ]. The part associated with the bound states will lead to

a nonzero value of P∞(ψ0,L,�). Note that P∞(ψ0,L,�) does
not depend on ε. From the expressions (55)-(56), one sees that
the large-time behavior of P (ψ0,L,�,ε,t) depends drastically
on the value of cos(�). Nevertheless, setting P∞(ψ0,L,�) = 0
whenever | cos(�)| �= 1, one may write

P (ψ0,L,�,ε,t)=P∞(ψ0,L,�) +
∞∑

k=1

Ck(ψ0,L,�,ε)

t k
.

(59)

To obtain explicit expressions for the coefficients
Ck(ψ0,L,�,ε), it is convenient to write the expression (51)
in the following form:

K1(x,y,t) =
∞∑

	=0

G	(x,y)

t (2	+1)/2
. (60)

Then, the decaying part of the wave function reads

ψdecay(x,t) ≡
∫ L

0
K1(x,y,t)ψ0(y)dy =

∞∑
	=0

Q	(x)

t (2	+1)/2
,

(61)

where

Q	(x) =
∫ L

0
G	(x,y)ψ0(y)dy. (62)

Hence,

P (ψ0,L,�,ε,t) − P∞(ψ0,L,�)

=
∫ L

0
|ψdecay(x,t)|2dx =

∞∑
k=1

Ck(ψ0,L,�,ε)

t k
, (63)

where

Ck(ψ0,L,�,ε) =
∞∑

	,m = 0
	 + m + 1 = k

〈Qm|Q	〉. (64)

Note that if C1(ψ0,L,�,ε) = 0, then Q0 ≡ 0 and
thus C2(ψ0,L,�,ε) = 0. More generally, if C1(ψ0,L,

�,ε) = C2(ψ0,L,�,ε) = · · · = C2	+1(ψ0,L,�,ε) = 0, then
C2	+2(ψ0,L,�,ε) = 0. Thus, at large times the nonescape
probability P (ψ0,L,�,ε,t) ∼ Cδ(ψ0,L,�,ε)/tδ , with δ an
odd number. Let us use the expressions (55)-(56) to write the
leading coefficients Ck(ψ0,L,�,ε). It turns out that they can
be nicely written in terms of the derivatives of the Fourier
transform of the initial state:

ψ̃
(n)
0 (k) = (−i)n√

2π

∫ L

0
e−ikyynψ0(y)dy. (65)

There are two cases:
(1) If cos(�) = 1, then

C1(ψ0,L,�,ε) = ε2L

8 a4

∣∣∣∣ψ̃0

(
�

L

)∣∣∣∣
2

. (66)
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If C1(ψ0,L,�,ε) = 0, then C2(ψ0,L,�,ε) = 0 and the next
leading term is given by

C3(ψ0,L,�,ε) = ε2L

128 a4

∣∣∣∣Lψ̃ ′
0

(
�

L

)
− iψ̃ ′′

0

(
�

L

)∣∣∣∣
2

. (67)

(2) If cos(�) �= 1, then C1(ψ0,L,�,ε) = C2(ψ0,L,�,ε) = 0
and

C3(ψ0,L,�,ε)

= ε2L3[2 + cos(�)]

96 b4[1 − cos(�)]4

∣∣∣∣Lψ̃0

(
�

L

)

−{sin(�) + i[1 − cos(�)]}ψ̃ ′
0

(
�

L

) ∣∣∣∣
2

. (68)

ψ0 dependence. We see that only the momentum
k = �/L plays a role in the decaying properties of
P (ψ0,L,�,ε,t). When � = 0, this coincides with the
well-known fact that only the zero momentum is involved [3].
Note that C1(ψ0,L,�,ε) �= 0 only if cos(�) = 1 and
ψ̃0(�/L) �= 0. As an illustration, let us discuss the case
� = 0. In this case, the bound states (29) form a basis in
L2([0,L]) of all odd functions with respect to L/2 [i.e.,
ψ(x) = −ψ(L − x) for all x ∈ [0,L]]. Thus, if � = 0
and the initial state ψ0 ∈ D(H ) is an odd function with
respect to L/2, then P (ψ0,L,�,ε,t) = P∞(ψ0,L,�) = 1
for all times. On the contrary, if � = 0 and ψ0 ∈ D(H )
is an even function with respect to L/2 [i.e.,
ψ0(x) = ψ0(L − x) for all x ∈ [0,L]], then P∞(ψ0,L,�) = 0
and P (ψ0,L,�,ε,t) = C1(ψ0,L,�,ε)/t + O(1/t2) at large
times, with C1(ψ0,L,�,ε) �= 0 since

∫ L

0 ψ0(y)dy �= 0.
More generally, if � = 0 and ψ0 = ψodd

0 + ψeven
0 , then

P (ψ0,L,�,ε,t) = P∞(ψ0,L,�) +C1(ψ0,L,�,ε)/t +O(1/t2),
where P∞(ψ0,L,�) = ∫ L

0 dx| ∫ L

0 dyK2(x,y,0)ψodd
0 (y)|2 and

C1(ψ0,L,�,ε) = ε2L/(8a4) |ψ̃even
0 (0)|2.

L dependence. Let ψ0(x,λ) and K(x,y,t,λ) be the initial
state and the propagator corresponding to a loop of length
λL, with λ > 0. Then, from the relations (72) and (36), one
deduces that

√
λ ψ0(λx,λ) = ψ0(x,1), (69)

λ K(λx,λy,λ2t,λ) = K(x,y,t,1). (70)

From these scaling laws, one finds that

P (ψ0,λL,�,ε,t) = P

(
ψ0,L,�,ε,

t

λ2

)
. (71)

From the relation (59), one easily deduces that P∞ is
independent of L, so from now on we shall write P∞(ψ0,�),
and that the coefficient Ck is an homogeneous function of
degree 2k [i.e., Ck(ψ0,λL,�,ε) = λ2k Ck(ψ0,L,�,ε) for all
λ > 0], and thus Ck(ψ0,L,�,ε) ∝ L2k .

� dependence. Looking at the relations (66)–(68), one sees
that in general it is difficult to predict the � dependence
of P (ψ0,L,�,ε,t) and we shall discuss this matter in detail
in the next section. Nevertheless, some general symmetries
can be found. Indeed, the propagators Kj (x,y,t), with j =
1,2,3, become ei 2π

L
(x−y)Kj (x,y,t) under the transformation

� �→ � + 2π . This implies that P (ψ0,L,�,ε,t) is invariant
under this transformation on the proviso that one replaces

ε2

a4

ε2

b4

0.0 0.1 0.2 0.3 0.4 0.5
10 7

10 4

0.1

100

105

108

ε

FIG. 3. (Color online) Log-lin plot of ε2/a4 (dashed blue) and
ε2/b4 (red) for ε ∈ [0,0.5].

the initial state ψ0(y) by e−i 2π
L

yψ0(y). Furthermore, a simple
calculation shows that P (ψ0,L,�,ε,t) is invariant under the
transformation � �→ −� if the initial state satisfies ψ0(x) =
−ψ0(L − x) [as in (72)] or ψ0(x) = ψ0(L − x), for all x ∈
[0,L].

ε dependence. At large times, one sees from (66)–(68) that
P (ψ0,L,�,ε,t) − P∞(ψ0,�) behaves as ε2/a4 if cos(�) = 1
and ε2/b4 otherwise. Looking at Fig. 3, one deduces that at
large times P (ψ0,L,�,ε,t) − P∞(ψ0,�) decreases with ε if
cos(�) = 1 and increases otherwise. In other words, in the long
run the particle escapes faster as one increases ε if cos(�) =
1 and escapes slower otherwise. This slowing effect when
cos(�) �= 1 at large times is rather peculiar since in the short
time regime, some numerical results show (see Fig. 10) that
the particle may escape faster as ε increases.

V. THE BOUND STATES

In order to apply our general results, let us consider the
following situation: The system is prepared such that at time
t = 0 no magnetic flux crosses the loop and the particle is in a
bound state ϕn ∈ D(H ), where

ϕn(x) =
√

2

L
sin

(
2πn

L
x

)
χ[0,L)(x), n = 1,2 . . . . (72)

Since the effect of the length’s loop and of the coupling
parameter was thoroughly discussed in Sec. IV, let us fix L

and ε and discuss the � dependence of P (ϕn,L,�,ε,t). If at
all later times there is still no magnetic flux inside the loop
(� = 0), then all the bound states ϕn will lead naturally to
P (ϕn,L,�,ε,t) = 1 at all times (i.e., the particle will remain
forever in the loop). On the contrary, if some constant magnetic
field is applied (� �= 0), then the states ϕn will no longer be
bound states of the Hamiltonian and consequently the particle
may escape from the loop. Using (58), one finds the following
asymptotic values:

lim
t→∞ P (ϕn,L,�,ε,t) = P∞(ϕn,�)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if � = 0

0 if | cos(�)| �= 1

1/4 if |�| = 2nπ

1/2 otherwise

. (73)
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FIG. 4. Log-lin plot of C3(ϕn,L,�,ε) in (74) as a function of flux
� ∈ (0,2π ) for n = 1, L = 1, and ε = 1/2.

As explained in Sec. IV, P (ϕn,L,�,ε,t) is invariant under
� �→ −� since ϕn are odd functions with respect to L/2,
so it is sufficient to discuss the case � � 0. If � = 0,
then P (ϕn,L,�,ε,t) = 1 at all times. If � ∈ (0,2π ), then
by using (73) and (68) one finds P (ϕn,L,�,ε,t) = δ�,π/2 +
C3(ϕn,L,�,ε)/t3 + O(1/t4), where

C3(ϕn,L,�,ε) = 2n2ε2�2L6π [2 + cos(�)]

3b4[1 − cos(�)]2(� − 2nπ )4(� + 2nπ )4
.

(74)

A simple analysis of (74) reveals that C3(ϕn,L,�,ε) is always
positive and diverges at the excluded values cos(�) = 1.
Furthermore, we see in Fig. 4 that C3(ϕn,L,�,ε) first decreases
and then increases with �. Note also that C3(ϕn,L,�,ε)
decreases with n, showing that in the long run more ener-
getic bound states escape faster from the loop. If � = 2π

or more generally if cos(�) = 1, then by using (66)-(67)
one finds P (ϕn,L,�,ε,t) = P∞(ϕn,�) + C1(ϕn,L,�,ε)/t +
C2(ϕn,L,�,ε)/t2 + C3(ϕn,L,�,ε)/t3 + O(1/t4), where

C1(ϕn,L,�,ε) =
{

L2ε2/(32πa4) if |�| = 2nπ

0 otherwise
. (75)

If C1(ϕn,L,�,ε) = 0 (i.e., |�| �= 2nπ ), then C2(ϕn,L,�,ε) =
0 and

C3(ϕn,L,�,ε) = n2ε2�2L6π

2a4(� − 2nπ )4(� + 2nπ )4
. (76)

Note that, as in (74), the coefficient C3(ϕn,L,�,ε) in (76)
decreases with n. Note also that C3(ϕn,L,�,ε) decreases with
�, as one may easily see by looking at the red dots in Fig. 5.
Finally, we see in Fig. 5 that by increasing further the magnetic
flux � we obtain a series of similar patterns in each range
[2	π,2(	 + 1)π ], 	 = 0,1,2, . . .

To obtain a global picture in time, we have computed
P (ϕn,L,�,ε,t) numerically. For this, we wrote (37) as

K1(x,y,t) =
∫ ∞

−∞
G(k; x,y,t)dk = 2

∫ ∞

0
Gs(k; x,y,t)dk,

(77)

where

Gs(k; x,y,t) = 1
2 [G(k; x,y,t) + G(−k; x,y,t)], (78)

0 20 40 60 80 100

10 9

10 6

0.001

1

1000

C
3

FIG. 5. (Color online) Log-lin plot of C3(ϕn,L,�,ε) as a function
of flux � ∈ [0,100] for n = 1, L = 1, and ε = 1/2. When � =
0, C3(ϕn=1,L = 1,�,ε = 1/2) = 0. When � = 2π , C1(ϕn=1,L =
1,�,ε = 1/2) �= 0 so C3(ϕn=1,L = 1,�,ε = 1/2) is not plotted.
When � = 4π,6π, . . . , we use (76) to obtain the red dots. All the
other values are obtained with (74).

so that

P (ϕn,L,�,ε,t)

= 4
∫ ∞

0

∫ ∞

0

[ ∫ L

0

∫ L

0

∫ L

0
Gs(k; x,y,t)

×Gs(p; x,z,t)ψ0(y)ψ0(z)dxdydz

]
dkdp. (79)

Then, we integrated analytically the expression inside the
square brackets and then computed numerically (with Matlab)
the so obtained expression with respect to k and p over the
finite domain [0,c] × [0,c]. The constant c was chosen such
that at very short times P (ϕn,L,�,ε,t) was close to one and no
appreciable changes occurred in P (ϕn,L,�,ε,t) by increasing
c further. We also checked that the curve for (ε = 1/2,
� = π/2), for which we know the propagator exactly [see
(43)], was accurately reproduced. In all the curves having
reached the asymptotic regime, the long time values are in
very good agreement with the ones given by the relations
(74)–(76).

n dependence. One sees in Fig. 6 that P (ϕn,L,�,ε,t)
decreases with n at all times and that at large times
P (ϕn,L,�,ε,t) ∼ C(ϕn,L,�,ε)/t3 in good agreement
with (74).

FIG. 6. (Color online) Log-log plot of P (ϕn,L,�,ε,t) as a
function of time t for L = 1, ε = 1/2, � = π/2, and n = 1 (black
circle), n = 2 (red square), and n = 3 (blue triangle).
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FIG. 7. (Color online) Log-log plot of P (ϕn,L,�,ε,t) as a
function of time t for n = 1, L = 1, ε = 1/2, and � = 0.1 (green
triangle), � = 0.3 (yellow diamond), � = 0.5 (purple circle), � =
0.7 (pink lozenge), � = 1 (red square), and � = 2 (blue cross).

� dependence. The � dependence of P (ϕn,L,�,ε,t) is
represented in Figs. 7–9. In the curves having reached the
asymptotic regime, one sees that P (t) ∼ C(ϕn,L,�,ε)/t3 at
large times, where the constant C(ϕn,L,�,ε) decreases with
� when � ∈ (0,2.33) (see Fig. 7) and increases when � ∈
(2.33,2π ) (see Fig. 8), as expected from Fig. 4. Note, however,
that there may be several crossing among the curves. Note that
similar features were obtained in a circular dielectric cavity
containing classical waves [19]. In Fig. 9, one sees that � =
2π leads to P (ϕn,L,�,ε,t) ∼ C(ϕn,L,�,ε)/t as expected
from (75), while � = π,3π,4π lead to P (ϕn,L,�,ε,t) ∼
C(ϕn,L,�,ε)/t3 as expected from (74) and (76).

ε dependence. In Fig. 10, one sees that P (ϕn,L,�,ε,t) ∼
C(ϕn,L,�,ε)/t3 at large times and that the constant
C(ϕn,L,�,ε) increases with ε. On the other hand, note that
P (ϕn,L,�,ε,t) decreases with ε at short times and that the
curves cross each other.

Exponential decay. Plotting the curves in Figs. 6–10 on a
log-lin plot (not shown) reveals that on some intermediate time
scale (not very small and not very large), the nonescape prob-
ability decays approximately as an exponential, in agreement
with [7].

VI. THE INTERACTING CASE

So far we have solely discussed the free evolution. To have
an idea about the interacting evolution, let us consider the case

FIG. 8. (Color online) Log-log plot of P (ϕn,L,�,ε,t) as a
function of time t for n = 1, L = 1 ε = 1/2, and � = 3 (red circle),
� = 4 (green square), � = 5 (black triangle), and � = 6 (blue cross).

FIG. 9. (Color online) Log-log plot of P (ϕn,L,�,ε,t) −
P∞(ϕn,�) as a function of time t for n = 1, L = 1, ε = 1/2, and
� = π (black circle), � = 2π (blue square), � = 3π (red triangle),
and � = 4π (green diamond).

� = 0 and ε = 4/9, where the Hamiltonian of the particle is
given by

H = H0 + V (Q). (80)

Here H0 = − d2

dx2 is the free Hamiltonian and V is the potential
which for simplicity is supposed to be bounded, so that the
Hamiltonian H is self-adjoint in the domain D(H ) specified
by the conditions (16)–(18) with ε = 4/9.

Obviously, in this case the time-dependent Schrödinger
equation (21) cannot be solved analytically in general and
it also seems extremely difficult to compute analytically the
large time behavior of the nonescape probability, so we shall
consider a fully numerical approach. For this, let us consider a
long but finite lead of length 	 > L and set ψ(L + 	) = 0. The
assumption 	 > L is natural in our case and also simplifies
the remaining discussion. One can then check that H is
self-adjoint in

D(H ) = {ψ ∈ H | Hψ ∈ H and (82)−(84) are satisfied},
(81)

where

ψ(0+) = ψ(L−) = ψ(L+), (82)

ψ ′(L−) = ψ ′(0+) + ψ ′(L+), (83)

ψ(L + 	) = 0. (84)

FIG. 10. (Color online) Log-log plot of P (ϕn,L,�,ε,t) as a
function of time t for n = 1, L = 1, � = π/2, and ε = 0.3 (blue
triangle), ε = 0.4 (red square), and ε = 0.5 (black circle).
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FIG. 11. (Color online) The nonescape probability
P (ψ0,L,	,λ,t) as a function of time t for a soft-core Coulomb
potential by using the pseudospectral method with L = 1, 	 = 500,
�x = 1/80, �t = 10−3. (From top to bottom) λ = −0.1 (green),
λ = 0 (light blue), λ = 0.1 (orange), and λ = 1 (red). The dark blue
cross curve (close to the λ = 0 curve) corresponds to the free case
(V = 0) with 	 = ∞ and is obtained by using the expression (79).

Clearly, for our numerical results to remain accurate for
a long time the unitarity of the time evolution is crucial.
A convenient way to implement numerically the boundary
conditions (82)–(84), while preserving unitarity, is to use the
pseudospectral method presented in Appendix D. This method
requires the knowledge of the spectrum and bound states of the
free Hamiltonian H0, which are worked out in Appendix E. We
believe that this section and the Appendices D and E present,
in particular, an interesting and highly nontrivial application
of the pseudospectral method.

Let us consider the following initial state:

ψ0(x) =
√

8

3L
sin2

(
2π

L
x

)
χ[0,L](x). (85)

It is easy to check that ψ0 is normalized (||ψ0|| = 1) and
belongs to D(H ). Note that ψ0 is an even function in
L2([0,L]) and thus it is orthogonal to all bound states of the
loop. Therefore, in the infinite case 	 = ∞ with no potential
(V = 0), the nonescape probability will vanish at large times
and the asymptotic decay can be computed by using (66)

Pfree(ψ0,L,	 = ∞,t) = 2L2

3π

1

t
+ O

(
1

t2

)
. (86)

Numerically, the infinite situation (	 = ∞) is obtained by
using the expression (79) and gives the dark blue cross curve
in Fig. 11. Its asymptotic values are in very good agreement
with formula (86). On the other hand, the finite case (	 < ∞)
is obtained by using the pseudospectral method and leads to
the light blue curve in Fig. 11. As one clearly sees, the two
methods are in very good agreement.

Imagine now that a fictive charged particle is fixed at the
point x = L/2 (i.e., at the leftmost part of the loop) and
interacts with our genuine charged particle via a soft-core
Coulomb force. Then, a simple calculation leads to the

following potential (0 � x � L + 	):

Vλ(x) = λ√
d(x)2 + 10−4

,

d(x) =
{√

2R

√
1 − cos

(
π − x

R

)
if x � L

2R + x − L if x > L
, R = L

2π
.

(87)

When λ > 0, the force is repulsive, while λ < 0 corresponds
to an attractive force. The numerical results are presented in
Fig. 11. As expected, we see that P (ψ0,L,	,λ,t) decays faster
than the free case if λ > 0 and slower if λ < 0. Note also
that globally the curves look similar to the ones obtained in
the free cases presented in the previous section. In particular,
plotting these curves on a log-lin plot (not shown) reveals
the approximate exponential decay on some intermediate
time scale. Although our numerical results do not show any
asymptotic power law decay when λ �= 0, such a regime may
well be present at larger times. To reach larger times, however,
one has to increase the length of the lead 	 (because the particle
gets reflected at the end of the lead and comes back into the
loop causing a bump in the curves after some time) but this
increases the computation time very quickly.

VII. CONCLUDING REMARKS

Although more energetic bound states typically escape
faster from the loop, we found that different bound states may
actually decay with different power laws and consequently
it may be possible to filter one bound state from a coherent
superposition by applying the appropriate magnetic flux �

through the loop. Indeed, suppose that the system is prepared
such that at time t = 0 no magnetic flux crosses the loop and
the particle is in the state,

ψ0 =
∞∑

n=1

cnϕn, (88)

satisfying ||ψ0|| = 1, where ϕn are the bound states (72). Then,
if one wants to filter the bound state ϕm, one may apply a
magnetic flux � = 2mπ through the loop for a sufficiently
long time, so that the state ϕm decays as 1/t while all the
others decay as 1/t3 [see (75)-(76)].

The short-time behavior of P (ψ0,L,�,ε,t) is also inter-
esting and can be conveniently written as P (ψ0,L,�,ε,t) =
1 − ||χ[L,∞)(Q)e−iH tψ0||2. By computing the propagator
K(x,y,t) for x > L and y < L, one then finds that
P (ψ0,L,�,ε,t) = 1 − D2(ψ0,L,�,ε)t2 + O(t3) as t → 0. In
general, it seems that the constant D2(ψ0,L,�,ε) cannot be
expressed in a simple form and thus its behavior would require
a refined numerical investigation.

To make more apparent the exponential decay
of the nonescape probability at intermediate times,
while keeping the power law decay explicit at large
times, it would be interesting to write P (ψ0,L,�,ε,t)
as P∞(ψ0,�) + A(ψ0,L,�,ε) exp[−α(ψ0,L,�,ε)t] +∑∞

k=1 Bk(ψ0,L,�,ε)/tk and to determine the unknown
variables A, α, and Bk . One may also analyze the transition
times between the exponential regime and the power law
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regime with respect to the parameters ε and �, and also λ if
there is such a transition.

A very interesting and challenging problem is to obtain
a thorough description of the long-time behavior of the
nonescape probability in the interacting case. It is clear that
one would have to proceed analytically and thus in general it
would be highly nontrivial. Basically, the problem consists
in finding out a nontrivial class of potentials V , such as
short-range potentials, for which the asymptotic decay rate of
the nonescape probability can be effectively deduced (see [6]
and references therein).
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APPENDIX A: PROPERTIES OF THE HAMILTONIAN H

Here we show that the Hamiltonian H is self-adjoint in
D(H ) given in (19). First of all, it is clear that D(H ) is dense
in H, so that the adjoint H ∗ of H is well defined. Let us
recall that an operator {H,D(H )} is self-adjoint if D(H ∗) =
D(H ) and H ∗ψ = Hψ for all ψ ∈ D(H ), where a vector
f ∈ H belongs to D(H ∗) if there is a vector f ∗ ∈ H such that
〈f |Hg〉 = 〈f ∗|g〉 for all g ∈ D(H ), and for each f ∈ D(H ∗)
one sets H ∗f = f ∗.

Let f ∈ H be a vector such that Hf ∈ H and let g ∈ D(H ).
Then,

〈f |Hg〉 = 〈Hf |g〉 + BT, (A1)

where

BT

= 2i
�

L
g(0+)[f (L−) − f (0+)] − g(0+)

b
{√εf ′(L+)

+ b[f ′(0+) − f ′(L−)]} + g′(0+)√
ε

[
√

εf (0+) − bf (L+)]

−g′(L−)√
ε

[
√

εf (L−) − bf (L+)].

Here we have used the fact that g ∈ D(H ). We see that BT
vanishes for all g ∈ D(H ) if and only if f also satisfies the
boundary conditions (16)–(18). This shows that D(H ∗) =
D(H ) and H ∗f = Hf for all f ∈ D(H ) (i.e., H is self-
adjoint).

Let us now show that the spectrum σ (H ) of H is [0,∞).
Since H is self-adjoint, it follows that σ (H ) ⊂ R. Writing
H = P 2

�, with P� = −i d
dx

− �
L
χ[0,L](Q), one easily shows

that 〈ϕ|Hϕ〉 = ||P�ϕ||2 � 0 for all ϕ ∈ D(H ). This means
that H is a positive operator and thus σ (H ) ⊂ [0,∞). Let
k > 0 be fixed, then a (particular) solution of Hϕ = k2ϕ is

ϕ(x) = eik(x−L)χ[L,∞)(x). (A2)

Take ψ ∈ C∞
0 (R) satisfying ψ(0) = ψ ′(0) = 0 and∫∞

0 |ψ(y)|2dy = 1, and set

ψn(x) = 1√
n
ψ

(
x − L

n

)
ϕ(x),

(A3)
where x > 0 and n = 1,2, . . .

It is easy to check that ψn ∈ D(H ) and ||ψn|| = 1 for all n,
and that ||Hψn − k2ψn|| → 0 as n → ∞. This shows that
E = k2 > 0 belongs to the spectrum of H (see Prop. 4.20
in [27] or Th. 2.2.1 in [28]). Since k > 0 is arbitrary and the
spectrum of H is a closed set, one can conclude that σ (H ) =
[0,∞).

APPENDIX B: THE COEFFICIENTS A, B, C, AND D

The denominator �(k) of the coefficients (24)–(27) vanish
if and only if

a2 sin2(kL) + b2[cos(kL) − cos(�)]2 = 0. (B1)

Since a and b are always nonzero (remember that ε = 0 is
excluded) the above equality is satisfied if and only if

sin(kL) = 0 and cos(kL) = cos(�). (B2)

The first relation is verified only if kL = nπ , for some n ∈ Z,
and consequently the second relation reads cos(�) = (−1)n.
This shows that the coefficients A, B, C, and D may contain
singularities only if cos(�) = 1 or cos(�) = −1. We shall now
discuss these two cases separately.

(1) Case cos(�) = 1 or � = 2nπ , with n ∈ Z. Using
trigonometric relations, one may write

A(k) = −B(k) = −
√

ε

8π

×
√

1 − cos(kL) + i sgn[sin(kL)]
√

1 + cos(kL)

{a2[1 + cos(kL)] + b2[1 − cos(kL)]}1/2
.

(B3)

Since the denominator of this expression is always nonzero,
it follows that A and B are well defined in R. Next, one may
write

C(k) = −D(k) = − 1

2b
√

ε
[2(b − ε)A(k) − 2bB(k)], (B4)

showing that C and D are also well defined in R. Furthermore,
one has

f1(k) = ε

4π{a2[1 + cos(kL)] + b2[1 − cos(kL)]} , (B5)

f2(k) = εe−ikL

4π{a2[1 + cos(kL)] + b2[1 − cos(kL)]} . (B6)

(2) Case cos(�) = −1 or � = (2n + 1)π , with n ∈ Z. In this
case, the relation (B4) still holds with

A(k) = −B(k) = −
√

ε

8π

×
√

1 + cos(kL) − i sgn[sin(kL)]
√

1 − cos(kL)

{a2[1 − cos(kL)] + b2[1 + cos(kL)]}1/2
.

(B7)
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Therefore, the coefficients are also well defined in this case
and we have

f1(k) = ε

4π{a2[1 − cos(kL)] + b2[1 + cos(kL)]} , (B8)

f2(k) = −εe−ikL

4π{a2[1 − cos(kL)] + b2[1 + cos(kL)]} . (B9)

APPENDIX C: THE IDENTITY (48)

Here we show the identity (48). From the equality,∫ ∞

−∞
e−ak2+bkdk =

√
π

a
e

b2

4a , (C1)

one can write∫ ∞

−∞
kne−ak2+bkdk =

√
π

a

dn

dbn

(
e

b2

4a

)
. (C2)

One then concludes by using the following formula for the
Hermite polynomial:

Hn(x) = (−1)nex2 dn

dxn

(
e−x2) =

 n
2 �∑

	=0

n!(−1)	

	! (n − 2	)!
(2x)n−2	.

(C3)

APPENDIX D: THE PSEUDOSPECTRAL METHOD

In Appendix E, we show that the free Hamiltonian H0 has
a pure point spectrum {En}∞n=1 satisfying 0 < E1 < E2 < · · ·
(so each eigenvalue is positive and has multiplicity 1), and
that one can solve (explicitly) the free stationary Schrödindger
equation,

H0ϕn = Enϕn, (D1)

with ϕn ∈ D(H0) = D(H ) and ||ϕn|| = [
∫ L+	

0 |ϕn(x)|2dx]1/2 =
1. Let ψ0 ∈ D(H ), x ∈ [0,L + 	], and �t > 0, then

ψ(x,�t) = (e−iH�tψ0)(x). (D2)

Let us consider the symmetric decomposition known as
Strang splitting (H = H0 + V ):

e−iH�t = e−iV �t/2e−iH0�te−iV �t/2 + O(�t3). (D3)

Since {ϕn}n�1 forms an orthonormal basis of the Hilbert space
H, one can write

e−iV �t/2ψ0 =
∞∑

n=1

〈ϕn|e−iV �t/2ψ0〉ϕn. (D4)

Substituting (D3) and (D4) in (D2) gives

ψ(x,�t) =
∞∑

n=1

e−iEn�te−iV (x)�t/2ϕn(x)

×
∫ L+	

0
e−iV (y)�t/2ϕn(y)ψ0(y)dy + O(�t3).

(D5)

Let � ∈ H, and let us define a generalized Fourier transform
F as (n = 1,2, . . . ),

�̂(n) = F(�)(n) =
∫ L+	

0
ϕn(y)�(y)dy. (D6)

Since the family {ϕn}n�1 forms an orthonormal basis of H,
we have the following:

�(x) = F−1(�̂)(x) =
∞∑

m=1

ϕm(x)�̂(m). (D7)

One may then rewrite (D5) as

ψ(x,t + �t) = e−iV (x)�t/2F−1[e−iEn�t

×F(e−iV (·)�t/2ψ(·,t))](x) + O(�t3). (D8)

This relation is a common way of presenting the pseudospec-
tral method. Numerically, the Fourier transform and its inverse
are then computed by using a very efficient algorithm known
as the fast Fourier transform (FFT). As far as we know, there
is however no FFT using the eigenvectors {ϕn}n�1 of our
model, so we shall compute ψ(x,t + �t) directly.

Let �x = (L + 	)/N , with N ∈ N, be a small length
difference, xk = k �x the position of the kth site, with
k = 0,...,N , tm = m �t , with m = 0,1, . . . , and ψ(·,0) = ψ0.
Then, we will use the following relation in the numerical
computation:

ψ(xk,tm+1) =
∞∑

n=1

e−iEn�te−iV (xk)�t/2ϕn(xk)

×
∫ L+	

0
e−iV (y)�t/2ϕn(y)ψ(y,tm)dy + O(�t3).

(D9)

In the simulations, we consider only the first 2500 terms in
the infinite sum occurring in (D9), compute the integral by
using the composite Simpson rule, and check that probability
is conserved at all times.

APPENDIX E: THE FREE HAMILTONIAN H0

The free Hamiltonian H0 is self-adjoint and thus its
spectrum σ (H0) ⊂ R. Writing H0 = P 2, with P = −i d

dx
, one

finds that 〈ϕ|H0ϕ〉 = ||Pϕ||2 � 0 for all ϕ ∈ D(H ) and thus
σ (H0) ⊂ [0,∞). The general solution of H0ϕn = Enϕn, with
En = k2

n and kn � 0, is

ϕn(x) = [Ane
iknx + Bne

−iknx]χ[0,L)(x)

+ [Cne
iknx + Dne

−iknx]χ[L,L+	](x), (E1)

where χI is the characteristic function of the interval I :
χI (x) = 1 if x ∈ I and χI (x) = 0 otherwise. Solving (82)–
(84), one gets two types of solutions: First, we have the bound
states of the loop (Cn = Dn = 0 and An = −Bn),

ϕloop
m (x) =

√
2

L
sin

(
kloop
m x

)
χ[0,L)(x),

(E2)

kloop
m = 2πm

L
, m = 1,2, . . .

Second, assuming that kn �= k
loop
m for all m = 1,2, . . . , we have

Bn = − 1 − eiknL

1 − e−iknL
An, (E3)

Cn = 3 − 4e−iknL + e−2iknL

2(1 − e−iknL)
An, (E4)
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Dn = −3 − 4eiknL + e2iknL

2(1 − e−iknL)
An, (E5)

kn �= (2s + 1)π

2	
, s = 0,1,2, . . . (E6)

2 tan(kn	) = sin(knL)

1 − cos(knL)
. (E7)

Explicitly, we thus have

ϕglobal
n (x)

= iAn

1 − e−iknL
{2 [sin(knx) − sin (kn(x − L))] χ[0,L)(x)

+ [3 sin(knx) − 4 sin (kn(x − L))

+ sin (kn(x − 2L))]χ[L,L+	](x)}, (E8)

where the coefficient An is determined by normalization:∫ L+	

0 |ϕn(x)|2dx = 1. After some algebra, we found

An =
{

2 L + 	[5 − 3 cos(knL)]

+ 2
sin(knL)[1 − 2 sin2(kn	)]

kn

+ sin(kn	) cos(kn	)[5 cos(knL) − 3]

kn

}−1/2

. (E9)

It remains to solve (E7). As far as we can see, this relation
cannot be solved explicitly. Since we shall sum up over the
energies En = k2

n, we actually only need to find out the non-
negative solutions of (E7). Let I0 = [0, π

2	
] and I = [− π

2	
, π

2	
],

and let us look for solutions of the following form:

kn = n
π

	
+ δn, (E10)

where n = 0,1,2, . . . , δ0 ∈ I0, δn ∈ I , and such that kn �=
2πm/L and kn �= (2m + 1)π/(2	) for all m = 0,1,2, . . . .
Then, the relation (E7) reads

2 tan(nπ + δn	) = sin
(
nπL

	
+ δnL

)
1 − cos

(
nπL

	
+ δnL

) . (E11)

Since tan(nπ + δn	) = tan(δn	), one finds

δn = 1

	
arctan

[
sin

(
nπL

	
+ δnL

)
2
[
1 − cos

(
nπL

	
+ δnL

)]
]

, (E12)

where we consider the principal value of the arc-tangent
function: arctan(ϑ) ∈ (−π

2 , π
2 ). Note that cos(nπL

	
+ δnL) �=

1, since kn �= 2πm/L for all m = 0,1,2, . . . , so the above
expression is well defined. Nevertheless, it will be convenient
to attribute values to this expression on these exceptional
points.

The condition cos(nπL
	

+ δ̃nL) = 1 reads nπL
	

+ δ̃nL =
m2π , with m = 0,1,2, . . . , or δ̃n = m2π/L − nπ/	. Note
that δ̃0 ∈ I0 if and only if m = 0, since 	 > L, and thus
δ̃0 = 0. For δ̃n to belong to I , with n � 1, it is necessary that
|4m	/L − 2n| � 1. Let us assume that 	/L is an integer (as
in the simulation), then only the condition |4m	/L − 2n| = 0
or δ̃n = 0 might be satisfied, and thus any exceptional point
δ̃n must be at the center of I . Let us introduce the set
� = {2m	/L | m = 1,2, . . . }, which is the collection of n for
which the condition |4m	/L − 2n| = 0, with m = 1,2, . . . , is

satisfied. If n ∈ �, then we shall cut the interval I into two
parts: I = IL ∪ IR, where IL = [− π

2	
,0] and IR = [0, π

2	
].

Let us define F0 : I0 → I0 as

F0(δ) = 1

	
arctan

[
sin(δL)

2[1 − cos(δL)]

]
, (E13)

and set F0(0) = π/(2	). If n � 1 and n �∈ �, then we define
Fn : I → I by

Fn(δ) = 1

	
arctan

[
sin

(
nπL

	
+ δL

)
2
[
1 − cos

(
nπL

	
+ δL

)]
]

. (E14)

On the other hand, if n ∈ �, we shall consider the functions
F L : IL → IL and F R : IR → IR given by

F L(δ) = 1

	
arctan

[
sin(δL)

2[1 − cos(δL)]

]
, (E15)

F R(δ) = 1

	
arctan

[
sin(δL)

2[1 − cos(δL)]

]
, (E16)

and set F L(0) = −π/(2	) and F R(0) = π/(2	).
We shall show that F0, Fn, F L, and F R are contracting

maps and thus, by the fixed point theorem, there exist unique
points δ∗

0 , δ∗
n, δL∗, and δR∗ such that F0(δ∗

0 ) = δ∗
0 , Fn(δ∗

n) = δ∗
n,

F L(δL∗) = δL∗, and F R(δR∗) = δR∗. Furthermore, these fixed
points may be reached by iterations [e.g., Fm

n (0), the mth iterate
of Fn at point 0, converges to δ∗

n as m → ∞]. This shows in
particular that we have found all the solutions of (E12) and
consequently of (E7), that H0 has pure point spectrum and that
each eigenvalue has multiplicity 1. Let us now show that Fn

contracts; the proofs for F0, F L, and F R are similar. So let
X,Y ∈ I with X �= Y . Then,

|Fn(X) − Fn(Y )| � C |X − Y |, (E17)

where

C = |Fn(X) − Fn(Y )|
|X − Y | � sup

X �=Y∈I

|Fn(X) − Fn(Y )|
|X − Y |

� sup
X∈I

∣∣∣∣dFn

dX
(X)

∣∣∣∣ � L

	
< 1. (E18)

The last two inequalities follow from the assumption L < 	

and the explicit computation of F ′
n(X):∣∣∣∣dFn

dX
(X)

∣∣∣∣ = 2L

	
[
5 − 3 cos

(
nπL

	
+ LX

)] . (E19)

It remains to check that the fixed point δ∗
n of Fn gives rise to an

allowed value of kn, that is, satisfying kn �∈ {2πm/L,(2m +
1)π/(2	)}∞m=0. These conditions state that δ∗

n should not be a
boundary value of I [i.e., |δ∗

n| �= π/(2	)]. This can be easily
checked.

In the simulations, we iterate the map F0, Fn, F L, and
F R until the condition (84) with ψ = ϕ

global
n given in (E8) is

accurately satisfied: We required that |ϕglobal
n (L + 	)| < 10−10.

Since the contracting constant C is very small (< L/	), this
condition is satisfied after only a few iterations. In summary,
we have

k0 = δ∗
0 , with δ∗

0 ≈ F0 ◦ · · · ◦ F0(ε), (E20)

n �∈ � : kn = n
π

	
+ δ∗

n, with δ∗
n ≈ Fn ◦ · · · ◦ Fn(0), (E21)
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n ∈ � : kL
n = n

π

	
+ δL∗, with δL∗ ≈ F L ◦ · · · ◦ F L(−ε),

(E22)

n ∈ � : kR
n = n

π

	
+ δR∗, with δR∗ ≈ F R ◦ · · · ◦ F R(ε),

(E23)

where ε is a small positive number [ε < π/(2	)]. The states
can then be written as

if n �∈ � : ϕn = ϕ
global
n ,

if n ∈ � :

⎧⎪⎨
⎪⎩

ϕL
n = ϕ

global
n , with kn = kL

n

ϕC
n = ϕ

loop
n , with kn = nπ

	

ϕR
n = ϕ

global
n , with kn = kR

n .

(E24)
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